
Improved Parallel Algorithms for Density-Based Network Clustering

A. Relevant Concentration Bounds
Throughout the paper, we will use the following well-known variants of Chernoff bound.

Theorem 11 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values in [0, 1]. Let X def
=∑k

i=1Xi and µ def
= E [X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [|X − µ| ≥ δµ] ≤ 2 exp
(
−δ2µ/3

)
.

(B) For any δ ≥ 1 it holds Pr [X ≥ (1 + δ)µ] ≤ exp (−δµ/3).

B. Proofs Missing from Section 3
B.1. Proof of Lemma 5

We prove the two properties separately. We assume that p < 1, and consequently 50 logn
kε2 < 1, as otherwise H equals

G and the lemma follows directly. Observe that this assumption also implies k > 50 logn
ε2 , which will be important for

showing that our bounds hold whp.

Proof of A. Let V≥k be the set of vertices of G that have coreness at least k. Hence, by definition, each v ∈ V≥k has
at least k neighbors in V≥k. Let u ∈ VH ∩ V≥k. Therefore, E [dH(v)] ≥ pk ≥ 50 logn

ε2 . Then, by Chernoff bound (see
Theorem 11 (A)), with probability at least 1−n−4 the vertex u has at least (1−ε/2)pk neighbors in VH∩V≥k. Furthermore,
by union bound, with probability at least 1−n−3 this property holds for all the vertices of VH ∩V≥k simultaneously. This
implies that the vertices of VH ∩ V≥k are whp labeled by ABOVE by Algorithm 2.

Proof of B. Consider the execution of Algorithm 1 with parametersG and (1−ε)k+1. Let Li (LiH) be the set of vertices
of G (of H) labeled by BELOW by the ith iteration of Algorithm 1 (of Algorithm 2). By induction, we will show that
Li ∩H ⊆ LiH for each i.

Before we provide the inductive proof, we note the following property. Let v be a vertex of coreness at most (1 − ε)k.
Let Sv be the set of vertices of G adjacent to v that were not yet labeled when v got labeled by BELOW by Algorithm 1.
Observe that Sv is deterministically defined. Also, by definition, we have |Sv| ≤ (1−ε)k. In expectation,H contains p|Sv|
vertices of Sv . Be Chernoff bound, whp H contains at most p(|Sv| + εk/6) < (1 − ε/2)pk vertices of Sv . Furthermore,
by union bound, whp this holds for all vertices simultaneously.

Base of induction. Before the first iteration, no vertex is labeled in either of the algorithms. On the other hand, all the
vertices of L1 ∩ H whp have less than (1 − ε/2)k neighbors in H . Hence, all such vertices are labeled by BELOW by
Algorithm 2 and L1 ∩H ⊆ L1

H .

Inductive step. Consider iteration i. By our inductive hypothesis, it holds Li−1 ∩ H ⊆ Li−1H . In other words, all the
vertices of H labeled by BELOW by the ith iteration of Algorithm 1 are also labeled by BELOW by the ith iteration
of Algorithm 2. (Algorithm 2 might also label by BELOW some additional vertices.) Let v ∈ H be a vertex labeled by
BELOW by Algorithm 1 in the ith iteration. Since Li−1 ∩H ⊆ Li−1H , Algorithm 2 decides whether to label v based only
on a subset of Sv ∩H . As discussed, whp probability it holds |Sv ∩H| < (1− ε/2)k and hence Algorithm 2 labels v by
BELOW as well.

B.2. Proof of Lemma 6

Let p be as defined on Line 1 of Algorithm 3. Fix a vertex v. Let xv be the number of unlabeled vertices of G incident to
v, and yv the expected degree of v in Hi. We consider two cases: xv ≥ 10 logn

p , and xv < 10 logn
p .

In the first case, yv ≥ 10 log n. Therefore, by Chernoff bound (Theorem 11 (A)), it holds dHi(v) ≤ 2yv with probability
at least 1− n−3.

In the second case, i.e., if xv < 10 logn
p , we have yv < 10 log n. Then, dHi(v) ≤ yv + 10 log n with probability at least

1− n−3 by Theorem 11 (B) for δ = 10 logn
yv

.

Moreover, by union bound, these bounds on dHi(v) hold for all the vertices simultaneously with probability at least 1−n−2.

Improved Parallel Algorithms for Density-Based Network Clustering

In conclusion, the degree of each vertex v in Hi is strongly concentrated around its expectation yv , or is far from yv by an
O(log n) additive term. As discussed above, since the expected number of edges in Hi is O(n log2 n/ε4), we have that
with probability at least 1− n−2 the number of edges in Hi is O(n log2 n/ε4 + n log n), as desried.

C. Proof Missing from Section 4
C.1. Proof of Lemma 9

From Observation 4, the number of the edges incident to V i≤k is at most k · |V i≤k|. In one iteration, from Lemma 8 it follows
that whp Algorithm 4 removes all the vertices with degree less than (2 + ε′)k. Let Si (“S” standing for “survived”) be the
number of non-frozen vertices of coreness at most k that have degree at least (2 + ε′)k in the ith iteration. Then, it holds

|Si| ≤
2k · |V i≤k|
(2 + ε′)k

≤ (1− ε′/4) · |V i≤k|. (2)

Let F be the vertices of coreness at most k frozen by INITIALIZE of Algorithm 4. By definition, we have

|V i+1
≤k | = |S

i|+ |F |,

and hence from Eq. (2)
|V i+1
≤k | ≤ (1− ε′/4) · |V i≤k|+ |F |.

This inequality together with Lemma 7 implies

|V i+1
≤k | ≤ (1− ε′/4) · |V i≤k|+

|V 1
≤k|

2
√
δ logn

. (3)

Now, consider a set V i≤k. If for some i < R it holds

|V i≤k| ≤
(

2
√
δ logn

)−ε′/40
|V 1
≤k|, (4)

then Eq. (1) follows from the fact that the sizes of sets V j≤k are non-increasing as j grows.

If Eq. (4) does not hold for every i < R, then together with Eq. (3) we derive

|V i+1
≤k | ≤ (1− ε′/4) · |V i≤k|+

(
2
√
δ logn

)−1+ε′/40
|V i≤k| ≤ (1− ε′/8) · |V i≤k|,

for sufficiently large n. The last chain of inequalities implies

|V T≤k| ≤ (1− ε′/8)T |V 1
≤k| ≤

(
2
√
δ logn

)−ε′/40
|V 1
≤k|,

as desired.

C.2. MPC Implementation

In this section we discuss how to implement Algorithm 4 in O(log log n) MPC rounds while using O(nδ) memory per
machine.

INITIALIZE. To detect frozen vertices we only need to compute the degree of each vertex. This can be done in
O(lognδ n) = O(1/δ) many MPC rounds.

PEELINGBELOW-k in O(log T) many rounds. To execute PEELINGBELOW-k, and hence Algorithm 4, in O(log T) ∈
O(log log n) MPC rounds we proceed as follows. First, each vertex collects all the relevant information it needs for
executing PEELINGBELOW-k. Then, each vertex v uses the collected information to execute PEELINGBELOW-k with
respect to v.

Improved Parallel Algorithms for Density-Based Network Clustering

Sample T fresh batches of non-frozen edges. Each batch is selected independently of other batches, and an edge is included
in a batch with probability p. Now each non-frozen vertex v propagates its incident samples to all the vertices that in the
T iterations of the loop of PEELINGBELOW-k depend on the labeling of v. This propagation is applied as follows. The
samples of vertex v are denoted byB1(v). Then, each vertex v requests samples from each vertex inB1(v). The sample set
that v receives in this way is denoted by B2(v). More generally, each vertex v requests Bi(u) for all u ∈ Bi(v), obtaining
Bi+1(v) this way. Observe that Bi(v) corresponds to all the information that v needs to execute 2i iteration of the loop
of PEELINGBELOW-k. So, after O(log T) steps each vertex gathers all the required information. This approach is also
known as graph exponentiation procedure (Lenzen & Wattenhofer, 2010; Ghaffari, 2017).

It remains to analyze the size of Bi(v) and the number of requests each v receives.

Size of Vi(v). Recall that each vertex of degree more than 2k · 2
√
δ logn is frozen and it does not gather samples in this

process. It implies that each relevant vertex whp has at most S def
= T 40 logn·2

√
δ logn

(ε′)2 many incident samples. Hence, for
constants δ and ε′ and for sufficiently large n, we have

|Blog i(v)| ≤ S2i ∈ O
(
nδ/2

T−i
)
.

Hence, |Blog T (v)| ∈ O
(
nδ
)
.

Number of requests for Bi(v). For each i ≤ log T − 1, v gets some number of requests asking for Bi(v). However,
each vertex asking for Bi(v) is in Bi(v). Therefore, each v gets at most |Bi(v)| requests and to each of them responds by
sending Õ(|Bi(v)|) bits. This implies that, for i ≤ log T − 1, each v sends Õ(nδ) bits of information.

D. Arboricity-Dependent Orientation
In this section we prove the following result

Theorem 12. For a graph with arboricity λ, there is an MPC algorithm that in Õ(
√

log n) rounds, computes an orientation
of the edges such that each vertex has outdegree at most (2 + ε)λ. This algorithm uses nδ memory per machine, for an
arbitrary constant δ ∈ (0, 1), and the total memory of Õ(λn).

The proof of this theorem is in large similar to the proof of Theorem 2 presented in Section 4. We first recall similarities,
and then discuss new ideas compared to those discussed in Section 4. Note that the main difference between the memory
requirement of Theorem 2 and of Theorem 12 is that the latter can be implemented by using the total memory that does
not depend on n1+δ .

D.1. Similarity with Theorem 2

We begin by stating a well-known fact, which is in the same spirit as Observation 4.

Observation 13. A graph on n vertices of arboricity λ contains at most λn edges.

As in the case of k-core decomposition, we first show how to use Observation 13 to obtain an orientation of the edges such
that each vertex has outdegree of at most (2 + ε)λ. We apply the following process iteratively, until the graph becomes
empty:

(1) Let S be the set of all the vertices that currently have degree at most (2 + ε)λ.

(2) Orient arbitrary each edge whose both endpoints are in S. All the other edges incident to S orient outward from S.

(3) Remove all the vertice in S.

Observe that if the starting graph has arboricity λ, then each graph obtained after removing S has arboricity at most
λ. Let H be a graph obtained after performing zero or more iterations of this process. Let n′ def

= |V (H)|. Then, from
Observation 13 it follows that the sum of degrees of the vertices of H is at most 2λn′. This implies that |V (H) \ S| ≤
2λn′/((2 + ε)λ), and hence |S| ≥ εn′/(2 + ε). Therefore, for constant ε, after O(log n) iterations the graph becomes
empty, and moreover, all the edges are oriented as required.

Improved Parallel Algorithms for Density-Based Network Clustering

To turn this process into an MPC algorithm that uses sublinear memory per machine we design Algorithm 5, that is very
similar to Algorithm 4.

Input : G : a graph
ε : approximation parameter
λ : arboricity
T : number of iterations

Output : Orient some of the edges of G

/* INITIALIZE: */
1 Freeze all vertices of degree more than 2λ · 25T .
2 Mark as frozen each edge with both endpoints frozen.

3 ε′
def
= ε/3

/* ORIENTING: */

4 p← min
{

1, 10 logn
(ε′)2λ

}
5 for T steps do
6 Sample each of the non-frozen edges with probability p. Let G′ be the sampled graph.
7 Let S be the set of all non-frozen vertices v ∈ G′ for which dG′(v) < (2 + 2ε′)pλ.
8 Orient arbitrary each edge whose both endpoints are in S. All the other edges incident to S orient outward

from S.
9 Remove S from G.

10 return the obtained orientation
Algorithm 5: Orienting edges

By following the same steps as in the proof of Lemma 9, it can be shown that the following holds.

Lemma 14. Let V i be the set of vertices of G (including frozen ones) that are not yet removed by the ith iteration of
ORIENTING of Algorithm 5. Then, it holds

|V T | ≤ 2−ε
′T/8|V 1|. (5)

D.2. New Approach Compared to Section 4

Lemma 14 enables us to obtain the desired orientation while not depending on n1+δ in the total-memory complexity. To
see how, recall first that Lemma 9 essentially states that after T iterations the number of vertices of coreness at most k
(the set V≤k in its statement) reduces significantly. However, if the set V≤k is small, the total number of all the vertices
reduces only by little after T iterations. On the other hand, Lemma 14 does claim that the total number of all the vertices
reduces significantly (as a function of T) after T iterations. To turn this property into a proof of Theorem 12, instead of
dividing the simulation into phases of equal length, we start with T = 1 and gradually increase the phase-size. We begin
with small T to ensure that the total memory usage is Õ(n) ∈ Õ(λn). Then, after each phase the total number of vertices
gets significantly reduced, enabling us to simulate even more iterations in the next phase.

Formally, we define a sequence of phase-lengths, where a phase-length T ′ refers the number of iterations simulated in a
given phase, i.e., T ′ is an input in Algorithm 5. Fix a phase. Let its length be T ′ and let n′ be the number of vertices at the
beginning of the phase. To simulate this phase, we collect a T ′-hop neighborhood (while ignoring the frozen vertices) of
each of the n′ vertices. We refer a reader to Appendix C.2 for an explanation of how these neighborhood are collected. As
explained in Appendix C.2, this requires the total memory of

O(n′ · 2cT
′2+T ′ log logn), (6)

for some absolute constant c. Our goal in the rest is to show that there is a way to set phase-lengths such that: (1) for each
phase the total memory requirement for gathering these T ′-hop neighborhoods for all the vertices is Õ(n); and, (2) the
total number of phases is Õ(

√
log n).

Improved Parallel Algorithms for Density-Based Network Clustering

Batches of phases. We split phases into batches consisting of consecutive phases. In batch j, all the phases have equal
length Tj . We set Tj = j. Let nj be the number of vertices at the beginning of the j-th batch of phases. We execute (8/(δ ·
ε′))(4c + 2 log log n) phases in the first batch. Note that the total memory requirement for collecting T1-neighborhoods
per phase of the first batch is Õ(n).

By the end of the first batch, by Lemma 14 the number of remaining vertices is at most n2 = n/(2(4c+2 log logn)/δ), that
can also be written as n/(2(cT

2
2 +T2 log logn)/δ). Hence, when the second batch of phases begins, for which the phase-

length is T2 = 2, the total memory requirement per phase coming from Eq. (6) is O(n). To “prepare” the number of
vertices for the third batch so that the total memory requirement per phase coming from Eq. (6) is again O(n), we execute
(8/(ε′δ))(3c+ log log n) phases in the second batch. After that, the number of vertices is at most

n3 ≤
n2

2(3cT2+T2 log logn)/δ
=

n

2(cT
2
2 +3cT2+2T2 log logn)/δ

≤ n

2(c(T2+1)2+(T2+1) log logn)/δ
=

n

2(cT
2
3 +T3 log logn)/δ

.

In general, for each j > 1, in batch j we execute (8/(δ · ε′))(3c+ log log n) ∈ O(log log n) phases.

Upper-bound on the number of batches. By definition, batch j simulates at least (8/(δ ·ε′))·3cTj of the log n iterations
of the process described in Appendix D.1. Since ε′ = ε/3 ≤ 1/3 and c ≥ 1, we have that each batch simulates at least
72 · Tj/δ iterations. Hence, after at most

√
δ log n/6 batches the algorithm simulates all the log n iterations.

Memory complexity. Since each phase has length at most
√
δ log n/6, by following the same arguments as in Ap-

pendix C.2, it implies that each phase can be executed with nδ memory per machine.

Now we upper-bound the total memory requirement. Recall that we set the number of phases per batch in a way that
expression Eq. (6) is Õ(n); in fact, Eq. (6) is O(n) starting from the second batch. Hence, to collect the corresponding
T -neighborhood we need Õ(n) total memory. To perform sampling and store the graph, it suffices to use memory O(λn).
Hence, the total memory requirement is Õ(λn).

Round complexity. Next, by using the method of graph exponentiation, each phase can be executed in O(log Tj) MPC
rounds. Thus, batch j can be executed in O(log log n · log Tj) ∈ O(log2 log n) MPC rounds. Hence, the round complexity
of the entire algorithm is O(

√
log n · log2 log n), as desired.

This completes the analysis.

E. The Missing Details from Section 5
In this section we provide the full details of our result on densest sugraph. In Appendix E.1, we begin by defining the
primal and the dual LP of densest subgraph. In Appendix E.2 we discuss how to solve this dual LP by using employing
the Multplicative Weights Updates method. In Appendix E.4 we state our main algorithm that runs in Õ(

√
log n) MPC

rounds. We show that this algorithm simulates the described MWU approach. In Appendix E.5 these results are combined
into a proof of Theorem 3.

E.1. LP View

We now recall the definition of the LP DUAL(D) from Section 5.1. The LP formulation of the densest subgraph prob-
lem (Charikar, 2000) is given as follows

maximize
∑
e

ye

subject to ye ≤ xe ∀e ∈ E, e incident on v∑
v

xv ≤ 1

xv, ye ≥ 0 ∀v ∈ V,∀e ∈ E

Improved Parallel Algorithms for Density-Based Network Clustering

The dual LP of the LP above is

minimize z

subject to αeu + αev ≥ 1 ∀e = {u, v} ∈ E∑
e incident on v

αev ≤ z ∀v ∈ V

αev ≥ 0 ∀e, v

In the sequel, we focus on solving this dual LP. We reduce this task to the one of solving the following feasibility problem,
that is obtained from the dual by fixing the value of z to D

αeu + αev ≥ 1 ∀e = {u, v} ∈ E∑
e incident on v

αev ≤ D ∀v ∈ V

αev ≥ 0 ∀e, v

Let DUAL(D) denote this feasibility question.

Interpretation of DUAL(D): The feasibility task stated by DUAL(D) can be seen as the following multi-commodity
flow question. Consider a bipartite graph H = (X ∪ Y,EH) in which one partition consists of the edges and the other
partition consists of the vertices of G, i.e., X = E(G) and Y = V (G). There is an edge between e ∈ X and v ∈ Y iff
e = {u, v} for some u. Let X be the set of sinks and Y be the set of sources. Is there a way to send D units of flow from
each of the sources directly to the sinks (this corresponds to the second type of constraints of DUAL(D)) so that each sink
receives at least one unit of flow (this corresponds to the first type of constraints of DUAL(D))? The answer is positive iff
DUAL(D) is feasible.

E.2. Multiplicative Weights Update Method

In this section we show how to apply the Multiplicative Weights Update (MWU) method to solve DUAL(D). We start
by recalling the MWU approach to deciding feasibility of fractional covering problems, and then discuss how to use it to
obtain an approximate solution to DUAL(D).

E.2.1. THE MWU METHOD FOR FEASIBILITY OF COVERING LPS

The feasibility question of a covering LP can be stated as follows:

Feasibility of Covering LP:
Given a convex set P ⊂ Rd, a matrix A ∈ Rr×d such that Ax ≥ 0 for all x ∈ P , does there exist y ∈ P such that
Ay ≥ 1?

Table 2. Definition of feasibility covering LP.

This feasibility problem can be solved by applying the MWU method. To instantiate this method, it is required to provide
access to the following oracle:

ORACLE(w):
Given a vector w ∈ Rr≥0: return a vector x such that wTAx ≥ ‖w‖1; or, if such x does not exist, then report “fail”.

It is also said that ORACLE(w) solves a given feasibility task on average, i.e., the constraints are satisfied on average as
defined by w. Given an access to such ORACLE, the MWU algorithm proceeds in R iterations as follows.

Let ρ be such that (Ax)i ≤ ρ for any x ∈ P . The value ρ is called width. For the i-th constraint of Ax and for each of
the R iterations the algorithm maintains weight wti . Initially, w1

i = 1 for each i. Then, in iteration t the algorithm invokes

Improved Parallel Algorithms for Density-Based Network Clustering

ORACLE(wt). If the oracle reports “fail”, the algorithm reports that the covering LP is infeasible. Otherwise, let xt be the
vector returned by the oracle. Then, the algorithms sets weights for the next iteration to be wt+1

i
def
= wti(1 − ε(Ax)i/ρ).

This update rule leads to the following.

Observation 15. For each t ≥ 1 and each i it holds

wti(1− ε) ≤ wt+1
i ≤ wti .

The following is a well-known result about MWU.

Theorem 16 ((Arora et al., 2012)). Consider a feasibility covering LP problem given by Table 2. Let ρ be the width of
that problem and ε > 0 an approximation parameter. There exists an absolute constant c such that after R = c · ρ log rε2

iterations the MWU method either correctly reports that the covering problem is infeasible, or it holds that x̄ def
=

∑R
t=1 x

t

R is
such that Ax̄ ≥ (1− ε)1.

E.2.2. APPLYING MWU TO SOLVE DUAL(D)

To solve DUAL(D) by using the MWU method, we let the convex set P be the set of points corresponding to all but the
first constraint of DUAL(D), i.e., we let

P = {α ∈ RE×V :
∑

e incident on v

αev ≤ D, and αev ≥ 0}.

Then, we use MWU to decide whether there exists a point α ∈ P such that αeu + αev ≥ 1 for all e = {u, v} ∈ E.

We now discuss how to implement ORACLE(w) for this problem. Recall that w corresponds to the constraints that we are
aiming to satisfy. Hence, w is indexed by E. For each vertex v, ORACLE(w) selects an edge e?v such that

e?v = arg max
e incident to v

we.

Let α? be the output of the oracle. Then, α? is set so that α?e?vv = D and α?ev = 0 for each e 6= e?v .

E.2.3. REDUCING THE WIDTH

In Appendix E.2.2 we showed how to use MWU to solve DUAL(D). In that setup αev can be D, and hence αev +αeu can
be as large as 2D. This implies that the width of DUAL(D) is 2D. Since D can be as large as Θ(n), Theorem 16 implies
that for some input graphs it would be needed to run Θ

(
n log n/ε2

)
iterations of ORACLE(·). Our goal is to reduce this

number of iterations toO
(
log n/ε2

)
. To that end, we define a new feasibility problem that has the width ofO(1). We refer

to this problem by DUAL2(D) and define as

αeu + αev ≥ 1 ∀e = {u, v} ∈ E (7)∑
e incident on v

αev ≤ D ∀v ∈ V

αev ≤ 2 ∀e, v
αev ≥ 0 ∀e, v

DUAL2(D) was formulated in (Bahmani et al., 2014). Observe that, compared to DUAL(D), DUAL2(D) contains an
additional family of constraints of the form αev ≤ 2, for all e, v. As a result, there is an oracle ORACLE2(·) for DUAL2(D)
whose width is 4. Therefore, to solve DUAL2(D) it suffices to invoke ORACLE2(·) for O

(
log n/ε2

)
many times. We now

describe ORACLE2(·), that is very similar to ORACLE(·).

E.2.4. ORACLE FOR DUAL2(D)

Define P2 as
P2 = {α ∈ RE×V :

∑
e incident on v

αev ≤ D,αev ≤ 2, and αev ≥ 0}.

Improved Parallel Algorithms for Density-Based Network Clustering

If DUAL2(D) is feasible, the task of ORACLE2(p) is to output α? ∈ P2 such that∑
e={u,v}

we (α?eu + α?ev) ≥ ‖w‖1. (8)

Rewrite Eq. (8) as ∑
e={u,v}

we (α?eu + α?ev) =
∑
v∈V

∑
e∈E(v)

weα
?
ev ≥ ‖w‖1. (9)

We implement ORACLE2(w) as follows. Consider a vertex v. Let ei be the edge incident to v that among all the edges
incident to v has the i-th largest value in w. Let t = bD/2c. Given v, assign the following values to α?: α?eiv = 2 for each
1 ≤ i ≤ t; α?et+1v = D − 2t; and, α?eiv = 0 for all i > t+ 1. Perform this assignment for all the vertices.

Clearly, α? ∈ P2. Also, it is easy to verify that if DUAL2(D) is feasible, then the described implementation leads to the
output that satisfies Eq. (9).
Lemma 17. Let ε > 0 be an approximation parameter. If G has a subgraph of density at most D, then there exists an
absolute constant c and an algorithm that after c · log n/ε2 invocations of ORACLE2 outputs a vector ᾱ ∈ RE×V such that
the constraint Eq. (7) of DUAL2(D) is satisfied (1 − ε) approximately, i.e., ᾱeu + ᾱev ≥ 1 − ε for all e = {u, v} ∈ E,
while the other constraints are satisfied exactly.

E.3. From Fractional Dual to Integral Primal

Solving DUAL2(D) results in a fractional (dual) solution. In (Bahmani et al., 2014) is shown how to obtain a densest
subgraph given a fractional solution to DUAL2(D) for appropriately chosen D.
Lemma 18. Let ε′ ∈ (0, 1/12) be an approximation parameter and H be a graph. Consider an MWU algorithm for
finding a (1 − ε′)-approximation of DUAL2(D) corresponding to graph H . Let R be the number of MWU iterations. Let
wt be the vector w used to invoke the corresponding oracle in the t-th iteration of MWU. Then, there exists algorithm
ROUNDDENSEST that as the input gets {wt}t∈[R] and has the following properties:

(A) ROUNDDENSEST can be executed in O(1) MPC rounds.

(B) LetD?
H be the maximum subgraph density ofH . For i ∈ N, let D̃ = (1+ε′)i be the smallest value such that D̃ ≥ D?

H .
Then, ROUNDDENSEST outputs (1− 7ε′) approximate densest subgraph.

We now briefly recall the implementation of ROUNDDENSEST, and refer the reader to (Bahmani et al., 2014) for full
details.

Let wt and D be the input to ROUNDDENSEST as described in Lemma 18. For each wt we apply the following process
independently.

Let w̃t be a scaled version of wt such that w̃te
def
= wte/maxh w

t
h for each e. For each edge e such that w̃te ≤ ε′/m2 set

w̃te = 0. Round down each w̃te to the nearest power of (1 + ε′). Note that at this point there are only O
(

logm
ε′

)
different

values of w̃te.

Define Gti to be the subgraph of G containing only the edges such that w̃te ≥ (1 + ε′)i. Let Ht
i be the graph obtained from

Gti by removing all the vertice of Gti that have degree at most bD/2c.

Among all the graphs Ht
i , output one having the largest density.

Remark: We note that the actual algorithm presented in (Bahmani et al., 2014) does not construct all the subgraphs Ht
i ,

but chooses first t and i so that Ht
i leads to the guarantee of Lemma 18. To choose such wt and such i requires additional

computation that for the sake of simplicity we avoid here. Hence, as in our application there are onlyO(log n/ε′2) different
vectors wt and for each of them only O(logm/ε′) different values of i that we have to consider, we execute the above
procedure for all of the Ht

i in parallel.

E.4. The Main Algorithm

Before we state our main algorithm, we prove the following result that essentially allows us to assume that the maximum
subgraph density of the graph that we have to process is O(logn

ε2).

Improved Parallel Algorithms for Density-Based Network Clustering

Lemma 19. Let D? to be the density of a densest subgraph of G. Let D̃ ≥ 20 logn
ε2 , and let H be a graph obtained from

G by keeping each edge of G with probability min{1, D̃/D?} and independently of other edges. Then, whp the following
holds:

(A) Let S be a densest subgraph of G. Then, the density of S in H is at least min{D?, (1− ε)D̃}.

(B) Let T be a subgraph of G of density at most (1−2ε)D?. Then, the density of T in H is less than (1−ε) min{D?, D̃}.

(C) No subgraph of H has density more than min{D?, (1 + ε)D̃}.

The proof of Lemma 19 is deferred to Appendix E.6.

Combining Lemma 19 with the results derived in the previous sections lead to Algorithm 6. It is not hard to see that this
algorithm can be implemented so to find a (1+ε)-approximate densest subgraph ofG inO

(
logn
ε2

)
MPC rounds. Moreover,

all the steps but Line 5 of the algorithm can be easily simulated inO(1) MPC rounds. Hence, to obtain the round complexity
as stated by Theorem 3, in this section we show how to simulate T iterations of MWU in onlyO(log log n) rounds of MPC
when the memory per machine is nδ , where T is defined as

T
def
=
√
δ logn
5 . (10)

To achieve that, we proceed as follows.

Input : G : a graph
ε ∈ (0, 1/70) : approximation parameter

Output : A (1 + 70ε)-approximate densest subgraph

1 Let D ← {(1 + ε)i : 0 ≤ i ≤ log1+ε n} be the list of density candidates.
2 Dsparse ← 20 logn

ε2

3 foreach D ∈ D in parallel do
4 Obtain HD from G by keeping each edge of G independently with probability min{1, (1 + ε)Dsparse/D}.
5 Run MWU on DUAL2(min{D, (1 + ε)2Dsparse}) defined wrt HD. Let R be the number of MWU iterations.

Let {wtD}t∈[R] be the vectors used to invoke the MWU oracle.
6 Invoke ROUNDDENSEST with {wtD}t∈[R] (see Lemma 18). Let SD be the subgraph returned by this

invocation.
7 return V (SD) having the largest density in G among all D ∈ D

Algorithm 6: A parallel algorithm for finding a (1 + 70ε)-approximate densest subgraph.

We split the execution of MWU into phases. Each phase groups consecutive iterations of MWU. At the beginning of each
phase we choose a small subset of the edges on which will be executed the corresponding MWU oracle. We will show that
there is a choice of the edges so that: the number of the edges chosen by each vertex is “small”, and this edge-sparsification
process affects the outcome of the MWU method by only (1−O(ε)) factor. We next describe one phase (Appendix E.4.1)
and after discuss how to simulate a phase in MPC (Appendix E.5.2).

E.4.1. A PHASE OF MWU

Each phase of MWU consists of T iterations. Fix one such phase. Our goal now it to design a new oracle for this phase,
that we call R-ORACLE2 (“R” coming from “restricted”), that has a restricted access to the graph but provides almost the
same guarantee as ORACLE2 (guarantee in the sense of Eq. (9)). This restricted access will enable us to consider only a
sparse subgraph of our graph while executing a phase of MWU. We will use this sparsification to design an efficient MPC
simulation of one phase. We begin by defining R-ORACLE2.

Definition of R-ORACLE2 Let ŵ be the value of w at the beginning of the phase. For a vertex v, order its incident edges
E(v) as e′1, e

′
2, . . . such that ŵe′i ≥ ŵe′j for each i ≤ j. Define

dR
max

def
=
D2 · 2T

ε
+ dDe, (11)

Improved Parallel Algorithms for Density-Based Network Clustering

and let ER(v) be the first dR
max of those ordered edges, i.e.,

ER(v)
def
= {e′i : 1 ≤ i ≤ min{d(v), dR

max}}. (12)

When R-ORACLE2(w) is invoked, let ei ∈ ER(v) be such that among all the edges from ER(v) the edge ei has the i-th
largest value in p. Let αR be the output vector. Let t = bD/2c. Given v, assign the following values to αR: αR

eiv = 2
for each 1 ≤ i ≤ t; αR

et+1v = D − 2t; and, αR
ev = 0 for all the other edges e ∈ E(v). Perform this assignment for all

the vertices. Note that the only difference between ORACLE2 (see Appendix E.2.4 for a definition) and R-ORACLE2 is
that ORACLE2 takes into account E(v) while R-ORACLE2 takes into account only ER(v). Also note that R-ORACLE2 is
defined w.r.t. to the current phase.

Guarantee for R-ORACLE2 The main task here is to show that within the same phase ORACLE2 and R-ORACLE2

provide almost the same guarantee in the sense of Eq. (9).

Lemma 20. Fix a phase of MWU. Given vector w in an iteration of the phase, let αR be the output of R-ORACLE2(w) and
α? be the output of ORACLE2(w). If α? satisfies Eq. (9), then αR satisfies∑

v∈V

∑
e∈E(v)

weα
R
ev ≥ (1− ε)‖w‖1. (13)

This lemma together with Lemma 17 implies the approximation guarantee of R-ORACLE2.

Lemma 21. If G has a subgraph of density at most D, then there exists an algorithm that after R ∈ O(log n/ε2) invo-
cations of R-ORACLE2 outputs a vector ᾱR ∈ RE×V such that the constraint Eq. (7) of DUAL2(D) is satisfied (1 − 2ε)
approximately, i.e., ᾱR

eu + ᾱR
ev ≥ 1− 2ε for all e = {u, v} ∈ E, while the other constraints are satisfied exactly. Further-

more, these invocations are split into R/T phases.

Proof. Let R = c · log n/ε2 be the number of invocations of ORACLE2 stated by Lemma 17. Split these invocations into
phases, each phase (except the last one) consisting of T consecutive invocations.

As G contains a subgraph of density at most D, in each invocation ORACLE2 outputs a vector that satisfies Eq. (9). Then,
by Lemma 20, the output αR of R-ORACLE2 is such that it satisfies Eq. (13). That implies that R-ORACLE2 solves the
version of DUAL2(D) where the constraint Eq. (7) is replaced by αeu + αev ≥ 1− ε. Hence, by Theorem 16,

ᾱR
eu + ᾱR

ev ≥ (1− ε)2 ≥ 1− 2ε,

as desired.

To prove Lemma 20, we will need the following result.

Theorem 22 ((Frank & Gyárfás, 1978)). Let D? be the maximum density of a subgraph of G. Then, the edges of G can be
oriented so that the maximum indegree of each vertex is dD?e.

Proof of Lemma 20. Recall that for each v the invocation of ORACLE2(w) sets α? to be non-zero for at most D of the
edges incident to v. Those edges correspond to the ones having largest values in w. However, if d(v) > dR

max, some of
those edges might not belong to ER(v) and hence would not be considered by R-ORACLE2(w) while defining αR. As a
consequence, αR might not satisfy Eq. (9). We will show that, nevertheless, αR violates Eq. (9) only by ε factor, i.e., we
will show that Eq. (13) holds.
Note that if d(v) ≤ dR

max, then ER(v) contains all the edges incident to v (see Eq. (12)), and hence αR
ev = α?ev for every

e ∈ E(v). Therefore, in the rest we focus on the vertices having degree more than dR
max.

Consider a vertex v such that d(v) > dR
max. Let Xv

def
=
∑
e∈E(v) weα

R
ev be the contribution of v to the LHS Eq. (13). Let

F
def
= 2T . Throughout a phase, from Observation 15 the value of we increases by at most (1 − ε)−T and decreases by at

most (1 − ε)T compared to its initial value ŵe. Recall that, initially, ER(v) contained dR
max edges incident to v with the

largest values in ŵ. Therefore, for ε ≤ 1/4, during any point of the phase we have

∀e′ ∈ ER(v) and ∀e /∈ ER(v) it holds we ≤ Fwe′ . (14)

Improved Parallel Algorithms for Density-Based Network Clustering

Hence, we have
∑
e∈E(v) weα

?
ev ≤ F ·Xv . So, w.r.t. v the output of ORACLE2 potentially contributes F times more, i.e.,

F ·Xv , to the LHS of Eq. (9) than the output of R-ORACLE2. We now show, via a proper amortization, that F ·Xv is only
a small fraction of what the neighbors of v in ER(v) contribute to the LHS of Eq. (9).

Amortization scheme Consider any neighbor z of v such that {v, z} ∈ ER(v). Let ez be an edge of ER(z) with the
largest value in w. We claim that

∀e /∈ ER(v) it holds we ≤ Fwez . (15)

To prove Eq. (15) consider two cases: {v, z} ∈ ER(z) and {v, z} /∈ ER(z).

• Case {v, z} ∈ ER(z). By definition w{v,z} ≤ wez . Since {v, z} ∈ ER(v) and we ≤ Fwe′ for any e′ ∈ ER(v) and
any e /∈ ER(v) (see Eq. (14)), the claim Eq. (15) follows.

• Case {v, z} /∈ ER(z). As {v, z} was not selected to ER(z), we have ŵez ≥ ŵ{v,z}. Also ŵ{v,z} ≥ ŵe for any
e /∈ ER(v), and hence ŵez ≥ ŵe. Since within the phase we can increase by at most (1− ε)−T and wez decrease by
at most (1− ε)T , we have wez ≥ Fwe, as desired.

Now, select any FD2/ε neighbors of v in ER(v). Let that set be Av . Recall that α?v has at most D non-zeros, and also
observe that αR

ezz = ‖αR‖∞ for each vertex z. Then, for each z ∈ Av from Eq. (15) we have∑
e∈E(v)

weα
?
ev ≤ Xv +DFwezα

R
ezz,

and hence from |Av| = FD2/ε ∑
e∈E(v)

weα
?
ev ≤ Xv +

∑
z∈Av

wez ·
ε

D
αR
ezz. (16)

We say that the vertices in Av amortize for v. Observe that from the RHS of Eq. (16), z ∈ Av amortizes for v by only
ε/D fraction of αR

ezz . Therefore, as long as z amortizes for at most D distinct vertices, it will in total amortize at most ε
fraction of its contribution to the LHS of Eq. (9), which would be sufficient to prove this lemma. But, is there a way to
define sets Av so that each vertex amortizes for at most D distinct vertices? Next we show that the answer to this question
is affirmative.

Amortizing for at most D vertices. Let GR = (V,ER) be the graph such that ER def
=
⋃
v∈V E

R(v). Since GR is a
subgraph of G, the maximum subgraph density of GR is at most D. From Theorem 22, there exists an orientation of the
edges of GR such that the indegree of each vertex is at most dDe. Consider one such orientation. As already discussed,
vertices whose degree in G is at most dR

max do not need to be amortized for. So, select a vertex v whose degree in G is
more than dR

max. Choose Av to be the set of any FD2/ε neighbors of v in ER(v) whose edges are outgoing from v. (Note
that Av of this size always exists as |ER(v)| = dR

max and the indegree of v is at most dDe.) The set Av corresponds to the
amortization described above.

Note that the existence of this orientation is needed only for the purpose of the analysis.

E.5. Proof of Theorem 3

In this section we prove Theorem 3. We begin by inserting an implementation for Line 5 of Algorithm 6. This implemen-
tation is based on R-ORACLE2 and is given in Algorithm 7.

E.5.1. CORRECTNESS

Let D? be the maximum subgraph density of G. Let D be as defined on Line 1 of Algorithm 6, and let D′ ∈ D be the
smallest value such that D′ ≥ D?. Let HD′ be as defined on Line 4, and let D?

H be the maximum subgraph density of
HD′ . Note that the sampling probability (1 + ε)Dsparse/D

′ can be written as D̃/D? for D̃ = (1 + ε)Dsparse · D?/D′ ∈
[Dsparse, (1+ε)Dsparse]. Hence, by Lemma 19 (C), whpD?

H ≤ min{D?, (1+ε)2Dsparse}. This implies that DUAL2 defined
on Line 5 of Algorithm 6 has a feasible solution.

The invocation of MWU on Line 5 is implemented by Algorithm 7. This algorithm uses R-ORACLE2 to solve a given
DUAL2, and hence by Lemma 21 outputs a (1 − 2ε) approximation to DUAL2 defined on Line 5 of Algorithm 6. The

Improved Parallel Algorithms for Density-Based Network Clustering

Input : DUAL2(D) defined as in Line 5 of Algorithm 6
Output : A sequence of vectors wt used to solve the input DUAL2(D) by MWU

1 Let R← O(log n/ε2) be as defined in Lemma 21.
2 Let T be as defined in Eq. (10).

/* PHASES: */

3 Initialize w1 ← 1, for each e
4 for i← 1 to R/T do
5 Define the edge-sets ER(v) wrt to w(i−1)T+1 as defined in Eq. (12).
6 Execute T iterations of MWU on the input DUAL2 by using R-ORACLE2 defined wrt to these ER(v) sets. Let

w(i−1)T+j+1 be the vector w after the j-th iteration of this MWU.
7 return the probability vectors {wt}t∈[R] used to invoke R-ORACLE2

Algorithm 7: Solving DUAL2(D) by MWU that as the oracle uses R-ORACLE2.

vectors used to invoke R-ORACLE2 in Algorithm 7 are then used on Line 6 to invoke ROUNDDENSEST with the goal to
output a subgraph of HD′ of density “close” to D?

H .

Next we derive a value of ε′ for which the guarantee of Lemma 18 (B) for ROUNDDENSEST holds, where ε′ is as defined
in Lemma 18. By Lemma 19 (A), whp we have D?

H ≥ min{D?, (1−ε)D̃}, where from our derivation above D̃ ≥ Dsparse.
Hence, for ε ≤ 1/5, DUAL2 defined on Line 5 of Algorithm 6 is invoked by density at most (1 + ε)2/(1 − ε) ≤ 1 + 5ε
larger than D?

H . This conclusion and the fact that the output of Algorithm 7 corresponds to (1 − 2ε) approximation
of DUAL2 implies that it suffices to set ε′ = 5ε. Finally, ROUNDDENSEST outputs vertex subset SD′ such that it is a
(1 − 35ε) approximation of a densest subgraph of HD′ . By Lemma 19 (B), SD′ is whp a (1 − 70ε)-approximate densest
subgraph of G. Therefore, at Line 7 the algorithm returns a subgraph of G of density at least (1− 70ε)D?.

Remark: Observe that in our computation we never verify whether the MWU should output “fail”. That is, Algo-
rithm 7 executes all the phases of MWU even if the underlying LP does not have a feasible solution. Nevertheless, this
does not affect the correctness of our algorithm as for our use we only require that sufficiently dense subgraph is found.
This dense subgraph is a certificate that the output of Algorithm 6 is a dense subgraph as well.

E.5.2. MPC IMPLEMENTATION

Each edge of G is copied |D| times, where D is defined on Line 1 of Algorithm 6. The algorithm processes D ∈ D on
separate copies of the edges. HD (Line 4) is obtained by including each edge of G independently of other edges, so the
copy of each edge corresponding to D performs this operation locally.

When HD is obtained, it is passed to Algorithm 7 via the corresponding instance of DUAL2. Although Algorithm 7 gets
DUAL2 on its input, we do not actually need to construct this LP, but rather implement the required instance of R-ORACLE2.
This implementation is given within the loop on Line 4.

On Line 5 of Algorithm 7, for each vertex is constructed ER(v). Set ER(v) corresponds to at most dR
max edges incident

to v with their values largest in w. See Eq. (11) for the definition of dR
max, and also recall that for D in Algorithm 7 holds

D ∈ O(logn
ε2) (see Line 5 of Algorithm 6). To construct allER(v), for each edge e = {u, v} we make two triples (u,we, v)

and (v, we, u). Also, for each vertex v we make one extra triple (v,∞, v). We then sort all the triples in ascending order
with respect to the first coordinate, and in descending order with respect to the second. All the edges corresponding to
ER(v) start at triple (v,∞, v) and extend for |ER(v)| triples in the sorted sequence. Observe that |ER(v)| ≤ dR

max � nδ ,
hence ER(v) lies on one machine, or on two consecutive machines in the sorted order. Therefore, after the sorting, one
additional round of computation suffices to fetch the edges of ER(v) that are not on the same machine as (v,∞, v). For
constant δ, these steps can be implemented in O(1) MPC rounds. We refer a reader to (Goodrich et al., 2011) for details
on how to efficiently perform sorting in MPC.

Line 6 of Algorithm 7 is implemented by gathering T -hop neighborhood in a similar way as described in Appendix C.2.
The main difference between gathering T -hop neighborhood for Line 6 and in Appendix C.2 is that Bi(v) defined for
Line 6 might get significantly many more requests than what is its size, and on each of the requests should send Bi(v); for

Improved Parallel Algorithms for Density-Based Network Clustering

instance, consider the case where the underlying graph is a star. In (Ghaffari & Uitto, 2019) was shown how to handle all
these requests in O(1) MPC rounds with nδ memory per machine.

As stated by Lemma 18, Line 6 of Algorithm 6 can be executed in O(1) MPC rounds.

E.6. Proof of Lemma 19

Observe that for D̃ ≥ D? we have that H equals G and the statement follows directly. Therefore, in the rest of the proof
we assume that D̃ < D?. We prove each of the points separately.

Proof of A. Let S be a subgraph of G on nS vertices of density D?. Let S̃ be the subgraph of H on V (S). We will show
that S̃ has (1± ε)D̃nS many edges.

By definition, |E(S)| = D?nS . We then have

E
[
|E(S̃)|

]
=

D̃

D?
|E(S)| = D̃nS .

Chernoff bound implies
Pr
[
||E(S̃)| − D̃nS | > εD̃nS

]
< n−6. (17)

That is, S̃ has density (1± ε)D̃ with probability at least 1− n−6.

Proof of B. Fix an integer k, 1 ≤ k ≤ n. Consider any subgraph T of G that consists of exactly k vertices and has
density at most (1− 2ε)D. By definition, we have |E(T)| ≤ (1− 2ε)D?k. Let T̃ be the subgraph of H on the vertex set
V (T). Then,

E
[
|E(T̃)|

]
=

D̃

D?
|E(T)| ≤ (1− 2ε)D̃k.

Hence, from Chernoff bound we derive

Pr
[
|E(T̃)| − (1− 2ε)D̃k ≥ εD̃k

]
< n−6k. (18)

Observe that Eq. (18) implies that T has density at least (1 − ε)D̃ with probability at most n−6k. Taking a union bound
over all the subgraphs T of G on k vertices of density at most (1 − 2ε)D?, we obtain that none of them have density at
least (1 + ε)D̃ in H with probability at least

(
n
k

)
n−6k ≤ nkn−6k = n−5k. Taking a union bound over all k, we have that

with probability at least
∑n
k=1 n

−5k ≤ n−4 no such subgraph T has has density at least (1− ε)D̃ in H . The proof follows
by taking a union bound of this event and Eq. (17).

Proof of C. Our proof of this property is similar to the one of B.

Fix an integer k, 1 ≤ k ≤ n. Consider any subgraph T of G that consists of exactly k vertices. By definition, we have
|E(T)| ≤ D?k. Let T̃ be the subgraph of H on the vertex set V (T). Then,

E
[
|E(T̃)|

]
=

D̃

D?
|E(T)| ≤ D̃k.

Hence, from Chernoff bound we derive

Pr
[
|E(T̃)| − D̃k ≥ εD̃k

]
< n−6k. (19)

Observe that Eq. (19) implies that T has density at least (1 + ε)D̃ with probability at most n−6k. The rest of the proof now
follows by applying the same union bound as in the proof of B.

