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Abstract
We propose a partially linear additive Gaussian
graphical model (PLA-GGM) for the estimation
of associations between random variables dis-
torted by observed confounders. Model parame-
ters are estimated using an L1-regularized max-
imal pseudo-profile likelihood estimator (MaP-
PLE) for which we prove

√
n-sparsistency. Im-

portantly, our approach avoids parametric con-
straints on the effects of confounders on the es-
timated graphical model structure. Empirically,
the PLA-GGM is applied to both synthetic and
real-world datasets, demonstrating superior per-
formance compared to competing methods.

1. Introduction
Undirected graphical models are extensively used to study
the conditional independence structure between random
variables (Jordan, 1998; Liu & Page, 2013; Liu et al., 2014).
Important applications include image processing (Mignotte
et al., 2000), finance (Barber & Kolar, 2018) and neuro-
science (Zhu & Cribben, 2017), among others. A major
challenge in real world applications is that the underly-
ing conditional independence structure can be distorted by
confounders. Unfortunately, despite the large literature on
graphical model estimation, there is limited work to date on
estimation with observed confounding.

The observed confounding issue is ubiquitous. Consider the
problem of estimating brain functional connectivity from
functional magnetic resonance imaging (fMRI) (Biswal
et al., 1995; Fox & Raichle, 2007; Shine et al., 2015; 2016)
data. Here, the connectivity estimate is known to be sus-
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ceptible to confounding from physiological noise such as
subject motion (Van Dijk et al., 2012; Goto et al., 2016). We
emphasize that although the amount of motion is observed,
the resulting confounding can significantly distort the con-
nectivity matrix when estimated using conventional means,
leading to incorrect scientific inferences (Laumann et al.,
2016). Another example is in social network analysis. The
social contagion (the effects caused by the people close to
each other in a social network) are shown to be confounded
by the effect of an individual’s covariates on his or her be-
havior or other measurable responses (Shalizi & Thomas,
2011). As a result, a method which is able to recover the
social contagion or the social network structure despite the
individual confounding is clearly useful.

This manuscript is motivated by the question: is it pos-
sible to efficiently estimate sparse conditional indepen-
dence structure between random variables with known
confounders? We provide a positive answer for the im-
portant case of jointly Gaussian random variable models.
Although prior works have studied the issue of hidden con-
founders in generative undirected graphical models (Jor-
dan, 1998), to our knowledge, this manuscript is among
the first to develop the methodology to deal with observed
confounders. We propose a new class of graphical mod-
els: the partially linear additive Gaussian graphical models
(PLA-GGMs), whose parameters capture the underlying
relationships of random variables, and where these relation-
ships take a partially linear additive form (Hastie, 2017).
Further, we parametrize the model using two additive com-
ponents: the target i.e. the non-confounded structure, and
the nuisance structure induced by observed confounders.

Importantly, we do not impose a parametric form on the
nuisance structure – only requiring smoothness to facilitate
nonparametric estimation. This significantly improves on
prior work which has required strong ad-hoc assumptions
like the linear assumption (Van Dijk et al., 2012; Power
et al., 2014) or the zero-expectation assumption (Lee & Liu,
2015; Geng et al., 2018a) on the nuisance parameter. PLA-
GGMs are applicable as long as not all the observed samples
are highly confounded, so that the proposed procedure can
compare the confounded samples with the non-confounded
ones in order to remove the confounding influence.

We propose a pseudo-profile likelihood (PPL) estimator for
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learning PLA-GMMs, which can be considered as a pseudo-
likelihood version profile likelihood (Fan et al., 2005). By
minimizing the L1-regularized negative log PPL, we derive
a
√
n-sparsistent estimator of the target structure under mild

assumptions. The sparsistency of the estimator indicates that
the proposed method recovers the true underlying structure
with a high probability (Wainwright, 2009; Kolar et al.,
2009; Kolar & Xing, 2011; Ravikumar et al., 2010). We also
show that the convergence rate of the proposed estimator is
faster than competing methods.

The proposed PLA-GGM can be considered as a generative-
model counterpart of partially linear additive discriminative
models (Fan & Zhang, 2008; Cheng et al., 2014; Choulde-
chova & Hastie, 2015; Lou et al., 2016). Compared with
these discriminative models, PLA-GGM as a generative
model focuses on estimating the relationships among ran-
dom variables, thus can be used to recover the conditional
independence structure, which discriminative models like
Sohn & Kim 2012; Wytock & Kolter 2013 cannot. Recall
that GGMs can be estimated as a collection of related re-
gressions (Meinshausen & Bühlmann, 2006). Along similar
linesm, our PLA-GGM approach requires studying multiple
dependent discriminative models simultaneously.

Main Contributions Our main technical contributions
are summarized as follows:

• To the best of our knowledge, PLA-GMM is the first
model to specifically deal with the observed confounders
in generative undirected graphical models. Without as-
suming a parametric form for the confounding, PLA-
GMM can accommodate a broad class of potential struc-
ture confounders.

• We demonstrate that PLA-GGMs facilitate
√
n-

sparsistent estimators by proposing the PPL method as
a new objective for the parameter estimation. Further,
since the corresponding minimization problem is shown
to be equivalent to a regularized weighted least square,
the optimization is shown to be efficient by leveraging the
coordinate descent method (Friedman et al., 2010) and
the corresponding strong screening rule (Tibshirani et al.,
2012).

We demonstrate the utility of PLA-GGMs using both syn-
thetic data and the 1000 Functional Connectomes Project
Cobre dataset (COBRE, 2019), a brain imaging dataset from
the Center for Biomedical Research Excellence. The pro-
posed PLA-GGM demonstrates superior accuracy in terms
of structure recovery and can effectively detect the abnor-
malities of the brain functional connectivity of subjects with
schizophrenia.

2. Modeling
We begin by formulating PLA-GGMs. For a continuous
random vector Z and a confounder variable G, we assume
that the conditional distribution Z |G = g follows a Gaus-
sian graphical model (Yang et al., 2015a) with a parameter
matrix, denoted by Ω(g), that depends on g. In particular,
the conditional distribution of Z |G = g follows:

P(Z = z; Ω(g) |G = g) ∝ exp


p∑
j=1

Ωjj(g)zj

+

p∑
j=1

p∑
j′>j

Ωjj′(g)zjzj′ −
1

2

p∑
j

z2j

 ,

where we assume that the diagonal of the covariance matrix
of Z | G = g is 1, without loss of generality (Yang et al.,
2015a). Note that the parameter Ω(g) captures the condi-
tional independence structure1 of Z | G = g. Therefore,
the structure of Z is allowed to vary based on the values of
confounders. This characteristic makes the proposed PLA-
GGM more general in scope and applicability compared
to prior work where the structure of Z is assumed to be
unrelated to the confounders (see discussion in Section 5).

Let Ω0 := Ω(0) represent the non-confounded structure.
We assume that the parameter Ω(g) takes the partially linear
additive form:

Ω(g) := Ω0 + R(g). (1)

Our goal is to recover Ω0 given n independent observa-
tions Z = {zi, gi}i∈[n] from the joint distribution of (Z, G).
The term R(g) is a nuisance component that arises due to
confounding. Thus, while the structure of Z varies over
observations, we are only interested in a specific one, Ω0,
whose sparsity pattern encodes the target non-confounded
structure.

It is clear that recovering Ω0 is impossible with-
out constraints on R(·). For instance, esti-
mates

{
Ω̂0 := Ω0/2, R̂(·) := R(·) + Ω0/2

}
and{

Ω̂0 := Ω0/3, R̂(·) := R(·) + 2Ω0/3
}

result in the
same likelihood, making it impossible to determine the true
value of Ω0. To this end, we enforce a mild assumption
– that the effect of confounders is trivial when the size
of confounding itself is small. Specifically, for a known
g∗ > 0, we assume

R(g) = 0, (2)

for any g satisfying |g| ≤ g∗.
1We will refer to conditional independence structure as struc-

ture for the ease of presentation.
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The assumption states that the confounders with values
smaller than g∗ do not have any effect on the structure
of Z, and thus this serves as a constraint on R. Then, as
long as we can observe some samples with the confounders
small enough (smaller than g∗), we should be able to distin-
guish Ω0 from R(g). Such an assumption is much weaker
than those used in existing works including Van Dijk et al.
(2012), Power et al. (2014), and Lee & Liu (2015), where
R(g) = 0 or E [R(g)] = 0 are often assumed. Note that
when g∗ = ∞, (2) will degenerate to R(g) = 0. Also, as
g is smooth, there should exist infinite g∗’s satisfying the
definition. We do not require using the largest possible one.
The selection of g∗ in practice is discussed in Section 6.2.

3. Pseudo-Profile Likelihood Method
PLA-GGMs facilitate fast-converging estimators. In this
section, we propose an estimation procedure for Ω0 in PLA-
GGMs.

3.1. Pseudo Likelihood

For a PLA-GGM parameterized by {R(·),Ω0} with obser-
vations {zi, gi}i∈[n], we first derive the log pseudo likeli-
hood as a linear regression in Lemma 1.

Lemma 1. Define zi,−j as the vector zi with the jth com-
ponent replaced by 1, Ω0·j the jth column vector of Ω0,
and Ωi·j the jth column vector of Ω(gi). The log pseudo
likelihood of the PLA-GGM follows

`PL

(
{zi, gi}i∈[n] ; R(·),Ω0

)
:=

n∑
i=1

p∑
j=1

{
zij
(
z>i,−jΩ0·j + z>i,−jΩi·j

)
− 1

2
z2ij

− 1

2

(
z>i,−jΩ0·j + z>i,−jΩi·j

)2}
.

(3)

It should be noticed that (3) has the same form as the ob-
jective function of p linear regressions each with n observa-
tions and 2p covariates. Specifically, for the jth regression
(j ∈ [p]), the n× 2p covariate matrix is defined as

[
xj xj

]
:=


z>1,−j z>1,−j
z>2,−j z>2,−j

...
...

z>n,−j z>n,−j

 ,

and the corresponding response is yj :=

[z1j , z2j , · · · , zn,j ]>.

For graphical models without confounders it is known
that minimizing L1-regularized negative log PL (Geng
et al., 2017; 2018b;c; Kuang et al., 2017) can lead to

√
n-

sparsistent parameter estimators (Yang et al., 2015a). Un-
fortunately, this is no longer true for PLA-GGMs, since
the number of unknown nuisance parameters, which are
non-parametric, is far too large. Instead, we leverage kernel
methods and propose an approximate PL.

3.2. Pseudo Profile Likelihood

We propose a new inductive principle to estimate Ω0. As
mentioned in Section 3.1, the varying confounding R(gi)’s
are an obstruction to estimating Ω0. We summarize the
varying effects as Mij := x>ijΩi·j , where x>ij denotes the
ith row vector of xj . (3) is transformed to

`PL

(
{zi, gi}i∈[n] ; R(·),Ω0

)
=

n∑
i=1

p∑
j=1

{
zij
(
x>ijΩ0·j +Mij

)
− 1

2
z2ij

− 1

2

(
x>ijΩ0·j +Mij

)2}
.

There are two unknown parts in PL: Ω0 andMij . Intuitively,
if we can express Mij’s using Ω0, we will be able to omit
Mij and focus on estimating Ω0. This leads to the following
Lemma on approximating Mij’s.
Lemma 2. For the ith observation, we define an n × n
kernel weight matrix , Wi, which is a diagonal matrix with
[ψ (|gi − g1|/h) , ψ (|gi − g2|/h) , · · · , ψ (|gi − gn|/h)].
ψ(·) is a symmetric kernel density function, and h > 0 is
a user specified bandwidth. Then, we define an auxiliary
matrix:

Dij :=


1{|g1|≥g∗}z

>
1,−j

g1−gi
h 1{|g1|≥g∗}z

>
1,−j

1{|g2|≥g∗}z
>
2,−j

g2−gi
h 1{|g2|≥g∗}z

>
2,−j

...
...

1{|gn|≥g∗}z
>
n,−j

gn−gi
h 1{|gn|≥g∗}z

>
n,−j

 ,
where

1{|g|≥g∗} :=

{
1 if |g| ≥ g∗

≤ 1 if |g| < g∗
,

satisfying the smoothing assumptions in Section 4.1.

An estimator of Mij can be derived as M̂ij :=
S>ij (yj − xjΩ0·j), where

S>ij :=
[
x>ij 0

] (
D>ijWiDij

)−1
D>ijWi.

The function 1{|g|≥g∗} in Lemma 2 is a user-specified func-
tion. In Theorem 1, we show that the value of 1{|g|≥g∗}
does not affect the

√
n-sparsistency of the estimation, as

long as it satisfies the definitions in Lemma 2.

Note that given the observations, M̂ij is only dependent on
Ω0. Therefore, by replacing Mij with M̂ij in (3) and some
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additional transformations, we can derive an approximate
log pseudo likelihood whose only unknown parameter is Ω0.
We define this as the log pseudo profile likelihood (PPL):

Definition 1 (PPL). Following the notations above, the log
PPL is defined as

`PPL

(
{zi, gi}i∈[n] ; R(·),Ω0

)
:=`PPL

(
{zi, gi}i∈[n] ; Ω0

)
:=

n∑
i=1

p∑
j=1

{
(1i − Sij)

>
yj (1i − Sij)

>
xjΩ0·j

− 1

2

[
(1i − Sij)

>
yj

]2
− 1

2

[
(1i − Sij)

>
xjΩ0·j

]2}
,

(4)

where 1i is an n× 1 vector, whose ith component is 1 and
others are 0’s.

The proposed PPL shares a close relationship with the pro-
file likelihood (Speckman, 1988; Fan et al., 2005): if the
components of Zi are independent of each other, the form
of PPL is equivalent to the log profile likelihood. However,
we do not make any assumptions on the independence here,
which makes PPL a type of log pseudo likelihood. Such
a rationale of intentionally overlooking the dependency is
widely used in the derivation of various types of pseudo like-
lihoods including the one in Huang et al. 2012. However,
Huang et al. 2012 focus on Cox regression for the longitudi-
nal data analysis which is different from our setting. Also,
the inductive principle in Huang et al. 2012 emphasizes
the consistency, while we will show that a

√
n-sparsistent

estimator can be achieved by using the PPL.

3.3. L1-Regularized MaPPLE

With the proposed PPL (4), we can now derive an esti-
mator for Ω0. For the ease of presentation, we will use

F (Ω0) to denote
−`PPL({zi,gi}i∈[n];R(·),Ω0)

n . Then, the L1-
regularized MaPPLE is derived as

Ω̂0 := arg min
Ω0

F (Ω0) + λ‖Ω0‖, (5)

where ‖Ω0‖ =
∑p
j

∑p
j′>j |Ω0jj′ |, and λ is the regulariza-

tion parameter.

Note that (5) has the same form as a regularized weighted
least square problem. Therefore, the optimization can be ef-
ficiently solved using the coordinate descent method (Fried-
man et al., 2010), combined with the strong screening
rule (Tibshirani et al., 2012). We implement the optimiza-
tion using the R package glmnet (Friedman et al., 2010).

4. Sparsistency of the L1-Regularized
MaPPLE

The L1-regularized MaPPLE (5) is proved to be
√
n-

sparsistent under some mild assumptions.

4.1. Assumptions

To start with, we discuss the assumptions for the estimator.
Since the estimation of Mij in Lemma 2 is based on ker-
nel methods, we need some standard assumptions widely
used in this literature (Mack & Silverman, 1982; Fan et al.,
2005; Kolar et al., 2010b). The following assumptions are
concerned with the order of n, p, and h, and the smoothness.

Assumption 1. Define cn =
√
− log h
nh +h2 with h ∈ (0, 1)

and p > 1. Then, we assume that there exists C1 > 0, so

that c2n ≤ C1

√
log p
n .

Assumption 2. For any g, the following matrices are all
element-wise Lipschitz continuous with respect to g:

E
(
Z>Z |G = g

)
,

E
(
12
{|g|≥g∗}Z

>Z |G = g
)
,

and E
(
12
{|g|≥g∗}Z

>Z |G = g
)−1

.

Also, since we do not pose parametric assumptions to R(g)
and f(·), we further need the following assumptions on
both.

Assumption 3. The random variable G has a bounded sup-
port, and f(·) is Lipschitz continuous and bounded away
from 0 on its support. R(g) has continuous second deriva-
tive.

Next, we introduce an assumption required for sparsistency.
The following mutual incoherence condition is vital to the
sparsistency (Ravikumar et al., 2010). Here, we define
Ω∗0 as the underlying parameter, and treat Ω∗0 as a vector
containing all the components without repeats.

Assumption 4. Define A as the index set of the non-
diagonal and non-zero components of Ω∗0, D as the in-
dex set of the diagonal components of Ω∗0, and N as the
index set of the non-diagonal and zero components of
Ω∗0. Define the incoherence coefficient as 0 < α < 1.
Then for H = ∇2F (Ω∗0), there exists C2 > 0, so that∥∥HNSH−1SS

∥∥
∞ ≤ 1 − α and

∥∥H−1SS∥∥∞ ≤ C2, where we
use the index sets as subscripts to represent the correspond-
ing components of a vector or a matrix.

Our final assumption is required by the fixed point proof
technique we apply (Ortega & Rheinboldt, 2000; Yang &
Ravikumar, 2011), and may not be necessary for more cali-
brated proofs.
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Assumption 5. DefineR(∆) := ∇F (Ω0)−∇F (Ω∗0)−
∇2F (Ω∗0)(Ω0−Ω∗0), where ‖∆‖∞ ≤ r := 4C2λ ≤ 1

C2C3

with ∆N = 0, and for some C3 > 0. Then ‖R(∆)‖∞ ≤
C3 ‖∆‖2∞.

4.2. Main Theoretical Results

With the assumptions in Section 4.1, the
√
n-sparsistency

of the L1-regularized MaPPLE is provided in Theorem 1.

Theorem 1. Suppose that Assumption 1 - 5 are satisfied.
Then, for any ε > 0, with probability of at least 1− ε, there
exists C4 > 0, so that Ω̂0 shares the same structure with the
underlying true parameter Ω∗0, if for some constant C5 > 0,

C5

√
log p

n
≥ λ ≥ 4

α
C4

√
log p

n
,

r := 4C2λ ≤ ‖Ω∗0S‖∞ ,

and n ≥
(
64C5C

2
2C3/α

)2
log p.

According to Theorem 1, the L1-regularized MaPPLE re-
covers the true structure of Ω0with a high probability. Also,
the scale of the estimation error denoted by r is less than

4C2C5

√
log p
n , which converges to zero at a rate of

√
n. In

other words, the smallest scale of the non-zero component
that the PPL method can distinguish from zero in the true
parameter converges to zero at a rate of

√
n. We refer to

this result as
√
n-sparsistency.

Such a convergence rate is faster than ordinary nonpara-
metric methods, which often have a n−2/5 convergence
rate (Speckman, 1988; Kolar et al., 2010b). Also, the

√
n-

sparsistency matches the results of semi-parametric meth-
ods (Fan et al., 2005; Fan & Zhang, 2008) for discriminative
models, where the estimated parametric part is shown to be√
n-consistent.

In Theorem 1, the value of g∗ does not affect the
√
n-

sparsistency of the estimator. In practice, however, if g∗ is
too small, the

(
D>ijWiDij

)
tends to be singular, since few

samples are observed with |g| ≤ g∗. Accordingly, the PPL
method will be not applicable. Therefore, we need to ob-
serve some non-confounded samples to implement the PPL
method. The

√
n-sparsistency is not directly related to the

selected 1{|g|≥g∗} either. Along the proof of Theorem 1 in
the Supplements, we notice that 1{|g|≥g∗} (and thus g∗) can
only affect some auxiliary constants. Since this relationship
is neither significant, nor straightforward, we do not discuss
it here.

5. Related Methods
After a thorough analysis on the proposed PLA-GGM and
PPL method, we now study some related methods that fall
into four categories: Gaussian graphical models incorpo-

rating confounders, denoted by CON-GGMs; the Gaussian
graphical models using linear regression to deal with con-
founders (Van Dijk et al., 2012; Power et al., 2014) denoted
by LR-GGMs; original Gaussian graphical models only us-
ing non-confounded samples, denoted by GGMs; and time-
varying Gaussian graphical models (Kolar et al., 2010b;
Yang et al., 2015b) denoted by TV-GGMs. Theoretically,
the proposed PLA-GGM is more generalized and facilitates
faster-converging estimators than the existing models.

5.1. CON-GGMs and LR-GGMs

Although not designed for this task, it is possible to ap-
ply more standard graphical modeling approaches to deal
with some of the effects of observed confounders. For in-
stance, a straightforward alternative to PLA-GGMs is to
directly incorporate the confounder as a random variable
into the GGM. Specifically, CON-GGMs assume that the
confounder G follows a GGM jointly with the random vec-
tor Z, which means

(G,Z) ∼ GGM(Ω), (6)

where the joint covariance matrix follows

Σ := Ω−1 =

[
ΣZZ ΣZG

ΣGZ ΣGG

]
.

Since the target structure is for Z |G = 0, we can estimate
Ω by graphical Lasso (Friedman et al., 2008) first, and
then derive the inverse conditional covariance matrix for
Z |G = 0.

LR-GGM is a model widely used in the neuroscience
area (Van Dijk et al., 2012; Power et al., 2014), assum-
ing that the confounders will cause a linear confounding to
the observed samples. The model can be formulated as:

Z = β>G+ Z′, (7)

where Z′ follows a Gaussian graphical model with parame-
ter Ω, and G satisfies Assumption 3. Since conditional on
G = 0, Z is equivalent to Z′, the target parameter for the
non-confounded structure is just Ω. LR-GGMs use linear
regressions to recover β, and further to regress out con-
foundings. Finally, LR-GGMs estimate Ω0 by graphical
Lasso.

By deriving the inverse covariance matrices of Z conditional
on G for both CON-GGMs and LR-GGMs, it should be no-
ticed that the inverse conditional covariance matrices are
irrelevant to the value of G. In other words, the confounder
G does not affect the conditional independence structure
of Z, which is often an unrealistic restriction. In contrast,
PLA-GGM particularly deals with confounding of the struc-
ture by G. Further following this direction, we can derive
the following theorem which describes the the relationship
among CON-GGMs, LR-GGMs, and PLA-GGMs.



Partially Linear Additive Gaussian Graphical Models

0.4

0.5

0.6

0.7

0.8

Methods

A
U

C
s

Methods
PLA−GGM
GGM
TV−GGM
CON−GGM

(a) p = 10

0.4

0.5

0.6

0.7

0.8

Methods

A
U

C
s

Methods
PLA−GGM
GGM
TV−GGM
CON−GGM

(b) p = 20

0.4

0.5

0.6

0.7

0.8

Methods

A
U

C
s

Methods
PLA−GGM
GGM
TV−GGM
CON−GGM

(c) p = 50

0.4

0.5

0.6

0.7

0.8

Methods

A
U

C
s

Methods
PLA−GGM
GGM
TV−GGM
CON−GGM

(d) p = 100

Figure 1: Area under curve (AUC) of considered methods for the structure learning with different numbers of variables.

Theorem 2. The CON-GGM (6) and the LR-GGM (7) are
two special cases of the PLA-GGM by respectively assum-
ing:

• G follows a normal distribution, R(g) := 0 and Ω0 :=[
ΣZZ −ΣZGΣ−1GGΣGZ

]−1
;

• R(g) := 0.

Thus, it is clear that CON-GGMs and LR-GGMs both as-
sume a constant underlying structure irrelevant toG, and are
parametric special cases of the proposed PLA-GGMs. Also,
since the two methods assume R(g) = 0 either exactly or
asymptotically, they will treat the average of Ω(g) as the
underlying Ω0 and derive incorrect structures that are too
dense.

5.2. GGMs and TV-GGMs

In PLA-GGMs, it is assumed that some non-confounded
samples are observed. Therefore, we can directly apply
GGM to the non-confounded samples and estimate the struc-
ture. However, by doing this, only the information from the
non-confounded data are used. The estimators are obviously
not
√
n-sparsistent, considering that most of the n observed

samples are confounded and not used by GGM. Thus, the
method is less accurate than PLA-GGM.

Another class of relevant methods are time-varying graph-
ical models (TV-GMs) (Song et al., 2009a;b; Kolar et al.,
2010b; Kolar & Xing, 2012), used to estimate a different
parameter at each time point or observation. Specifically,
TV-GGMs assume that Z follows a varying Gaussian graph-
ical model over G. Methods like fused Lasso (Yang et al.,
2015b; Zhu & Koyejo, 2018) and the kernel estimation (Ko-
lar et al., 2010b) are applied to estimate the varying structure
of Z. One may consider applying such a model, then per-
haps averaging the time-varying graph to estimate the non-
confounded component. However, since the target of such
methods are multiple structures, the estimators can only be
guaranteed to be n−2/5-consistent. In contrast, PLA-GGMs
use all the samples to recover the parameter representing
the underlying non-confounded structure, and can achieve

√
n-sparsistency.

5.3. Graphical Models with Nonparametric Methods

PLA-GMM is not the first approach to incorporate nonpara-
metric methods into graphical models. Prior works like
Liu et al. 2009; Kolar et al. 2010a; Voorman et al. 2013;
Wang & Kolar 2014; Suggala et al. 2017, and Lu et al. 2015;
2018 have tried to relax the parametric definition of graphi-
cal models to realize a more generalized model. However,
these methods do not help much to deal with observed con-
founders, since the structure among the random variables is
assumed to be independent of the values of the confounders.
Partially linear additive models have also been combined
with directed acyclic graphs in (Rothenhäusler et al., 2018),
which was developed for causal inference and not the struc-
ture analysis.

6. Experiments
To demonstrate the empirical performance of the proposed
PLA-GGM and PPL method, we apply them to synthetic
data for a structure recovery task in Section 6.1 and a real
fMRI dataset for a brain functional connectivity estimation
task in Section 6.2.

6.1. Structure Recovery

In this section, we use simulated data to compare PLA-
GGM, TV-GGM and CON-GGM discussed in Section 5,
with the proposed PLA-GGM for structure recovery. We
simulate data from PLA-GGMs following the procedure
provided in the Supplement. We consider the case of
p = 10, 20, 50, 100. For all these settings, we fix n = 800
samples. Then, the four methods are applied to the gener-
ated datasets to recover the underlying conditional indepen-
dence structure. The regularization parameter λ is selected
by 10-fold cross validation from a series of auto generated
λ’s by glmnet. The bandwidth is determined according to
Assumption 1. We use 1{|g|≥g∗} = 1 − exp

(
−k2g2

)
/2,

where k is selected according to the designated g∗. We
have also studied other forms for 1{|g|≥g∗}, which did not
significantly affect the performance.
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(a) Controls
PLA-GGM

(b) Schizophrenia
PLA-GGM

(c) Controls
LR-GGM

(d) Schizophrenia
LR-GGM

Figure 2: Glass brains for the estimated brain functional connectivity for subjects with schizophrenia and controls using
PLA-GGMs and LR-GGMs.

The achieved area under curve (AUC) of the receiver op-
erating characteristic using the selected hyper parameters
are reported in Figure 1. Consistent with the analysis in
Section 5, the proposed PLA-GGM achieves higher AUCs
on structure recovery than the competing methods. Also, as
the number of variables increases, the advantage of PLA-
GGM gets more significant. The phenomenon results from
the
√
n-sparsistency of the L1-regularized MaPPLE, which

is more accurate and requires less data. It should also be
noticed that the AUC achieved by CON-GGM is always
around 0.5. The reason is that, following the data simulation
procedure, the true Ω(gi)’s are always dense, although Ω0

is sparse. As suggested by the analysis in Section 5, CON-
GGM treats Ω(g) as the Ω0, and thus tends to recover a
wrongly dense Ω0.

6.2. Brain Functional Connectivity Estimation

We apply the PLA-GGM to the 1000 Functional Connec-
tomes Project Cobre dataset (COBRE, 2019), from the Cen-
ter for Biomedical Research Excellence. The dataset con-
tains 147 subjects with 72 subjects with schizophrenia and
75 healthy controls. For each subject, resting state fMRI
time series and the corresponding confounders are recorded.
We use the 7 confounders provided in the dataset relate to
motion for the analysis, and apply Harvard-Oxford Atlas
to select the 48 atlas regions of interest (ROIs). Additional
preprocessing details are deferred to the dataset authors (CO-
BRE, 2019). The performance of PLA-GGM is compared
to LR-GGM, which is the most widely-used method to deal
with motion confounding in the fMRI literature (Van Dijk
et al., 2012; Power et al., 2014).

We use 1{|g|≥g∗} = 1− exp
(
−100g2

)
/2 for the following

analysis, which is equivalent to g∗ = 0.578. If the selected
g∗ is less than the largest possible value, the estimation
should still be accurate, since (2) is satisfied. However,
a too small g∗ may induce a singular

(
D>ijWiDij

)
and

thus the failure of the PPL method. We select the smallest
g∗ where PPL can be successfully implemented, and use

the corresponding 1{|g|≥g∗}. The results using other g∗’s
and 1{|g|≥g∗}’s are reported in the Supplements. Due to
Theorem 1, the form of 1{|g|≥g∗} does not affect the spar-
sistency of the estimator, and thus has a limited effect on
the performance.

GENERAL ANALYSIS

We first generally analyze the brain functional connectivity
by the PLA-GGM. Specifically, following the common prac-
tice in this area (Belilovsky et al., 2016), we assume that all
the fMRIs from the subjects with schizophrenia follow a sin-
gle PLA-GGM with the same brain functional connectivity,
and thus combine the preprocessed fMRIs from the subjects
into one dataset. Then, the PPL method is applied to the
combined dataset to estimate an Ω0, which corresponds to
the brain functional connectivity for all the subjects with
schizophrenia. The same procedure is also implemented on
the control subjects’ fMRI datsets.

For a comparison, we also apply the LR-GGM discussed in
Section 5 by the aforementioned procedure. The estimated
brain functional connectivity for subjects and the controls
with the two methods are reported in Figure 2. The ROIs are
denoted by nodes with different colors. Edges among nodes
denote the estimated functional connectivity. Red edges
denote the positive connections, while the blues ones denote
negative connections. The darker the color, the stronger
the connection. We only provide the figure from one angle
here. The figures from other angles are provided in the
Supplements.

Comparing the glass brain figure for controls with the one
for subjects estimated by PLA-GGM, we find Occipital Pole
and Central Opercular Cortex are the two areas differ the
most. Interestingly, these two areas have been implicated
in the literature as highly associated with schizophrenia
(Sheffield et al., 2015). Also, by comparing the results of
PLA-GGMs with those of LR-GGMs, the results of LR-
GGMs are much denser and covered with lots of positive
connections. This phenomenon is consistent with our analy-
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Figure 3: AUCs for the diagnosis of schizophrenia using only the structures or Ω̂0 with
different regularization parameters.
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Figure 4: AUCs for the diagno-
sis of schizophrenia with the reg-
ularization parameters selected by
AIC.

sis in Section 5: LR-GGMs will treat the average of Ω(g)’s
as the estimator to Ω0 and derive incorrect over-dense esti-
mates. This strongly suggests that the dense structure here
is a result of the confounders which are not successfully
accounted for by the regression.

SCHIZOPHRENIA DIAGNOSIS

Ideally, to demonstrate the accuracy of the proposed method
for structure recovery, we should compare the estimated
brain functional connectivity to the underlying ground truth,
which, however, is not available in practice. Therefore, we
consider a surrogate evaluation by using the estimated func-
tional connectivity for schizophrenia diagnosis. Intuitively,
if the recovered connectivity is more accurate due to ef-
fectively omitting the confounding, we should be able to
improve schizophrenia diagnosis using the estimated con-
nectivity as features. We apply PLA-GGMs and LR-GGMs
to each subject respectively, and calculate Ω̂0’s for every
subject. Then, we use Ω̂0’s as the input for classification
methods to classify the subjects. For this two-class classi-
fication task, we use an L1-regularized logistic regression
as this is a common approach in the literature (Patel et al.,
2016).

We consider using only the structure (signs without values)
of Ω̂0’s as the input for the classification. Although the
classification is of course more challenging, we can more
clearly see how helpful the structure itself is for the diagno-
sis. The AUCs for the diagnosis are reported in Figure 3a.
For a thorough comparison, we use the regularization param-
eters suggested by the R package glmnet for the penalized
logistic regression and report all the AUCs. Clearly, PLA-
GGMs resut in more accurate prediction. Therefore, the
brain connectivity estimators derived by PLA-GGMs are
more informative for schizophrenia diagnosis and more ac-
curate than those of LR-GGMs.

We next include the values into the input, and evaluate the

accuracy for schizophrenia diagnosis. Again, we report
all the results using different regularization parameters in
Figure 3b. The green line indicates the best performance
of using LR-GGM and L1-regularized logistic regression
achieved in (Patel et al., 2016). Since we are using exactly
the same dataset, we directly use their results for the LR-
GGM combined with penalized logistic regression for a
fair comparison. As a result, for most of the regularization
parameters, PLA-GGMs derive more accurate diagnosis
than LR-GGMs. Experiments using different 1{|g|≥g∗} are
included in the Supplements. The results are similar. There-
fore, we conclude that PLA-GGMs more accurately address
confounding and derive more accurate estimators of brain
functional connectivity.

We note, however, that some specialized alternative classi-
fiers have been developed in the brain connectivity litera-
ture (Patel et al., 2016; Arroyo-Relión et al., 2017; Andersen
et al., 2018), and expect that our approach will improve per-
formance for those classifiers as well. We leave such further
analysis to future work.

7. Conclusions and Future Works
We propose PLA-GGMS, to study the relationships among
random variables with observed confounders. PLA-GGMs
are especially generalized and facilitate

√
n-sparsisent es-

timators. The utility of PLA-GGMs is demonstrated using
a real-world fMRI dataset for the brain connectivity esti-
mation. While we have been taking GGMs as an example,
the results can be generalized to other undirected graphical
models, especially the univariate exponential family distri-
butions (UEFDs) (Yang et al., 2015a). We leave the details
to future work.
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