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Abstract

Finding a dataset of minimal cardinality to char-
acterize the optimal parameters of a model is of
paramount importance in machine learning and
distributed optimization over a network. This
paper investigates the compressibility of large
datasets. More specifically, we propose a frame-
work that jointly learns the input-output mapping
as well as the most representative samples of the
dataset (sufficient dataset). Our analytical results
show that the cardinality of the sufficient dataset
increases sub-linearly with respect to the origi-
nal dataset size. Numerical evaluations of real
datasets reveal a large compressibility, up to 95%,
without a noticeable drop in the learnability per-
formance, measured by the generalization error.

1. Introduction

During the last decade, new artificial intelligence meth-
ods have offered outstanding prediction performance on
complex tasks including face and speech recognition (Zhao
et all 2003; |Schalkwyk et al., 2010; |[Hinton et al.,
2012), autonomous driving (Michels et al., 2005), and
medicine (Kourou et al.|[2015)). To achieve such amazing re-
sults, state-of-the-art machine learning methods often need
to be trained on increasingly large datasets. For example,
(MNIST) is a typical dataset for natural image processing
of handwritten digits with more than 70,000 samples, and
(MovieLens) 20M is a typical dataset for recommendation
systems that includes more than 20,000,000 ratings. As we
show throughout this paper, most of the samples in these
datasets are redundant, carrying almost no additional infor-
mation for the learning task. A fundamental open question
in learning theory is how to characterize and algorithmically
identify a small set of critical samples, hereafter called a
small representative dataset, that best describes an unknown
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model. Studying its behavior around those critical samples
helps us to better understand the unknown model as well as
the inefficiencies of the sample acquisition process in the
original dataset. For instance, in a multi-agent system, it
may be enough to share these small representative datasets
among the agents instead of the original large ones, lead-
ing to a significant reduction in power consumption and
required communication bandwidth (Jiang et al., 2018).

Experiment design (Sacks et al., |[1989) or active learn-
ing (Settles| |2012)) provides algorithmic approaches to ob-
tain a minimal set of samples to be labeled by an “oracle”
(e.g., a human annotator). Active learning is well-motivated
in many modern machine learning applications where ob-
taining a new labeled training sample is expensive. The main
components of active learning are a parameterized model, a
measure of the model’s uncertainty, and an acquisition func-
tion that decides based on the model’s uncertainty the next
sample to be labeled. This approach has several challenges
including lack of scalability to high-dimensional data (Set{
tles, [2012)) (which has been partially addressed in some
recent publications (Gal et al. [2017)), lack of theoretical
guarantees, and lack of formal uncertainty measure. More
importantly, the acquisition function is usually greedy in
the sense that it sequentially finds the new samples to be la-
beled one-by-one. Consequently, the resulting sub-sampled
dataset may not necessarily be a small representative dataset
due to the greedy nature of active learning.

Core-set selection (Tsang et al., 2005) takes a different ap-
proach than active learning. Instead of reducing the total
labeling cost (like active learning), it focuses on finding a
small representative set of samples with cardinality K in a
big dataset of labeled samples with cardinality N (> K)?
The existing results, however, are fairly limited to particular
learning algorithms, like support-vector machines. |Koh &
Liang| (2017) proposed a new approach to quantify the im-
portance/influence of every sample of the training dataset in
a generic learning task. This approach, however, computes
the influence of the training samples one-by-one in isolation,
failing to capture the joint effects of the samples.

In this paper, we investigate the core-set selection problem
and use optimization theory to establish a scalable algorithm
with provable theoretical guarantees to jointly find K most
representative samples. We also show fundamental relations
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between K and N to guarantee any arbitrary learning perfor-
mance. Our framework and algorithmic solution approach
can be very useful tools to better understand compressibility
of the existing datasets and to improve distributed learning
and edge intelligence; see Section Moreover, further
analysis of the representative dataset with respect to the
original big dataset of an unknown model helps understand
the sources of inefficiency in the current sampling process
and how to improve it for other similar models.

The fundamental research question of this work, and in par-
ticular our order analysis, is closely related to the sample
complexity (Clarkson et al., [2012), information-theoretic
concepts of sampling (Jerri,|1977) like the Shannon-Nyquist
sampling, compression (Cover & Thomas, [2012)), and com-
pressive sensing (Donohol [2006) when the function is sparse
in some predetermined basis. All these methods address
the following question: how many samples are required to
reconstruct a function with a predefined error? We show that
the size of such a compressed dataset grows sub-linearly
with respect to the cardinality of the original dataset.

In this study, we investigate compressibility of large datasets
and develop a general framework for function approxima-
tion in which choosing the samples that best describe the
function is done jointly with learning the function itself.
We formulate a corresponding mixed integer non-linear pro-
gram, and propose an iterative algorithm that alternates
between a data selection step and a function approximation
step. We show the convergence of the proposed algorithm
to a stationary point of the problem, despite the combinato-
rial nature of the learning task. We then demonstrate that
our algorithm outputs a small dataset of carefully chosen
samples that solves a learning task, as accurately as if it
were solved using original large dataset. Comprehensive
numerical analyses on synthetic and real datasets reveal that
our algorithm can significantly compress the datasets, by
as much as 95%, with almost no noticeable penalty in the
learning performance.

The rest of the paper is organized as follows. Section [2]
presents the problem setting and our algorithmic solution
approach. Section [3]provides main theoretical results. We
apply our algorithms on synthetic and real datasets in Sec-
tion 4} and then conclude the paper in Section[5} Due to
lack of space, we have moved all the proofs and some appli-
cations to the appendix.

Notation: Normal font a or A, bold font a, and calligraphic
font A denote scalar, vector, and set, respectively. |.A| is the
cardinality of set A. I is indicator function. a” denotes the
transpose of a, and ||a||o and ||a||2 are its {y and [ norms.
1 is a vector of all ones of proper size. For any integer IV,
[N] denotes set {1,2,...,N}.

2. Setting and Solution Approach
2.1. Problem Setting

Consider input space X, output space ), an unknown func-
tion f : X — ) from some function space F, an index
set [N] := {1,...,N} for N € N, and a dataset of train-
ing samples D = {(x;, f(x;)) }ic(n], Where x; € X'. Ina
classical regression problem, we use the dataset D to learn
f, namely find a function & : X — ) that has a minimal
distance (for some distance measure, also called loss) to
the true function f. Formally, consider loss function ¢ :
X xYxY —[0,00],and let £;(h) := l(x;, f(x;), h(x;))
denote the loss corresponding to sample (x;, f(x;)). The
regression task solves the following empirical risk minimiza-
tion problem:

* 1
(P1): h* €argmin — Zie[N] 4;i(h) (1)

ner N

Here, we assume that h € F. However, considering a dif-
ferent function class for & would not change the generality
of our results.

In many applications (see Section [2.4) one might not want
to work with the entire dataset D, e.g., due to its large size,
but rather with a small subset & C D, where possibly |&] <
|D]. We associate a binary variable z; with each training
sample (z;, f(x;)) such that z; = I{(z;, f(x;)) € &},
representing sample (x;, f(x;)) being selected or dropped.
Letting z = [z1,---, zn]7, the novel problem of jointly
learning h and selecting £ can be formulated as

. 1
(P2) : a}lz%‘;nin g(h,z) := 175 ZZ_G[N] zili(h)  (2a)

1
st g1(h) == & ZHN] li(h)<e, (2b)
92(2) =12 > K, z€{0,1}"V, (2¢)

where constraint (2b) prevents overfitting when “general-
izing” from £ to D, and constraint prevents degener-
ate/trivial solutions to the problem (e.g., where £ empty).
We show later that K is a very important parameter that
trades off the compression rate, defined as 1 — |€|/|D|, and
the generalization error of learning with £.

Followings are some assumptions used throughout the paper,
which are prevalent in the learning literature.

Assumption 1. ¢;(h) is continuous and convex in h.

Assumption 2. The original dataset D is duplicate-free,
namely €., # x, for all m,n € [N] and ®,,x, € X.
Moreover, for all h € F, x,, # @, implies {y, (h) #
Ly (h).

Assumption 3. For some sufficiently small e > 0, 3h € F
for which 2b) is feasible.
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Note that ¢;(h) does not have to be smooth and differen-
tiable in general. We stress the existence of a large family
of loss functions, including L? spaces, for which both as-
sumptions hold, as exemplified in Appendix [B] Moreover,
the convexity in Assumption [I|may also be relaxed at the
expense of a weaker convergence property using the block
successive upper-bound minimization framework (Raza{
viyayn et al.l 2013). Finally, if the dataset contains some
duplicated samples, we can add insignificant perturbations
to satisfy Assumption 2] without affecting the information
content (Bertsekas) |1998)). Assumption implies that for
some small ¢, there is a feasible point for optimization prob-
lem (P2). This is a natural assumption, as we may not be
able to improve the accuracy of the training by sub-sampling
the dataset. To choose ¢, one may run (P1), find the mini-
mal training error, and set € in (P2) to be within a tolerable
distance of the minimal error. The higher the distance, the
more the achievable compression level, as shown in the
numerical results.

2.2. Solution Approach

(P2) is a non-convex combinatorial optimization problem
with coupling cost and constraint functions. In the following,
we provide a solution approach based on block-coordinate
descent (BCD), which splits (P2) into two subproblems:
(P2a) for data selection and (P2b) for function approxima-
tion. Let h(*) and z(*) be the value of h and z at iteration
k. BCD yields the following update rules:

(P2a): z¥*tY ¢ argmin g(h®, 2), (3a)
z€{0,1}N
st gp(2) > K, (3b)
and
(P2b) : Y ¢ argmin g(h, z2FTY), (4a)
heF
st gi(h) <e. (4b)

The data selection (D-)step (P2a) is optimized for a given
hypothesis h. Then, in the function approximation (F-)step
(P2b), the hypothesis is optimized for the updated com-
pressed dataset 2(k+1) Next, we derive solutions to each
step.

2.2.1. D-STEP

Given h(®)| namely the value of h at iteration k,
we let c§k) = Uz, f(x;), R (x;)) and ) =
[cgk), cék), cel cg\];)], for notation simplicity. Then, the first

subproblem is written as
argmin, ¢ o 13~ 2Te® Tz st 2T1=K, (5

where we have used the fact that 271 > K holds with
equality; shown in Proposition Thus, 17z = K can be

Algorithm 1 Alternating Data Selection and Function Ap-
proximation (DF)

Initialize: z(\) = 1
for k=1,2,3,...do
/I F-step
Update h(*+1) by solving (P2b) in {7)
/I D-step
Compute cgk), Vi € [N]
Update z**+1) by solving (P2a) in (3), using Proposi-
tion [T
Break if [g(R(F+1), 2(FHD) — g(h*) 20| <
end for
Return: 2(*+1) and z(k+1)

removed from the denominator to equivalentl write (3)) as

(P2a) : 25D ¢ arg min, ¢ 1o 13~ 2Te® st 2T1=K .
(6)

Though combinatorial, the form in (P2a) allows to easily
derive its solution, as shown by Proposition ie., zi(kﬂ) =
I{i € S®¥)}, where S*) is the set of K-indices in c¢(*) with
the smallest values. In other words, the optimal solution is
obtained by selecting the smallest K elements of ¢(*), and

setting the corresponding indices of z to 1.

2.2.2. F-STEP

Given the updated data selection, z(k+1) e use the fact
that 17 2(**1) = K and rewrite (P2b) as

N
(P2b) : argmin g(h):= Z ZZ-(]Hl)&(h) (7a)
heF i=1
N
st. gi(h) = Zi:l ti(h) <e. (Tb)
(k41

It follows from z, ) e {0, 1} that both the cost and con-
straints in (P2b) consist of convex combinations of the loss,
£;, assumed convex (Assumption : Thus, (P20b) is convex
in h (Boyd & Vandenberghe| 2004, Chap. 3). In the follow-
ing section, we show that there exist loss functions that lead
to closed-form solutions.

Algorithm [T|summarizes our alternating data selection and
function approximation steps. We establish the algorithm’s
convergence to a stationary point of (P2) in Proposition

2.3. Special Cases

2.3.1. LINEAR REGRESSION AND DATA SELECTION

We specialize our approach to a linear regression problem
with data selection where h(x;) = 7 w for w, x; € R%, d

"Two problems are equivalent, if the optimal solution to one can
be obtained from the other, and vice-versa (Boyd & Vandenberghe,
2004).



Learning and Data Selection in Big Datasets

being the dimension of each sample. Optimization problem
(P2) reduces to

'w f(wz))2

1 T 2
S.t. N ZiE[N] (wz w — f(wl)) S €,
172> K, ze{0,1}7.
The D-step is identical to (P2a), which can be solved by

Proposition |1} Given z(*T1) the F-step reduces to the fol-
lowing quadratically-constrained quadratic programming:

wk D = argmln HA(k'H) (XT'w f(X )H

btw oo <

where AF*D .— diag(\/z§k+1),~-- , z](\l,cﬂ)), X =
[mlv e ,wN]’ and f(X) = [f(a:l)v <. 7f(wN)]T The

problem is convex and can be solved using standard La-
grangian techniques to yield

9 —1
wk+tD — (X ((A(k“)) + )\IN> XT> X

x (AU““) +)\IN) F(X),

where A > 0 is a Lagrange multiplier that satisfies the
complementary slackness condition and can be found using
1D search methods.

Note that computational complexity of w(**1) is dominated
by the matrix inversion, which is in the order of O(d?) and
does not scale with the size of the training set, N. How-
ever, if it is still considered significant in some applications,
w**1) can be obtained using stochastic gradient-based
methods whose computational complexity is O(d/«) for
accuracy threshold o > 0.

2.3.2. ROBUST LEARNING

Consider the following continuous relaxation of (P2),
where z € {0,1}" isrelaxed to z € [0, 1]V

1
in —— i 0i(h
argmin g7 3y, i ilh)

1
R 7 < )
5.t Nzieme(h);
17z > K,
z e o, 1V

(P3) :

Thus, z; can be seen as a non-negative weight assigned to
sample (x;, f(x;)) in that training set, representing level of
confidence in its quality (higher values of z; imply better

qualities). From this perspective, the resulting problem
becomes a robust learning problem, in presence of non-
uniform sample quality: learning h, jointly with the best
samples of the training set. Some applications include de-
noising sensor measurements and outlier detection.

We can use Algorithm |1 to address (P3), with a minor
modification in the D-step. Note that relaxing the binary
constraint implies that the D-step cannot be solved using
the simple method of Proposition E} However, we use the
linear program relaxation of (P2a),

argmin, cjo v 2T cst 1Tz =K, ®)

which can be efficiently solved using standard linear pro-
gram solvers. In Appendix [A.6] we have shown that opti-
mization problem (8)) is equivalent to (P2a), and therefore
the linear program relaxation is optimal.

2.4. Applications

2.4.1. MULTI-AGENT SYSTEMS AND
INTERNET-OF-THINGS

Consider a network of agents with some abstract form
of very limited networking capacity (the so-called
communication-limited networks in optimization and con-
trol literature (Smith et al., 2018} Magntsson et al., 2018;
Nedic & Bertsekas, [2001; [Tsitsiklis & Luo, [1987)). The
limitation can be, among others, due to low-power opera-
tion of agents (sensor nodes) in Internet-of-Things or low
channel capacity in harsh wireless environments, like intra-
body networks. Consequently, the data rate among various
agents is very limited. Each agent has a local dataset, e.g.,
some measurements, and they should all share the datasets
to jointly run an optimization/learning task within a short
deadline (low-latency scenario). Due to the tight deadline
and limited communication capability, we cannot send all
entries of the datasets to all other agents by the deadline.
The central question of this subsection is to decide, locally
at every agent, which data should be shared (data selection).
To characterize this question, one may consider the exis-
tence of an oracle that has access to all the datasets, which
finds the minimal representative dataset and then informs all
the agents what to share. Clearly, this oracle is not practical:
rather it gives a theoretical benchmark on the performance
of various solution approaches and on the cardinality of
the minimal representative dataset. (P2) models the ora-
cle, and our algorithmic solution approach characterizes its
solution. We can also get useful insights on the “optimal”
sub-sampling per agent, which can be exploited to develop
practical solution approaches for the central question of this
subsection. Therefore, our results are of paramount impor-
tance to the problem of low-latency learning and inference
over a communication-limited network (Jiang et al., 2018).
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2.4.2. EDGE COMPUTING

Consider an edge computing scenario where some compu-
tations are offloaded to the edge devices. Edge devices can
represent some smart meters in smart grids or a camera in a
surveillance system. Edge computing enables intelligence
closer to the data collections sources (Shi et al., 2016). As
a result, it substantially reduces the communications band-
width by sending only the locally processed data (decisions)
instead of raw data (measurements) to the central cloud
servers. Assume that the local objective functions need
some input parameters 6, given by the cloud. Also consider
a natural assumption of a time evolution for 8, determined
in part by the measurements from all local edge devices. A
prime example is energy pricing in a smart grid, 8, deter-
mined in part by the energy consumption of every household
(local measurements). To enable edge computing, local de-
vices should frequently send their raw data to the cloud.
Thus, 6 will be updated and broadcasted, and then local de-
vices run optimization problems like (P1) with the updated
6. Each device can run (P2) to find a small representa-
tive dataset and send that to the cloud, instead of the entire
dataset. Our numerical results indicate that some real-world
datasets can be compressed as much as 95% without any
noticeable drop in the learning performance. This way, we
can increase the frequency of re-adjusting @ with a fixed
communication bandwidth budget.

3. Main Theoretical Results

In this section, we present main results of this paper. De-
tailed proofs are available in Appendix.

Proposition 1 (Solution of (P2a)). Under Assumption
we deﬁne an index sequence j such that for any j,, jn €

(k) iff m < n, where c(k) is defined in Sec-
twn @ The solution of the data selection subproblem

1, it i=j1,J2,...,JK
= . . . . (9)
0,if i=jg+s1,...,JN,

and ||z = K.

ZEk—Q—l)

Proposition [1|implies that the optimal solution to the binary
data selection subproblem is simple: evaluate the loss func-
tion for all training samples of D using h(*), sort the values,
and keep K data samples having the smallest losses. Next,
we establish the convergence of our BCD-based algorithm
to a stationary point of (P2).

Proposition 2 (Convergence). Let {g(h®*), ("))}, de-
note the sequence generated by the BCD updates in Algo-
rithm[I} Then, this sequence monotonically decreases with
each update, i.e., for k € N

g(h(k), Z(k')) > g(h(k)7 z(k+1))

> g(h+D, z(1))

and converges to a stationary point of (P2).

Proposition 3 (Computational Complexity). The D-step is
run in O(N), and the F-step has the same complexity as of
(P1), per iteration of Algorithml[l]

To analyze the asymptotic behavior of our approach, we
make additional assumptions on the class of loss functions,
and on F. In particular, we assume that ¢ belongs to the L?
space and F is the space of L-Lipschitz functions defined
on some compact support.

Proposition 4  (Sample Complexity). Assume
that the samples are noiseless, and F is the
set of L-Lipschitz functions defined on interval

[0,T)%.  Consider optimization problem (P2). Let

* * * -1 * *
g(h*,2%) = (172%) " 3, ciny 200 (i, f (), h* (24).
For any arbitrary constant § > 0, the following holds:
When E(mm,f(wm),h*(wm)) |f(:1:m) h*(a:m) ?
g(h*,z*) <4dif K > [(1+ 2LT\/ 1, where [-] is

the ceiling function.

’

Corollary 1 (Asymptotic Sample Complexity). Consider
the assumptions of Proposition 4} Define compression ratio
as CR:=1— K/N. As N grows large:

V6 >0,3K < N s.t. g(h*,2*)<d,and CR— 1.

Proposition f] and Corollary [I] imply that the sufficient
dataset £* (which can be used to learn any function f in
class F with any arbitrary accuracy) is the output of a sub-
linear sub-sampler (our Algorithm |I}) of the original big
dataset, namely K /N — 0 asymptotically. In other words,
as we experimentally show in the next section, most of the
existing big datasets are highly redundant, and the redun-
dancy brings almost no additional gain for the accuracy of
the learning task. Finding this sufficient dataset is of man-
ageable complexity, as specified in Proposition[3] It is worth
noting that from the feasibility constraint of (P2), § < .
One may observe that if the original problem has no feasi-
ble solution for some ¢, the performance bounds may not
hold. However, the additional assumptions of Proposition
ensures the feasibility of (P2) for large enough N.

Moreover, notice that our theoretical results go beyond con-
vex functions. Proposition [2)) is valid for quasi-convex or
invex functions. For multi-convex structure (like a deep neu-
ral network training optimization problem), the block suc-
cessive upper-bound minimization framework (Razaviyayn
et al.|[2013) under mild condition can ensure Proposition @
see Corollary 1 of (Razaviyayn et al.,2013)) and also (Xu &
Yinl 2013).
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4. Experimental Results

In this section, we first present two toy examples to illus-
trate (P2) and algorithmic solution. We then focus on real
databases and evaluate the effectiveness of our approach on
finding the small representative dataset with a negligible
loss in the generalization capability.

4.1. Experimental Setting

In every experiment, we select the input space X', output
space ), mapping f, training dataset D, test dataset 7, and
hypothesis class 7{. We then run Algorithm [I]to find the op-
timal compressed dataset £* C D. We run this experiment
for different values of CR.

To evaluate the true generalization capability of £*, we
run a conventional regression problem (P1) using both
D and £*, find the corresponding optimal approximation
function, and then evaluate their accuracy on 7. We denote
the normalized generalization error by e(D, T),

ZieTé (xi, f(@:), h*(x:))
ZzeTg(wzvf(wz)ao) ’

where h* is found by running (P1) with D. When we find
h* by running (P1) with £*, (I0) shows e(E*, 7). When ¢
is the L2-norm, (T0) reduces to the normalized square error,
Sier If (i) — h*(3)[?/ >, c7 | f(:)]?. This normaliza-
tion is to have a fair comparison of the generalization error
over various test datasets, which may have different norms.
We say that our compressed dataset £* performs as well as
D when e(E*,T) is close to e(D, T). Throughout the fol-
lowing experimental studies, we observe that the lower the
compression ratio, the lower the gap |e(D,T) — e(E*,T)].
However, for big datasets, we can substantially compress the
dataset without any noticeable drop in the gap, indicating a
high inefficiency in the data generation process.

(10)

4.2, Illustrative Examples

In our first example, we pick a very smooth function f. Let
X =[0,8], F = H = Poly(10), where Poly(n) is poly-
nomial functions of degree n/| f(x) is given in ﬁgure
Our original dataset D is 100 equidistant samples in X'. We
add i.i.d. Gaussian noise of standard deviation 0.05 to f(x).
Figure shows an example of an optimal compressed
dataset £* computed for K = 12, along with the learned
hypothesis h*, which almost perfectly coincide with the true
function f. Note that due to the random noise in D, the se-
lected samples would be different in every run. To evaluate
the true generalization capability of our algorithm, we run
a Monte Carlo simulation for 100 random realizations of

To be consistent with the theoretical results, we have added
F = H assumption. We have also experimented F = Poly(10)
and H = Poly(15) and observed similar insights as of Figure

1.5

0.5

—0.5

@) or h*(a)

—1.5 | | |

(a) Function f and an example of £* with K = 12

1073

—A— (£, T)
—— (D, T)

1074

Generalization error

|
0 0.2 0.4 0.6 0.75
Compression ratio

(b) Generalization error

Figure 1: Learning compressed data set £* and optimal hypothesis
h* with a dataset of size N = 100. Function f € Poly(10) +
noise. Selected samples in £(C D) are denoted by circles. In
the example of f and h* are visually indistinguishable. The
higher the compression ratios the higher the generalization error.
e(£*,T) behaves like a double exponential function of CR. For
a wide range of CR values there is almost no loss compared to

e(D,T).

the noise on dataset, find £* and h* for each realization,
and compute e(D, T) and e(E*, T) from (I0). Note that 7
is the set of 1000 equidistant examples in X'. Figure [[(b)]
reports the average generalization error against the CR. As
expected, the higher the compression ratio the higher the
generalization error. The tail drop of this function is at least
as a fast as a double exponential function of CR, implying
that for a wide range of CR values, the extra generalization
error |e(£*,T) —e(D, T)| is negligible. In particular, in the
example of Figure[L(b)| with N = 100, 70% compression
leads to only 6 x 107> extra generalization error.

Figure |2| illustrates the performance of our optimization
problem on a less smooth function than that of figure[I(a)|
In particular, we consider the function of figure 2(a)] which
is from F = Poly(15), X = [0,1], N = 100 equidistant
samples from & in D, and 1000 equidistant samples from
X in 7. We observe a large compression of the dataset in
figure2(b)] where only [e(£*,T) —e(D, T)| = 2.3 x 107°
extra true generalization error after 60% compression. More-
over, we can see the double exponential tail of e(E*,T),
which implies that only a small dataset of a few carefully
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f(@) or h*(z)

(a) Function f and an example of £* with K = 25.

102 I
—A— (£, T)
—— ¢(D,T)

10° -

Generalization error

0 0.2 0.4 0.6 0.75
Compression ratio

(b) Generalization error

Figure 2: Learning compressed data set £* and optimal hy-
pothesis h* with a dataset of size N = 100. Function f €
Poly(15) + noise. The higher the compression ratios the higher
the generalization error. The double exponential behavior of CR,
observed also in figure[T(b)] is visible in[(b)}

chosen samples are enough to have a learning with a suffi-
ciently good generalization capability. However, for a fixed
error gap |e(E*,T) — e(D, T)|, functions having more vari-
ation are less compressible, since more samples are needed
to maintain the same error gap.

4.3. Real Datasets

Motivated by the excellent performance of the proposed
algorithm on simple syntectic data, in this section, we apply
Algorithm [T|on real databases listed in Table[I] available on
Statlib (Sta)) and UCI repositories (UCI)). These databases
have been extensively used in relevant machine learning
and signal processing applications (Schapirel [1999; |Aharon
et al.,|2006; Zhang & Li,2010;Zhou et al., [2014; Tang et al.,
2016j Chatterjee et al.,[2017)).

For the learning task, and without loss of generality, we
use the recently proposed extreme learning machine (ELM)
architecture (Huang et al.,[2006; |2012), due to its implemen-
tation efficiency, good regression and classification perfor-
mance, and convexity of the resulting optimization problem.
An ELM typically uses a few hidden layers, each having
many nodes, to project the input data vectors to high dimen-
sional feature vectors. Then, a linear projection is used at

Table 1: Databases for regression task. d is the input dimension.

Database # Training samples # Test samples d
Bodyfat 168 84 14
Housing 337 169 13
Space-ga 2,071 1,036 6
YearPredictionMSD 463,715 51,630 90
Power Consumption 1,556,445 518,814 9

the last layer to recover the output vector. An interesting
property of ELM is the ability to use instances of random
matrices in mapping to feature vectors (as opposed to usual
deep neural networks in which these weight matrices should
be optimized), and therefore we need to optimize only the
weights of the last layer. In our implementation, we have
used a single hidden layer, an instance of random matrix
between input layer and hidden layer R, an element-wise
rectifier linear unit (ReLLU) function at each hidden node
that returns o(-) = max(-,0), weights to the output layer
W . Given dataset D with N samples and a binary selection
vector z(Ft1) we use the following optimization problem
in the F-step of Algorithm [T]at iterate k:

Zie[N} Zz(kﬂ)fi(w)
w 1Tz(k+1)

AW

where
fi(W) == f(z:) - W o(Ra)|;

and the second term in the objective function is the Tikonov
regularization with parameter A\ that alleviates the over-
fitting problem. This convex quadratically constrained
quadratic program can be efficiently solved by existing op-
timization toolboxes (Grant & Boyd, 2014). Due to the
randomness in R and the chosen small dataset (in one bench-
mark), we repeat experiments 100 times and report the mean
value and standard deviation of the performance results. We
also consider two benchmarks: influence-based data selec-
tion and random data selection. To have a fair comparison,
we first simulate our approach on a given dataset for various
CR values (various K). In the first benchmark, we find
the influence score (as a measure of their importance on the
training process) of all the samples (Koh & Liang||2017)) and
run (P1) on a dataset of K samples with the highest scores.
In the second benchmark, we randomly choose K samples
of the training dataset and run (P1) on those samples.

Table [2] shows the regression performance of various
databases, given in Table[I] From this table, our approach
can substantially compress the training datasets with a con-
trolled loss on the generalization error. This compressibility
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Table 2: Regression performance on real databases. The reported values are “average + standard deviation” of the normalized true
generalization error. “CR” stands for compression ratio. “Influence” and “Random” show influence-based and random data selection

benchmarks. The values on row CR = 0% corresponds to e(D, 7), and the performance is identical for all approaches.

CR ‘ Algorithm

Bodyfat

Housing

Space-ga

YearPredictionMSD Power Consumption

0.1323 £0.0134

0.0082 £ 0.0007

0.0142 £+ 0.0008

0.1325 + 0.0142
0.1326 + 0.0144
0.1329 £+ 0.0145

0.0083 £ 0.0007
0.0083 + 0.0007
0.0083 + 0.0008

0.0144 £+ 0.0008
0.0144 4 0.0008
0.0145 £+ 0.0008

0.1338 £ 0.0175
0.1340 £ 0.0175
0.1412 + 0.0202

0.0085 + 0.0008
0.0087 £ 0.0008
0.0162 + 0.0071

0.0144 £+ 0.0009
0.0144 £+ 0.0008
0.0190 4 0.0124

0.1351 £ 0.0169
0.1519 £ 0.0231
0.1901 £ 0.0270

0.0086 + 0.0010
0.0091 + 0.0008
0.0312 £ 0.0156

0.0145 £ 0.0008
0.0146 £+ 0.0008
0.0357 = 0.0235

0.1354 £0.0171
0.1535 £ 0.0240
0.2006 + 0.0281

0.0086 £ 0.0009
0.0099 + 0.0015
0.0370 £ 0.0171

0.0145 4= 0.0008
0.0151 +£0.0011
0.0380 £+ 0.0254

0% ‘ Proposed ‘ 0.0245 £ 0.0051 0.0301 =+ 0.0056
Proposed | 0.0294 + 0.0058 0.0345 £+ 0.0071

25% | Influence | 0.0298 £ 0.0055 0.0345 + 0.0077
Random | 0.0315 £ 0.0081 0.0347 £ 0.0092
Proposed | 0.0333 &+ 0.0067 0.0348 4 0.0080

50% | Influence | 0.0342 4 0.0071 0.0349 + 0.0078
Random | 0.0370 £0.0102 0.0361 £ 0.0105

Ours 0.0360 £ 0.0060 0.0374 + 0.0076

75% | Influence | 0.0383 £ 0.0067 0.0378 + 0.0081
Random | 0.0411 £+ 0.0166 0.0392 £ 0.0099
Proposed | 0.0417 £ 0.0077 0.0382 % 0.0076

80% | Influence | 0.0446 + 0.0097 0.0384 =+ 0.0080
Random | 0.0461 £ 0.0168 0.0395 £ 0.0107
Proposed | 0.0630 £ 0.0134 0.0538 £+ 0.0122

95% | Influence | 0.0753 & 0.0101 0.0565 + 0.0115
Random | 0.0944 £ 0.0540 0.0744 £ 0.0372

0.1386 + 0.0217
0.1951 £ 0.0329
0.3713 £0.0714

0.0088 + 0.0012
0.0142 £ 0.0073
0.0560 £ 0.0478

0.0153 +0.0011
0.0216 £ 0.0009
0.0749 + 0.0628

increases by the dataset size and decreases by the input di-
mension. For instance, 75% compression in Bodyfat results
in a noticeable performance drop, while a big dataset like
YearPredictionMSD can be compressed by 95% without
a significant loss in the learning performance. Moreover,
these results empirically show the sub-linear characteristic
of the sufficient dataset for any fixed J, namely CR — 1 as
N — oo. The results suggest that a small set of carefully
selected samples are enough to run the learning task. Notice
that for the same compression ratio (same K'), our proposed
approach outperforms both benchmarks. The difference to
the random selection benchmark is more prominent, espe-
cially at the higher compression rates. At those regimes,
random selection may results in a set of good or completely
bad samples, leading to almost unpredictable generaliza-
tion errors. The influence-based score leads to a better
sub-sampling of the training data, compared to the random
selection, though its greedy nature (i.e., scoring/selecting
samples one-by-one) may results in substantial performance
drops at the high compression rates. Our approach, how-
ever, does not have this problem by selecting all the samples
jointly. As we have discussed in Section [2.4] such extreme
level of compressions could be inevitable to implement dis-
tributed learning over communication-constrained networks,
e.g., Internet-of-Things and edge computing.

4.4. Further Discussions

In all the simulation experiments, we have observed a very
fast convergence of the proposed Algorithm [T} usually after

a few iterations in small datasets (e.g., Bodyfat) and a few
tens of iterations in large datasets (e.g., Abalone) among
D-step and F-step. Computational complexity of each step
is characterized in Proposition 3} Both bigger datasets and
larger (g) correspond to larger search spaces and conse-
quently slower convergence rate.

5. Conclusions

We addressed the compressibility of large datasets, namely
the problem of finding dataset of minimal cardinality (small
representative dataset) for a learning task. We developed a
framework that jointly learns the input-output mapping and
the representative dataset. We showed that its cardinality
increases sub-linearly with respect to that of the original
dataset. While an asymptotic compressibility of almost
100% is available in theory, we have observed that real
datasets may be compressed as much as 95% without any
noticeable drop in the prediction performance. These re-
sults challenge the efficiency and benefits of the existing
approaches to create big datasets and serve as guidelines
for designing algorithms for distributed learning and edge
intelligence over communication-limited networks. The
promising initial results are intended a proof of concept of
the benefits of our approach. We envisage many extensions
and applications in the future, especially where a machine
learning algorithm is deployed on the field, such as Internet-
of-Things, edge computing, autonomous driving, and smart
manufacturing.
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