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A. Proofs
A.1. Proposition 1

Observe for z(*+1) of (9) that go(2**1)) = K, which
satisfies the constraint of optimization problem (P2a).
For index sequence j, introduced in Proposition 1, define

= 0 (2, f(x;,), ¥ (2;,)). By definition, ¢\ <

cy;) < < cyfv) We use the following lemmas:
Lemma 1. For any m < K, the solution of (P2a) satisfies
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Lemma 2. For any m > K, the solution of (P2a) satisfies
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which completes the proof.

A.2. Proposition 2

Note that the constraint on z must be closed and convex,
as a sufficient condition for convergence of BCD. Clearly
this is not the case with z € {0,1}" in (Q;). Leverag-
ing the equivalence between (P2) and its linear program
relaxation, (P3), the constraint z € [0, 1]V is closed and
convex. Since a unique minimizer is found at each update,
convergence to a stationary point follows from the standard
convergence results Bertsekas| (1999)[Chap 2.7].

A.3. Proposition 4

We start by proving Proposition 4 for d = 1. To this end,
we first introduce a variant of (P2) in which we define
K equidistant marks in € X = [0,7] and project £*
to this set of marks, namely we replace every entry in £*
by its closest mark (measured by the Euclidian distance).
Moreover, we limit H to the class of L-Lipschitz functions
passing through those marks. We first observe that the ap-
proximation error of the solution of (P2) is upper bounded
by that of the variant. In the following, we derive the bound
of Proposition 4 using the variant problem.

Divide entire domain X by K marks to some K — 1 disjoint
sets {Sz | Uie[Kfl] S, =X,S; ﬂSJ =¢,Vi,j € [K—l}}.
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Figure A.1: Illustration of the functional class F. Input space X’
is divided into disjoint sets {S; }. F is the set of all L-Lipschitz
functions passing through samples/marks {x; };c[x]. All functions
f,h € Flie in the dashed red parallelograms. The slopes of these
parallelograms are + L. Three possible functions are shown in the
figure.

Define without loss of generality S; = [x;_1, ;) for sorted
x;, and define z¢ := 0 and xx_1 := T. Note that F is
the set of L-Lipschitz functions, samples are noiseless, and
{a;} are in the compressed dataset. Figure[A.1]illustrates
the function class F and three potential examples for f(x)
and h(zx).

Define ¢, := £ (x, f(x), h*(x)). Let u, be the probability
measure on A" that generates input samples x. We have
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where s; € S;, {115, } are sub-probability measures on sets
{Si}. and 3°, (g1 #s; = 1. From the extreme value
theorem, there exists E‘;;ax for every interval S; such that
ls, < eg;m‘,vsi € S;. Therefore, E, ./, < max; egr;a".
Consider the following lemma:

Lemma 3. For our variant problem, |f(x) — h(x)| <
2L||x|| for all x € S; and all i, where ||| is the L*-norm
of vector x.

The proof os Lemma3]is straightforward after noting that
f(x) — h(x) is a 2L-Lipschitz function.

Consider loss function £, = |f(x) — h(z)|>. Whend = 1,
it is easy to see from Lemma[3|and figure[A.T|that £3)** <
4L%(x; — x4_1)? for every set S;, where x; — x;_1 is the
measure of set S;. Now, since sets {S;},¢ € [K — 1] have
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the same measure (defined based on equidistant grid points),
we have z; — x;—1 =T /(K — 1), s0
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By setting g (h*,2*) < E l, < §, we get K > 1+

2LT /3.

For d > 1, we can define equidistant marks on every co-
ordinate of X' and define a grid of (K/¢ — 1) disjoint
sets {S; }i, where we have assumed that K'*/¢ is an integer
number to avoid unnecessary notation complications. The
distance between two consecutive marks on every coordi-
nate is 7'/(K'/¢ — 1), and therefore from Lemma
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By setting g (h*,2*) < E.fl, < 0, we get K >
d
(1 + 2LT\/d/5) . This completes the proof.

A.4. Lemma

Assume ;o (k“) =D ien ? ](fﬂ) M > K. For
k=1,if z(-kH) = 1 the statement holds. If z](-fﬂ) =0,

then take any n for which z(kH) = 1 and observe that the

following inequality holds by definition of index set j:
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since c(k) < cgkL) for any n. This completes the proof for
k=1 Fork=2<K,if z<k+1) = 1 the statement holds.
If z(kH) = 0, then take any n > 3 for which z(kH) = 1.
Use z(kH) = 1 and observe that
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since c(k) < ™ for any n > 2. We can use the same

In
arguments recursively to prove that z;
m < K.

(k+1) = 1 for any

A.5. Lemmal[2l
Assume ZiE[N] z§f+1) = M > K. By Lemma

z](fﬂ) = 1forall i < K. We should show that
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for any z]( Y This is clearly true as the left-hand-side is

the average of the K smallest values of the loss function on
dataset of size V. In particular,
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where (a) holds as K cy;) 2 Y ielK] cgf). This completes
the proof.

A.6. Optimality of (8)

To prove the optimality of (8), recall that 17z = K in (P2a)
is of the form Az = B, where A is a totally unimodular
matrix, and B is an integer. Thus, optimization problem(8)
is equivalent to (P2a), and the linear program relaxation is
optimal.

B. Additional Examples

The following example shows the generality of Assump-
tions 1 and 2.

Example 4. Let P denote the space oj;golynomial functions
onR, f(z) = e*(€ P), hix) = S 2" /nl (€ P) be
the first N (< oo) terms of the Taylor expansion of f(x),
and 0, (h) = |f(xn) — h(x,)|% £n(h) is compatible with
Assumption 1. Moreover, for almost any x,,, x,, € R (except
a set of Lebesgue measure 0) such that x,, # x,,, we have
ln(h) # Ly (h), so Assumption 2 holds.

This example be easily generalized to the class of problems
we study in this paper.
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