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Abstract

We present a mechanism to compute a sketch (suc-
cinct summary) of how a complex modular deep
network processes its inputs. The sketch summa-
rizes essential information about the inputs and
outputs of the network and can be used to quickly
identify key components and summary statistics
of the inputs. Furthermore, the sketch is recursive
and can be unrolled to identify sub-components of
these components and so forth, capturing a poten-
tially complicated DAG structure. These sketches
erase gracefully; even if we erase a fraction of
the sketch at random, the remainder still retains
the “high-weight” information present in the orig-
inal sketch. The sketches can also be organized
in a repository to implicitly form a “knowledge
graph”; it is possible to quickly retrieve sketches
in the repository that are related to a sketch of
interest; arranged in this fashion, the sketches can
also be used to learn emerging concepts by look-
ing for new clusters in sketch space. Finally, in
the scenario where we want to learn a ground
truth deep network, we show that augmenting
input/output pairs with these sketches can theoret-
ically make it easier to do so.

1. Introduction

Machine learning has leveraged our understanding of how
the brain functions to devise better algorithms. Much of
classical machine learning focuses on how to correctly com-
pute a function; we utilize the available data to make more
accurate predictions. More recently, lines of work have
considered other important objectives as well: we might
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like our algorithms to be small, efficient, and robust. This
work aims to further explore one such sub-question: can we
design a system on top of neural nets that efficiently stores
information?

Our motivating example is the following everyday situation.
Imagine stepping into a room and briefly viewing the objects
within. Modern machine learning is excellent at answering
immediate questions about this scene: “Is there a cat? How
big is said cat?” Now, suppose we view this room every day
over the course of a year. Humans can reminisce about the
times they saw the room: “How often did the room contain
a cat? Was it usually morning or night when we saw the
room?”’; can we design systems that are also capable of
efficiently answering such memory-based questions?

Our proposed solution works by leveraging an existing (al-
ready trained) machine learning model to understand indi-
vidual inputs. For the sake of clarity of presentation, this
base machine learning model will be a modular deep net-
work.! We then augment this model with sketches of its
computation. We show how these sketches can be used to
efficiently answer memory-based questions, despite the fact
that they take up much less memory than storing the entire
original computation.

A modular deep network consists of several independent
neural networks (modules) which only communicate via
one’s output serving as another’s input. Figure 1 presents
a cartoon depiction of a modular network for our exam-
ple. Modular networks have both a biological basis (Azam,
2000) and evolutionary justification (Clune et al., 2013).
They have inspired several practical architectures such as
neural module networks (Andreas et al., 2016; Hu et al.,
2017), capsule neural networks (Hinton et al., 2000; 2011;
Sabour et al., 2017), and PathNet (Fernando et al., 2017)
and have connections to suggested biological models of in-
telligence such as hierarchical temporal memory (Hawkins
& Blakeslee, 2007). We choose them as a useful abstraction
to avoid discussing specific network architectures.

What do these modules represent in the context of our room
task? Since we are searching for objects in the room, we
think of each module as attempting to identify a particular
type of object, from the low level edge to the high level cat.
For the reader familiar with convolutional neural networks,
it may help to think of each module as a filter or kernel.
We denote the event where a module produces output as
an object, the produced output vector as an attribute vector,
and all objects produced by a module as a class. In fact, our
sketching mechanism will detail how to sketch each object,
and these sketches will be recursive, taking into account the
sketches corresponding to the inputs of the module.

'Of course, it is possible to cast many models as deep modular
networks by appropriately separating them into modules.
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Figure 1. Cartoon depiction of a modular network processing an
image of a room. Modules are drawn as rectangles and their
inputs/outputs (which we refer to as object attributes) are drawn
as ovals. The arrows run from input vector to module and module
to output vector. There may be additional layers between low
level and high level modules, indicated by the dashed arrows. The
output module here is a dummy module which groups together
top-level objects.

Armed with this view of modular networks for image pro-
cessing, we now entertain some possible sketch properties.
One basic use case is that from the output sketch, we should
be able to say something about the attribute vectors of the
objects that went into it. This encompasses a question like
“How big was the cat?” Note that we need to assume that our
base network is capable of answering such questions, and
the primary difficulty stems from our desire to maintain this
capability despite only keeping a small sketch. Obviously,
we should not be able to answer such questions as precisely
as we could with the original input. Hence a reasonable at-
tribute recovery goal is to be able to approximately recover
an object’s attribute vector from its sketch. Concretely, we
should be able to recover cat attributes from our cat sketch.

Since we plan to make our sketches recursive, we would
actually like to recover the cat attributes from the final output
sketch. Can we recover the cat’s sketch from final sketch?
Again, we have the same tug-of-war with space and should
expect some loss from incorporating information from many
sketches into one. Our recursive sketch property is that we
can recover (a functional approximation of) a sketch from a
later sketch which incorporated it.

Zooming out to the entire scene, one fundamental question
is “Have I been in this room before?” In other words, com-
paring sketches should give some information about how
similar the modules and inputs that generated them. In the
language of sketches, our desired sketch-to-sketch similarity
property is that two completely unrelated sketches will be
dissimilar while two sketches that share common modules
and similar objects will be similar.

Humans also have the impressive ability to recall approxi-
mate counting information pertaining to previous encounters
(Brannon & Roitman, 2003). The summary statistics prop-
erty states that from a sketch, we can approximately recover
the number of objects produced by a particular module, as
well as their mean attributes.

Finally, we would like the nuance of being able to forget
information gradually, remembering more important facts
for longer. The graceful erasure property expresses this
idea: if (a known) portion of our sketch is erased, then the
previous properties continue to hold, but with additional
noise depending on the amount erased.

We present a sketching mechanism which simultaneously
satisfies all these desiderata: attribute recovery, recursive
sketch, sketch-to-sketch similarity, summary statistics, and
graceful erasure.

1.1. Potential Applications

We justify our proposed properties by describing several
potential applications for a sketching mechanism satisfying
them.

Sketch Repository. The most obvious use case suggested
by our motivating example is to maintain a repository of
sketches produced by the (augmented) network. By the
recursive sketch and attribute recovery properties, we can
query our repository for sketches with objects similar to a
particular object. From the skefch-to-sketch similarity prop-
erty, we can think of the sketches as forming a knowledge
graph; we could cluster them to look for patterns in the data
or use locality-sensitive hashing to quickly fish out related
sketches. We can combine these overall sketches once more
and use the summary statistics property to get rough statis-
tics of how common certain types of objects are, or what
a typical object of a class looks like. Our repository may
follow a generalization of a “least recently used” policy,
taken advantage of the graceful erasure property to only
partially forget old sketches.

Since our sketches are recursively defined, such a repository
is not limited to only keeping overall sketches of inputs; we
can also store lower-level object sketches. When we per-
form object attribute recovery using the attribute recovery
property, we can treat the result as a fingerprint to search for
a more accurate sketch of that object in our repository.

Learning New Modules. This is an extension of the sketch
repository application above. Rather than assuming we start
with a pre-trained modular network, we start with a bare-
bones modular network and want to grow it. We feed it
inputs and examine the resulting sketches for emerging clus-
ters. When we find such a cluster, we use its points to train
a corresponding (reversible) module. In fact, this clustering
may be done in a hierarchical fashion to get finer classes.
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For example, we may develop a module corresponding to
“cat” based on a coarse cluster of sketches which involve cats.
We may get sub-clusters based on cat species or even finer
sub-clusters based on individual cats repeatedly appearing.

The modules produced by this procedure can capture im-
portant primitives. For example, the summary statistics
property implies that a single-layer module could count the
number of objects produced by another module. If the mod-
ules available are complex enough to capture curves, then
this process could potentially allow us to identify different
types of motion.

Interpretability. Since our sketches store information re-
garding how the network processed an input, they can help
explain how that network came to its final decision. The
sketch-to-sketch similarity property tells us when the net-
work thinks two rooms are similar, but what exactly did the
network find similar? Using the recursive sketch property,
we can drill down into two top level sketches, looking for
the pairs of objects that the network found similar.

Model Distillation. Model distillation (Bucilui et al.,
2006; Hinton et al., 2015) is a popular technique for im-
proving machine learning models. The use case of model
distillation is as follows. Imagine that we train a model on
the original data set, but it is unsatisfactory in some regard
(e.g. too large or ensemble). In model distillation, we take
this first model and use its features to train a second model.
These stepping stones allows the second model to be smaller
and less complex. The textbook example of feature choice
is to use class probabilities (e.g. the object is 90% A and
10% B) versus the exact class found in the original input
(e.g. the object is of class A). We can think of this as an
intermediate option between the two extremes of (i) pro-
viding just the original data set again and (ii) providing all
activations in the first model. Our sketches are an alternative
option. To showcase the utility of our sketches in the context
of learning from a teacher network, we prove that (under
certain assumptions) augmenting the teacher network with
our sketches allows us to learn the network. Note that in
general, it is not known how the student can learn solely
from many input/output pairs.

1.2. Techniques

The building block of our sketching mechanism is applying
a random matrix to a vector. We apply such transformations
to object attribute vectors to produce sketches, and then
recursively to merge sketches. Consequently, most of our
analysis revolves around proving and utilizing properties of
random matrices. In the case where we know the matrices
used in the sketch, then we can use an approximate version
of isometry to argue about how noise propagates through
our sketches. On the other hand, if we do not know the
matrices involved, then we use sparse recovery/dictionary

learning techniques to recover them. Our recovery pro-
cedure is at partially inspired by several works on sparse
coding and dictionary learning (Spielman et al., 2012; Arora
et al., 2014c¢), (Arora et al., 2014a) and (Arora et al., 2015)
as well as their known theoretical connections to neural net-
works (Arora et al., 2014b; Papyan et al., 2018). We have
more requirements on our procedure than previous litera-
ture, so we custom-design a distribution of block-random
matrices reminiscent of the sparse Johnson-Lindenstrauss
transform. Proving procedure correctness is done via proba-
bilistic inequalities and analysis tools, including the Khint-
chine inequality and the Hanson-Wright inequality.

One could consider an alternate approach based on the seri-
alization of structured data (for example, protocol buffers).
Compared to this approach, ours provides more fine-grained
control over the accuracy versus space trade-off and aligns
more closely with machine learning models (it operates on
real vectors).

1.3. Related Work

There have been several previous attempts at adding a no-
tion of memory to neural networks. There is a line of work
which considers augmenting recurrent neural networks with
external memories (Graves et al., 2014; Sukhbaatar et al.,
2015; Joulin & Mikolov, 2015; Grefenstette et al., 2015;
Zaremba & Sutskever, 2015; Danihelka et al., 2016; Graves
et al., 2016). In this line of work, the onus is on the neural
network to learn how to write information to and read infor-
mation from the memory. In contrast to this line of work,
our approach does not attempt to use machine learning to
manage memory, but rather demonstrates that proper use of
random matrices suffices. Our results can hence be taken as
theoretical evidence that this learning task is relatively easy.

Vector Symbolic Architectures (VSAs) (Smolensky, 1990;
Gayler, 2004; Levy & Gayler, 2008) are a class of mem-
ory models which use vectors to represent both objects and
the relationships between them. There is some concep-
tual overlap between our sketching mechanism and VSAs.
For example, in Gayler’s MAP (Multiply, Add, Permute)
scheme (Gayler, 2004), vector addition is used to represent
superposition and permutation is used to encode quotations.
This is comparable to how we recursively encode objects;
we use addition to combine multiple input objects after ap-
plying random matrices to them. One key difference in our
model is that the object attribute vectors we want to recover
are provided by some pre-trained model and we make no
assumptions on their distribution. In particular, their possi-
ble correlation makes it necessary to first apply a random
transformation before combining them. In problems where
data is generated by simple programs, several papers (Wu
etal., 2017; Yi et al., 2018; Ellis et al., 2018; Andreas et al.,
2016; Oh et al., 2017) attempt to infer programs from the
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generated training data possibly in a modular fashion.

Our result on the learnability of a ground truth network is
related to the recent line of work on learning small-depth
neural networks (Du et al., 2017b;a; Li & Yuan, 2017; Zhong
et al., 2017a; Zhang et al., 2017; Zhong et al., 2017b). Re-
cent research on neural networks has considered evolving
neural network architectures for image classification (e.g.,
(Real et al., 2018)), which is conceptually related to our
suggested Learning New Models application.

1.4. Organization

We review some basic definitions and assumptions in Sec-
tion 2. An overview of our final sketching mechanism is
given in Section 3 (Theorems 1, 2, 3). In Section 4, we ex-
plain how to deduce the random parameters of our sketching
mechanism from multiple sketches via dictionary learning.
Further discussion and detailed proofs are provided in the
supplementary material.

2. Preliminaries

In this section, we cover some preliminaries that we use
throughout the remainder of the paper. Throughout the
paper, we denote by [n] the set {1,...,n}.

2.1. Modular Deep Networks for Object Detection

For this paper, a modular deep network consists of a col-
lection of modules {M}. Each module is responsible for
detecting a particular class of object, e.g. a cat module may
detect cats. These modules use the outputs of other modules,
e.g. the cat module may look at outputs of the edge detec-
tion module rather than raw input pixels. When the network
processes a single input, we can depict which objects feed
into which other objects as a (weighted) communication
graph. This graph may be data-dependent. For example,
in the original Neural Module Networks of Andreas et al.
(Andreas et al., 2016), the communication graph is derived
by taking questions, feeding them through a parser, and then
converting parse trees into structured queries. Note that this
pipeline is disjoint from the modular network itself, which
operates on images. In this paper, we will not make as-
sumptions about or try to learn the process producing these
communication graphs. When a module does appear in the
communication graph, we say that it detected an object
and refer to its output as xy, the attribute vector of object 6.
We assume that these attribute vectors zy are nonnegative
and normalized. As a consequence of this view of modu-
lar networks, a communication graph may have far more
objects than modules. We let our input size parameter [NV
denote twice the maximum between the number of modules
and the number of objects in any communication graph.

We assume we have access to this communication graph,

and we use 61, ..., 0 to denote the & input objects to object
6. We assume we have a notion of how important each input
object was; for each input 6;, there is a nonnegative weight
w; such that Zle w; = 1. It is possible naively choose
w; = 1/k, with the understanding that weights play a role
in the guarantees of our sketching mechanism (it does a
better job of storing information about high-weight inputs).

We handle the network-level input and output as follows.
The input data can be used by modules, but it itself is not
produced by a module and has no associated sketch. We
assume the network has a special output module, which
appears exactly once in the communication graph as its sink.
It produces the output (pseudo-)object, which has associated
sketches like other objects but does not count as an object
when discussing sketching properties (e.g. two sketches
are not similar just because they must have output pseudo-
objects). This output module and pseudo-object only matter
for our overall sketch insofar as they group together high-
level objects.

2.2. Additional Notation for Sketching

We will (recursively) define a sketch for every object, but
we consider our sketch for the output object of the network
to be the overall sketch. This is the sketch that we want to
capture how the network processed a particular input. One
consequence is that if an object does not have a path to
the output module in the communication graph, it will be
omitted from the overall sketch.

Our theoretical results will primarily focus on a single path
from an object 6 to the output object. We define the “ef-
fective weight” of an object, denoted wy, to be the product
of weights along this path. For example, if an edge was
10% responsible for a cat and the cat was 50% of the output,
then this edge has an effective weight of 5% (for this path
through the cat object). We define the “depth” of an object,
denoted h(6), to be the number of objects along this path.
In the preceding example, the output object has a depth of
one, the cat object has a depth of two, and the edge object
has a depth of three. We make the technical assumption
that all objects produced by a module must be at the same
depth. As a consequence, modules M also have a depth,
denoted h(M). To continue the example, the output module
has depth one, the cat module has depth two, and the edge
module has depth three. Furthermore, this implies that each
object and module can be assigned a unique depth (i.e. all
paths from any object produced by a module to the output
object have the same number of objects).

Our recursive object sketches are all dgyeq, dimensional vec-
tors. We assume that dge(ch is at least the size of any object
attribute vector (i.e. the output of any module). In gen-
eral, all of our vectors are dgein-dimensional; we assume
that shorter object attribute vectors are zero-padded (and
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normalized).

3. Overview of Sketching Mechanism

In this section, we present our sketching mechanism, which
attempts to summarize how a modular deep network under-
stood an input. The mechanism is presented at a high level;
see Section ?? for how we arrived at this mechanism and
the supplementary material for proofs of the results stated
in this section.

3.1. Desiderata

As discussed in the introduction, we want our sketching
mechanism to satisfy several properties, listed below.

Attribute Recovery. Object attribute vectors can be ap-
proximately recovered from the overall sketch, with additive
error that decreases with the effective weight of the object.

Sketch-to-Sketch Similarity. With high probability, two
completely unrelated sketches (involving disjoint sets of
modules) will have a small inner product. With high proba-
bility, two sketches that share common modules and similar
objects will have a large inner product (increasing with the
effective weights of the objects).

Summary Statistics. If a single module detects several
objects, then we can approximately recover summary statis-
tics about them, such as the number of such objects or their
mean attribute vector, with additive error that decreases with
the effective weight of the objects.

Graceful Erasure. Erasing everything but d, ., -prefix of
the overall sketch yields an overall sketch with the same
properties (albeit with larger error).

3.2. Random Matrices

The workhorse of our recursive sketching mechanism is ran-
dom (square) matrices. We apply these to transform input
sketches before incorporating them into the sketch of the
current object. We will defer the exact specification of how
to generate our random matrices to Section 4, but while
reading this section it may be convenient for the reader to
think of our random matrices as uniform random orthonor-
mal matrices. Our actual distribution choice is similar with
respect to the properties needed for the results in this section.
One notable parameter for our family of random matrices
is 6 > 0, which expresses how well they allow us to esti-
mate particular quantities with high probability. For both
our random matrices and uniform random orthonormal ma-
trices, d is 0(1 /V/dsketch)- We prove various results about
the properties of our random matrices in the supplementary
material.

We will use R with a subscript to denote such a random

matrix. Each subscript indicates a fresh draw of a matrix
from our distribution, so every R; is always equal to every
other 71 but Ry and R, are independent. Throughout
this section, we will assume that we have access to these
matrices when we are operating on a sketch to retrieve
information. In Section 4, we show how to recover these
matrices given enough samples.

3.3. The Sketching Mechanism

The basic building block of our sketching mechanism is the
tuple sketch, which we denote syple. As the name might
suggest, its purpose is to combine k sketches s, ..., s with
respective weights wy, ..., wi > 0 into a single sketch (for
proofs, we will assume that these weights sum to at most
one). In the case where the k sketches are input sketches,
these weights will be the importance weights from our net-
work. Otherwise, they will all be 1/k. Naturally, sketches
with higher weight can be recovered more precisely. The
tuple sketch is formally defined as follows. If their values
are obvious from context, we will omit wy, ..., wy from the
arguments to the tuple sketch. The tuple sketch is computed
as follows.”

k
Stuple(sh ooy Sk, W1, ,’LUk) = sz (I+2Ri) Si
1

1=
Note that [ is the identity matrix, and we will define a tuple
sketch of zero things to be the zero vector.

Each object @ is represented by a sketch, which naturally we
will refer to as an object sketch. We denote such a sketch as
Sobject- We want the sketch of object 6 to incorporate infor-
mation about the attributes of @ itself as well as information
about the inputs that produced it. Hence we also define two
subsketches for object §. The attribute subsketch, denoted
Sar» 18 @ sketch representation of object 6’s attributes. The
input subsketch, denoted sinput, is a sketch representation of
the inputs that produced object . These three sketches are
computed as follows.

I+R
Sobject(e) = (W) Stuple (Sattr(e)a Sinpul(9)7 %7 %)

Saur(0) = 5 Rar(0)170 + 5 Rar(6).261
Sinput(e) ‘= Stuple (Sobject(‘gl)a ) Sobject(ek); Wiy .-vy wk)
Note that e; in the attribute subsketch is the first standard ba-
sis vector; we will use it for frequency estimation as part of
our Summary Statistics property. Additionally, 61, ..., 0%
in the input sketch are the input objects for 6 and wy, ..., wg
are their importance weights from the network.

The overall sketch is just the output psuedo-object’s input

ZRather than taking a convex combination of (%) Si, one
might instead sample a few of them. Doing so would have reper-
cussions on the results in this section, swapping many bounds from
high probability to conditioning on their objects getting through.
However, it also makes it easier to do the dictionary learning in
Section 4.
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subsketch. It is worth noting that we do not choose to use
its object sketch.
Soverall = Sinput (OUtpUt pseudo-object)

We want to use this to (noisily) retrieve the information that
originally went into these sketches. We are now ready to
present our results for this sketching mechanism. Note that
we provide the technical machinery for proofs of the follow-
ing results in the supplementary material and we provide
the proofs themselves in the supplementary material. Our
techniques involve using an approximate version of isome-
try and reasoning about the repeated application of matrices
which satisfy our approximate isometry.

Our first result concerns Attribute Recovery (example use
case: roughly describe the cat that was in this room).

Theorem 1. Our sketch has the simplified Attribute Recov-
ery property, which is as follows. Consider an object 0* at
constant depth h(0*) with effective weight wgx.

(i) Suppose no other objects in the overall sketch are also
produced by M (0*). We can produce a vector estimate
of the attribute vector xg~, which with high probability
has at most O(§/wg+) Loo-error.

(ii) Suppose we know the sequence of input indices to get
to 0* in the sketch. Then even if other objects in the
overall sketch are produced by M (0*), we can still
produce a vector estimate of the attribute vector Ty,
which with high probability has at most O(6 /wg«) loo-
error.

As a reminder, /., error is just the maximum error over all
coordinates. Also, note that if we are trying to recover a
quantized attribute vector, then we may be able to recover
our attribute vector exactly when the quantization is larger
than our additive error. This next result concerns Sketch-
to-Sketch Similarity (example use case: judge how similar
two rooms are). We would like to stress that the output
psuedo-object does not count as an object for the purposes
of (i) or (ii) in the next result.

Theorem 2. Our sketch has the Sketch-to-Sketch Similar-
ity property, which is as follows. Suppose we have two
overall sketches s and 5.

(i) If the two sketches share no modules, then with high
probability they have at most O(6) dot-product.

(ii) If s has an object 6* of weight wg+ and s has an object
0* of weight wg~, both objects are produced by the
same module, and both objects are at constant depth
h(0*) then with high probability they have at least
Q(wg«wg. ) — O(6) dot-product.

(iii) If the two sketches are identical except that the at-
tributes of any object 0 differ by at most € in {5 dis-
tance, then with probability one the two sketches are
at most €/2 from each other in {5 distance.

Although our Sketch-to-Sketch Similarity result is framed

in terms of two overall sketches, the recursive nature of our
sketches makes it not too hard to see how it also applies to
any pair of sketches computed along the way.

This next result concerns Summary Statistics (example use
case: how many walls are in this room).

Theorem 3. Our sketch has the simplified Summary Statis-
tics property, which is as follows. Consider a module M*
which lies at constant depth h(M™), and suppose all the
objects produced by M™ has the same effective weight w*.

(i) Frequency Recovery. We can produce an estimate of
the number of objects produced by M*. With high
probability, our estimate has an additive error of at
most O(0 /w*).

(ii) Summed Attribute Recovery. We can produce a vector
estimate of the summed attribute vectors of the objects
produced by M*. With high probability, our estimate
has at most O(§ /w*) Loo-error.

Again, note that quantization may allow for exact recovery.
In this case, the number of objects is an integer and hence
can be recovered exactly when the additive error is less than
1/2. If we can recover the exact number of objects, we can
also estimate the mean attribute vector.

The supplementary material explains how to generalize our
sketch to incorporate signatures for the Object Signature
Recovery property and also explains how to generalize
these results to hold when part of the sketch is erased for
the Graceful Erasure property.

4. Learning Modular Deep Networks via
Dictionary Learning

In this section, we demonstrate that our sketches carry
enough information to learn the network used to produce
them. Specifically, we develop a method for training a new
network based on (input, output, sketch) triples obtained
from a teacher modular deep network. Our method is pow-
ered by a novel dictionary learning procedure. Loosely
speaking, dictionary learning tries to solve the following
problem. There is an unknown dictionary matrix R, whose
columns are typically referred to as atoms. There is also a
sequence of unknown sparse vectors z(*); we only observe
how they combine the atoms, i.e., {y*) = Rz(F}. We
want to use these observations 3(*) to recover the dictionary
matrix R and the original sparse vectors z().

While dictionary learning has been well-studied in the lit-
erature from both an applied and a theoretical standpoint,
our setup differs from known theoretical results in several
key aspects. The main complication is that since we want
to apply our dictionary learning procedure recursively, our
error in recovering the unknown vectors z(*) will become
noise on the observations y*) in the very next step. Note
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that classical dictionary learning can only recover the un-
known vectors z(*) up to permutation and coordinate-wise
sign. To do better, we will carefully engineer our distri-
bution of dictionary matrices R to allow us to infer the
permutation (between the columns of a matrix) and signs,
which is needed to recurse. Additionally, we want to allow
very general unknown vectors x(¥). Rather than assuming
sparsity, we instead make the weaker assumption that they
have bounded ¢5 norm. We also allow for distributions of
2(*®) which make it impossible to recover all columns of R;
we simply recover a subset of essential columns.

With this in mind, our desired dictionary learning result
is Theorem 4. We plan to apply this theorem with N as
thrice the maximum between the number of modules and
the number of objects in any communication graph, .S as the
number of samples necessary to learn a module, and H as
three times the depth of our modular network. Additionally,
we think of €; as the tolerable input ¢, error while e is
the desired output ¢, error after recursing H times.

Theorem 4. [Recursable Dictionary Learning] There ex-
ists a family of distributions {D(b, q, dskeren) } Which produce
Agkeren X dgkercn matrices satisfying the following. For any
positive integers N, S, positive constant H, positive real €y,
block size b > poly(log N, 10g dercn, 1/€mr), nonzero block
probability ¢ > poly(log N,10g dsercn, 1/ € )/ dskerchs
and dimension dgeer, > poly(1/ep,log N, log S), there ex-
ists:

e a base number of samples S where S < § < § -
poly(N),
e and a sequence of U, errors (0 <)e; < €9 < -+ <
er—1(< ex) with ep > poly(er),
such that the following is true. For any h € [H —
1], let S, = SN"=1. For any unknown vectors
aM xS e RdsweanXN with (5 at most O(1), if we
draw Ry, ..., Ry ~ D(dsern) and receive Sy noisy sam-
ples y*) = [R1Ry - -- Ry]z® + z§k) + 28 where each
ZYC) ’Zik) ‘ ’1 S O(\/ dsketch) (inde'

pendent of our random matrices) and each zg(,lg) € Rwan jg

€ Rk jg poise with

noise with Hzé]é) ‘ ‘ < €y, (also independent of our random
oo

matrices), then there is an algorithm which takes as input h,
y D, .., y ), runs in time poly(Sh, dsere), and with high
probability outputs ]%1, ey I:{N, AN LY satisfying the
Sollowing for some permutation 7 of [N|:

e for every i € [N| and j € [dgercn), if there exists

* k*
k* € [Sh] such that xéil)dmhﬂ

jth column of Rﬂ(i) is 0.2deren, in Hamming distance
from the j'" column of R;.
o for every k € [Sh],i €

(k) (k)
L (i)~ Ddgarents — L (i—1)dygerent3

’ > €p1 then the

[N],j €

‘ < €ht1

[dsketch ] s

4.1. Recursable Dictionary Learning Implies Network
Learnability

We want to use Theorem 4 to learn a teacher modular deep
network, but we need to first address an important issue. So
far, we have not specified how the deep modular network
decides upon its input-dependent communication graph. As
a result, the derivation of the communication graph cannot
be learned (it’s possibly an uncomputable function!). When
the communication graph is a fixed tree (always the same
arrangement of objects but with different attributes), we can
learn it. Note that any fixed communication graph can be
expanded into a tree; doing so is equivalent to not re-using
computation. Regardless of the communication graph, we
can learn the input/output behavior of each module regard-
less of whether the communication graph is fixed.

Theorem 5. If the teacher deep modular network has con-
stant depth, then any module M* which satisfies the follow-
ing two properties:

e (Robust Module Learnability) The module is learnable
Sfrom (o = poly(N)) input/output training pairs which
have been corrupted by {, error at most a constant
e> 0.

o (Sufficient Weight) In a (ﬂ = m) -fraction of the
inputs, the module produces an object and all of the
input objects to that object have effective weight at
least w.

can, with high probability, be learned from poly(N) overall
sketches of dimension poly(1/w,1/€)log® N.

Suppose we additionally know that the communication

graph is a fixed tree. We can identify the sub-graph of ob-

Jjects which each have effective weight wina | 8 = m -

fraction of the inputs.

Theorem 5 is proved in the supplementary material. The
main idea is to just repeatedly apply our recursable dictio-
nary learning algorithm and keep track of which vectors
correspond to sketches and which vectors are garbage.

4.2. Recursable Dictionary Learning: Proof Outline

The main idea of our recursable dictionary learning algo-
rithm is the following. The algorithm proceeds by iteratively
examining each of the dgeich/b blocks of each of the S re-
ceived samples. For the /th block of the ith sample, denoted
by ¥y [(£—1)b+1 : £b+1], it tries to determine whether it is
dominated by the contribution of a single (o5, 0, ., ) (and
is not composed of the superposition of more than one of
these). To do so, it first normalizes this block by its ¢1-norm
and checks if the result is close to a point on the Boolean hy-
percube in ¢, distance. If so, it rounds (the /;-normalized
version of) this block to the hypercube; we here denote the
resulting rounded vector by R(y@[(¢ — 1)b+1: £b+1]).
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{ blocks, each with b entries

Figure 2. Example block-random matrix from distribution
D(b, q, dsketch)- O = dsketcn/b denotes the number of blocks.

We then count the number of blocks ¢’ € [dkercn/b] Whose
rounding R(y[(¢' — 1)b+ 1: ¢'b+ 1]) is close in Ham-
ming distance to R(yW[(£ — 1)b+1: £b+ 1]). If there
are at least 0.8qdskercn Of these, we add the rounded block
R(yWD[(€ —1)b+1: £b+ 1]) to our collection (if it’s not
close to an already added vector). Finally, we cluster the
added blocks in terms of their matrix signatures o, in order
to associate each of them to one of the matrices Ry, ..., Ry.
Using the matrix signatures as well as the column signatures
{o.} allows us to recover all the essential columns of the
original matrices. The absolute values of the x coordinates
can also be inferred by adding the ¢;-norm of a block when
adding its rounding to the collection. The signs of the x
coordinates can also be inferred by first inferring the true
sign of the block and comparing it to the sign of the vector
whose rounding was added to the collection.

4.3. The Block-Sparse Distribution D

We are now ready to define our distribution D on random
(square) matrices R. It has the following parameters:

e The block size b € Z* which must be a multiple of 3
and at least 3max([logy N, [logy dsketch | + 3)-

e The block sampling probability g € [0, 1]; this is the
probability that a block is nonzero.

e The number of rows/columns dgeich € Z . It must be
a multiple of b, as each column is made out of blocks.

Each column of our matrix is split into dgkeich /b blocks of
size b. Each block contains three sub-blocks: a random
string, the matrix signature, and the column signature. To
specify the column signature, we define an encoding proce-
dure Enc which maps two bits b,,,, bs and the column index
into a (b/3)-length sequence. Enc : {#1}? X [dsetcn] —
{£ \/dicThq}b/ 3, which is presented as Algorithm 1. These
two bits encode the parity of the other two sub-blocks, which
will aid our dictionary learning procedure in recovery of the
correct signs. The sampling algorithm which describes our
distribution is presented as Algorithm 2.

Algorithm 1 Enc(j, by,,, bs)
1: Input: Column index j € [dsetch], tWO bits by, bs €

{£1},.
2: Output: A vector o, € {£

1 } b/3
Vdsketchq :

3: Set o, to be the (zero-one) binary representation of 7 — 1
(a [logy dsketen |-dimensional vector).

4: Replace each zero in o, with —1 and each one in o with
+1.

5: Prepend o, with a +1, making it a ([logs dsketcn | + 1)-
dimensional vector.

6: Append o, with (b,,bs), making it a
([logy dsketen | + 3)-dimensional vector.

7: Append o, with enough +1 entries to make it
a (b/3)-dimensional vector.  Note that b >
3 ( ’—1052 dsketch-l + 3)~

8: Divide each entry of o by v/dsketchq-

9: return o..

Algorithm 2 D(b, q, dsetch)

1: Input: Block size b € Z™T, block sampling probability
q € [0, 1], number of rows/columns dgke(ch-
2: Output: A matrix R € R%teenX dsien,

3: Initialize R to be the all-zeros R%keen X dseen matrix.
4: Sample a “matrix signature” vector o, from the uni-

i 1 b/3
form distribution over {+ m} .

5: for column j € [decn] do

6:  Sample a “random string” vector o, ; from the uni-
: it 1 b/3
form distribution over {+ \/m} .
7: for block i € [dkercn /] do

8: Sample three coin flips fyn i 5, fs,i,5, fe,i,; as inde-
pendent Rademacher random variables (i.e. uni-
form over {£1}).

9: Compute two bits f;, ; i = fm,i; - sign(om[1])
and f; ; ;= fs,,58 - sign(os j[1]).

10: Compute a “column signature” vector o, ;; =
Enc(j, frni g fiig)-

11: Sample 7); ; to be a (zero-one) Bernoulli random
variable which is one with probability q.

12: if Nij = 1 then

13: Set Rb(i — 1)+ 1 : bi+ 1,j] tobe fs;; -

0s,; concatenated with f. ; ;-0 ; ; concatenated
with fmﬂ}j cOm-

14: end if
15:  end for
16: end for

17: return R.
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