
An Instability in Variational Inference for Topic Models

Behrooz Ghorbani 1 Hamid Javadi 2 Andrea Montanari 1 3

Abstract
Naive mean field variational methods are the state-
of-the-art approach to inference in topic models.
We show that these methods suffer from an in-
stability that can produce misleading conclusions.
Namely, for certain regimes of the model parame-
ters, variational inference outputs a non-trivial de-
composition into topics. However -–for the same
parameter values-– the data contain no actual in-
formation about the true topic decomposition, and
the output of the algorithm is uncorrelated with
it. In particular, the estimated posterior mean
is wrong, and estimated credible regions do not
achieve the nominal coverage. We discuss how
this instability is remedied by more accurate mean
field approximations.

1. Introduction
Topic modeling (Blei, 2012) aims at extracting the la-
tent structure from a corpus of documents (images or
texts), that are represented as vectors x1,x2, . . . ,xn ∈
Rd. The key assumption is that the n documents are
(approximately) convex combinations of a small number
k of topics h̃1, . . . , h̃k ∈ Rd. Conditional on the top-
ics, documents are generated independently by letting
xa = (

√
β/d)

∑k
`=1 wa,`h̃` + za, where the weights

wa = (wa,`)1≤`≤k and noise vectors za are i.i.d. across
a ∈ {1, . . . , n}. The coefficient β ≥ 0 can be interpreted
as a signal-to-noise ratio. It is also useful to introduce the
matrixX ∈ Rn×d whose i-th row is xi, and therefore

X =

√
β

d
WHT +Z , (1.1)

where W ∈ Rn×k and H ∈ Rd×k. The a-th row of W ,
is the vector of weights wa, while the rows of H will be
denoted by hi ∈ Rk.
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Note thatwa belongs to the simplex P1(k) = {w ∈ Rk≥0 :
〈w,1k〉 = 1}. It is common to assume that its prior is
Dirichlet: this class of models is known as Latent Dirich-
let Allocations, or LDA (Blei et al., 2003). Here we will
consider a symmetric Dirichlet prior, with all parameters
equal to ν (which we will denote by Dir(ν; k)). As for the
topics H , their prior distribution depends on the specific
application. here we will consider two simple examples:
in the Gaussian case, we assume (h̃i)i≤d ∼iid N(0, Ik);
in the Dirichlet case (h̃i)i≤d ∼iid Dir(ν̃; k). Most of our
discussion and explicit formulas will refer for simplicity
to the Gaussian case. However, we derived analogous ex-
pressions for the Dirichlet model, and will compare with
numerical simulations carried out under both distributions.
Our methodology is indeed general. Finally, Z will be a
noise matrix with entries (Zij)i∈[n],j∈[d] ∼iid N(0, 1/d).

In fully Bayesian topic models, the parameters of the Dirich-
let distribution, as well as the topic distributions are them-
selves unknown and to be learned from data. Here we will
work in an idealized setting in which they are known. We
will also assume that data are in fact distributed according
to the postulated generative model. Since we are studying
the limitations of current approaches, our main point is only
reinforced by assuming this idealized scenario.

Computing the posterior distribution of H , W given the
dataX is computationally challenging. Since the seminal
work of Blei, Ng and Jordan (Blei et al., 2003), variational
inference is the method of choice for addressing this prob-
lem within topic models. The term ‘variational inference’
refers to a broad class of methods that aim at approximat-
ing the posterior computation by solving an optimization
problem, see (Jordan et al., 1999; Wainwright et al., 2008;
Blei et al., 2017) for background. A popular starting point
is the Gibbs variational principle, namely the fact that the
posterior solves the following convex optimization problem:

pW ,H|X( · , ·, |X) = arg min
q∈Pn,d,k

KL(q‖pW ,H|X) (1.2)

where KL( · ‖ · ) denotes the Kullback-Leibler divergence.
Optimization is within the space Pn,d,k of probability mea-
sures onH,W .

Even forW ,H discrete, the Gibbs principle has exponen-
tially many decision variables. Variational methods differ
in the way the problem (1.2) is approximated. The main
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approach within topic modeling is naive mean field, which
restricts the optimization problem to the space of probability
measures that factorize over the rows ofW ,H:

q̂ (W ,H) =

d∏
i=1

qi (hi)

n∏
a=1

q̃a (wa) . (1.3)

By a suitable parametrization of the marginals qi, q̃a, this
leads to an optimization problem of dimensionO((n+d)k),
cf. Section 3. Despite being non-convex, this problem is sep-
arately convex in the (qi)i≤d and (q̃a)a≤n, which naturally
suggests the use of an alternating minimization algorithm
which has been successfully deployed in a broad range of
applications ranging from computer vision to genetics (Fei-
Fei & Perona, 2005; Wang & Blei, 2011; Raj et al., 2014).
We will refer to this as to the naive mean field iteration.
Following a common use in the topics models literature, we
will use the terms ‘variational inference’ and ‘naive mean
field’ interchangeably.

The main result of this paper is that naive mean field
presents an instability for learning Latent Dirichlet Allo-
cations. We focus on the limit n, d → ∞ with n/d = δ
fixed. Hence, an LDA distribution is determined by the
parameters (k, δ, ν, β). We will show that there are regions
in this parameter space such that the following two findings
hold simultaneously:

No non-trivial estimator. Any estimator Ĥ , Ŵ of the
topic or weight matrices is asymptotically uncorrelated with
the real model parametersH,W . In other words, the data
do not contain enough signal to perform any strong infer-
ence.

Variational inference is randomly biased. Given the
above, one would hope the Bayesian posterior to be centered
on an unbiased estimate. In particular, p(wa|X) (the poste-
rior distribution over weights of document a) should be cen-
tered around the uniform distributionwa = (1/k, . . . , 1/k).
In contrast, we will show that the posterior produced by
naive mean field is centered around a random distribution
that is uncorrelated with the actual weights. Similarly, the
posterior over topic vectors is centered around random vec-
tors uncorrelated with the true topics.

One key argument in support of Bayesian methods is the
hope that they provide a measure of uncertainty of the esti-
mated variables. In view of this, the failure just described
is particularly dangerous because it suggests some mea-
sure of certainty, although the estimates are essentially ran-
dom. While the limitation of variational methods have been
pointed out in the past, ours is the first case in which such
an inconsistency is estcabilished rigorously in topic models.

Is there a way to eliminate this instability by using a better
mean field approximation? We show that a promising ap-
proach is provided by a classical idea in statistical physics,

the Thouless-Anderson-Palmer (TAP) free energy (Thouless
et al., 1977; Opper & Winther, 2001).

Variational inference via the TAP free energy. We show
that the instability of naive mean field is remedied by using
the TAP free energy instead of the naive mean field free en-
ergy. The latter can be optimized using an iterative scheme
that is analogous to the naive mean field iteration and is
known as approximate message passing (AMP).

The rest of the paper is organized as follows. Section 2
discusses a simpler example, Z2-synchronization, which
shares important features with latent Dirichlet allocations.
Since calculations are fairly straightforward, this example
allows to explain the main mathematical points in a simple
context. We then present our main results about instability
of naive mean field in Section 3, and discuss the use of
TAP free energy to overcome the instability in Section 4.
As mentioned above, all formal statements will refer to the
Gaussian case, although we obtained analogous results for
the Dirichlet case. The corresponding theoretical predictions
will be compared with numerical results in the plots. Proofs
will be deferred to the Supplementary Material (SM), which
also contain further numerical illustrations and technical
results.

1.1. Related Literature

Over the last fifteen years, topic models have been gener-
alized to cover an impressive number of applications, in-
cluding mixed membership models (Erosheva et al., 2004;
Airoldi et al., 2008), dynamic topic models (Blei & Lafferty,
2006b), correlated topic models (Blei & Lafferty, 2006a;
Blei et al., 2007), spatial LDA (Wang & Grimson, 2008), re-
lational topic models (Chang & Blei, 2009), Bayesian tensor
models (Zhou et al., 2015). While other approaches have
been used (e.g. Gibbs sampling), variational algorithms
allow to leverage advances in optimization algorithms and
architectures towards the goal of variational inference (Hoff-
man et al., 2010; Broderick et al., 2013).

Despite this broad empirical success, little is rigorously
known about the accuracy of variational inference in con-
crete statistical problems. Wang and Titterington (Wang
& Titterington, 2004; Wang et al., 2006) studied the miss-
ing data and Gaussian mixture models. In the context of
Gaussian mixtures, the same authors prove that the covari-
ance of the variational posterior is asymptotically smaller
(in the positive semidefinite order) than the inverse of the
Fisher information matrix (Wang & Titterington, 2005) (see
also (Giordano et al., 2015)). All of these results are es-
tablished in the classical large sample asymptotics n→∞
with d fixed. In the present paper we focus instead on the
high-dimensional limit n = Θ(d) and prove that also the
mode (or mean) of the variational posterior is incorrect.
The high-dimensional regime is particularly relevant for
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the analysis of Bayesian methods. Indeed, in the classical
low-dimensional asymptotics Bayesian approaches do not
outperform maximum likelihood.

Naive mean field variational inference was used in (Celisse
et al., 2012; Bickel et al., 2013) to estimate the parameters
of the stochastic block model. The recent paper (Zhang &
Zhou, 2017) also studies variational inference in the con-
text of the stochastic block model. The work of (Celisse
et al., 2012; Bickel et al., 2013; Zhang & Zhou, 2017) es-
tablishes positive results at large signal-to-noise ratio (albeit
for a different model), while we prove inconsistency at low
signal-to-noise ratio. General conditions for consistency
of variational Bayes methods are proposed in (Pati et al.,
2017).

Our work also builds on recent theoretical advances in
high-dimensional low-rank models, that were mainly driven
by techniques from mathematical statistical physics (more
specifically, spin glass theory). An incomplete list of rel-
evant references includes (Korada & Macris, 2009; Desh-
pande & Montanari, 2014; Deshpande et al., 2016; Krzakala
et al., 2016; Barbier et al., 2016; Lelarge & Miolane, 2016;
Miolane, 2017; Lesieur et al., 2017; Alaoui & Krzakala,
2018). These papers prove asymptotically exact character-
izations of the Bayes optimal estimation error in low-rank
models, to an increasing degree of generality, under the high-
dimensional scaling n, d→∞ with n/d→ δ ∈ (0,∞).

Related ideas also suggest an iterative algorithm for
Bayesian estimation, namely Bayes Approximate Message
Passing (Donoho et al., 2009; 2010). As mentioned above,
Bayes AMP can be regarded as minimizing a different vari-
ational approximation known as the TAP free energy. An
important advantage over naive mean field is that AMP can
be rigorously analyzed using a method known as state evo-
lution (Bayati & Montanari, 2011; Javanmard & Montanari,
2013; Berthier et al., 2017).

1.2. Notations

We denote by Im the identity matrix, and by Jm the all-
ones matrix in m dimensions. We use 1k ∈ Rk for the
all-ones vector. We will use ⊗ for the tensor (outer) product.
In particular, given vectors expressed in the canonical basis
as u =

∑d1
i=1 uiei ∈ Rd1 and v =

∑d2
i=j vjej ∈ Rd2 ,

u ⊗ v ∈ Rd1 ⊗ Rd2 is the tensor with coordinates (u ⊗
v)ij = uivj in the basis ei ⊗ ej . We will identify the
space of matrices Rd1×d2 with the tensor product Rd1 ⊗
Rd2 . Given a symmetric matrix M ∈ Rn×n, we denote
by λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) its eigenvalues in
decreasing order. For a matrix (or vector) A ∈ Rd×n we
denote the orthogonal projector onto the subspace spanned
by the columns of A by PA ∈ Rd×d, and its orthogonal
complement by P⊥A = Id − PA. When the subscript is

omitted, it is understood that P = 1d1d/d and P⊥ =
Id − P .

2. A Toy Example: Z2-Synchronization
Before passing to the main results, it is useful to present
the main ideas on a toy example. In Z2 synchronization we
are interested in estimating a vector σ ∈ {+1,−1}n from
observationsX ∈ Rn×n, generated according to

X =
λ

n
σσT +Z , (2.1)

whereZ = ZT ∈ Rn×n is a noise matrix from the Gaussian
Orthogonal Ensemble GOE(n), namely (Zij)i<j≤n ∼iid
N(0, 1/n) are independent of (Zii)i≤n ∼iid N(0, 2/n).
The parameter λ ≥ 0 corresponds to the signal-to-noise
ratio.

It is known that for λ ≤ 1 no algorithm can estimate σ
from dataX with positive correlation in the limit n→∞.
The following is an immediate consequence of (Korada &
Macris, 2009; Deshpande et al., 2016), see Supplementary
Material (SM).

Lemma 2.1. Under model (2.1), for λ ≤ 1 and any esti-
mator σ̂ : Rn×n → Rn \ {0}, the following limit holds in
probability:

lim sup
n→∞

|〈σ̂(X),σ〉|
‖σ̂(X)‖2‖σ‖2

= 0 . (2.2)

How does variational inference perform on this prob-
lem? Any product probability distribution q̂(σ) =∏n
i=1 qi(σi) can be parametrized by the means mi =∑
σi∈{+1,−1} qi(σi)σi, and it is immediate to get

KL(q̂‖pσ|X) = F(m) + const., where

F(m) ≡ −λ
2
〈m,X0m〉 −

n∑
i=1

h(mi) . (2.3)

HereX0 is obtained fromX by setting the diagonal entries
to 0, and h(x) = − (1+x)

2 log (1+x)
2 − (1−x)

2 log (1−x)
2 is the

binary entropy function. In view of Lemma 2.1, the correct
posterior distribution should be essentially uniform, result-
ing in m vanishing. Indeed, m∗ = 0 is a stationary point
of the mean field free energy F(m): ∇F(m)|m=m∗

= 0.
We refer to this as the ‘uninformative fixed point’.

Is m∗ a local minimum? Computing the Hessian at the
uninformative fixed point yields

∇2F(m)
∣∣
m=m∗

= −λX0 + I . (2.4)

The matrixX0 is a rank-one deformation of a Wigner matrix
and its spectrum is well understood (Baik et al., 2005; Féral
& Péché, 2007; Benaych-Georges & Nadakuditi, 2011). For
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λ ≤ 1, its eigenvalues are contained with high probability in
the interval [−2, 2], with λmin(X) → −2, λmax(X) → 2
as n → ∞. For λ > 1, λmax(X) → λ + λ−1, while the
other eigenvalues are contained in [−2, 2]. This implies

lim
n→∞

λmin(∇2F
∣∣
m∗

) =

{
1− 2λ if λ ≤ 1,
−λ2 if λ > 1.

(2.5)

In other words, m∗ = 0 is a local minimum for λ < 1/2,
but becomes a saddle point for λ > 1/2. In particular, for
λ ∈ (1/2, 1), variational inference will produce an estimate
m̂ 6= 0, although the posterior should be essentially uni-
form. In fact, it is possible to make this conclusion more
quantitative. In the Supplementary Material we prove that
any local minimum m̂ has norm ‖m̂‖22 ≥ c0n, with high
probability.

The above mathematical phenomenon implies that naive
mean field leads to incorrect inferential statements for
λ ∈ (1/2, 1). In order to formalize this point, given any
estimators {q̂i( · )}i≤n of the posterior marginals, we define
the per-coordinate expected coverage as

Q(q̂) =
1

n

n∑
i=1

P
(
σi = arg max

τi∈{+1,−1}
q̂i(τi)

)
. (2.6)

This is the expected fraction of coordinates that are esti-
mated correctly by choosing σ according to the estimated
posterior. On the other hand, if the q̂i were accurate,
Bayesian theory would suggest claiming the coverage

Q̂(q̂) ≡ 1

n

∑
i≤n

max
τi

q̂i(τi) . (2.7)

The following result shows that mean field overestimates
the coverage achieved.

Theorem 1. Let m̂ ∈ [−1, 1]n be any local minimum of the
mean field free energy F(m), under the Z2-synchronization
model (2.1), and consider the corresponding posterior
marginal estimates q̂i(σi) = (1 + m̂iσi)/2. Then, there
exists a numerical constant c0 > 0 such that, with high
probability, for λ ∈ (1/2, 1),

Q(q̂) ≤ 1

2
+ on(1) , Q̂(q̂) ≥ 1

2
+ c0 min

(
(2λ− 1), 1

)
.

3. Instability for Topic Models
3.1. Information-Theoretic Limit

As in the case of Z2 synchronization discussed in Section 2,
we expect it to be impossible to estimate the factorsW ,H
with strictly positive correlation for small enough signal-to-
noise ratio β (or small enough sample size δ). The exact
threshold was characterized recently in (Miolane, 2017)
(but see also (Deshpande & Montanari, 2014; Barbier et al.,

2016; Lelarge & Miolane, 2016; Lesieur et al., 2017) for
closely related results). The characterization in (Miolane,
2017) is given in terms of a variational principle over k × k
matrices.

Theorem 2 (Special case of (Miolane, 2017)). Let
In(X;W ,H) denote the mutual information between the
dataX and the factorsH,W under the LDA model (1.1).
Then, the following limit holds almost surely

lim
n,d→∞

1

d
In(X;W ,H) = inf

M∈Sk
RS(M ; k, δ, ν) , (3.1)

where Sk is the cone of k × k positive semidefinite matrices
and RS( · · · ) is a function given explicitly in SM.

It is also shown in SM thatM∗ = (δβ/k2)Jk is a stationary
point of the free energy RS(M ; k, δ, ν). We shall refer to
M∗ as the uninformative point. Let βBayes = βBayes(k, δ, ν)
be the supremum value of β such that the infimum in
Eq. (3.1) is uniquely achieved at M∗ (namely, the supre-
mum β such that RS(M ; k, δ, ν) > RS(M∗; k, δ, ν) for all
M 6= M∗.

As formalized below, for β < βBayes the data X do not
contain sufficient information for estimating H , W in a
non-trivial manner.

Proposition 3.1. Let M∗ = δβJk/k
2. Then M∗ is a

stationary point of the function M 7→ RS(M ;β, k, δ, ν).
Further, it is a local minimum provided β < βspect(k, δ, ν)
where the spectral threshold is given by βspect ≡ k(kν +

1)/
√
δ.

Finally, if β < βBayes(k, δ, ν), there is no estimator
X 7→ F̂ n(X) whose mean square error E

{∥∥WHT −
F̂ n(X)

∥∥2
F

}
is asymptotically smaller than the mean square

error of the trivial estimator F̂ n(X) = c1n(XT1n)T, for
c ≡
√
β/(k + βδ) a constant.

This result compares the mean square error of an arbitrary
estimator F̂ n, to the mean square error of the trivial esti-
mator that replaces each column of X by its average. Of
course, βBayes ≤ βspect. However, this upper bound appears
to be tight for small k.

Remark 3.1. Solving numerically the k(k + 1)/2-
dimensional problem (3.1) indicates that βBayes(k, ν, δ) =
βspect(k, ν, δ) for k ∈ {2, 3} and ν = 1.

3.2. Naive Mean Field Free Energy

We consider a trial joint distribution that factorizes accord-
ing to rows ofW andH according to Eq. (1.3). It turns out
(see SM) that, for any stationary point of KL(q̂‖pH,W |X)
over such product distributions, the marginals take the form

qi(h) = e〈mi,h〉− 1
2 〈h,Qih〉−φ(mi,Qi)q0 (h) , (3.2)
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where q0( · ) is the prior distribution of hi (the i-th row
of H), and φ : Rk × Rk×k → R is defined implicitly
by the normalization condition

∫
qi(dhi) = 1. A simi-

lar form holds for q̃a(w), with parameters m̃a, Q̃a, and
normalization factor φ̃(m̃a, Q̃a). In the following we let
m = (mi)i≤d, m̃ = (m̃a)a≤n denote the set of param-
eters in these distributions; these can also be viewed as
matricesm ∈ Rd×k and m̃ ∈ Rd×k whose i-th row ismi

(in the former case) or m̃i (in the latter).

It is useful to define the functions F, F̃ : Rk × Rk×k →
Rk and G, G̃ : Rk × Rk×k → Rk×k as (proportional to)
expectations with respect to the approximate posteriors (3.2)

F(mi;Q) ≡
√
β

∫
h qi(dh) , (3.3)

G(mi;Q) ≡ β
∫
h⊗2 qi(dh) . (3.4)

Similarly F̃(m̃a; Q̃), G̃(m̃a; Q̃) will denote the first and
second moments of q̃a(w). For m ∈ Rd×k, we overload
the notation and denote by F(m;Q) ∈ Rd×k the matrix
whose i-th row is F(mi;Q) (and similarly for F̃(m̃; Q̃)).

When restricted to a product-form ansatz with parametriza-
tion (3.2), the mean field free energy takes the form (see
SM) KL(q̂‖pW ,H|X) = F(r, r̃,Ω, Ω̃) + d‖X‖2F /2 +
log pX(X), where

F(r, r̃,Ω, Ω̃) =

d∑
i=1

ψ∗(ri,Ωi) +

n∑
a=1

ψ̃∗(r̃a, Ω̃)

−
√
βTr

(
Xrr̃T

)
+

β

2d

d∑
i=1

n∑
a=1

〈Ωi, Ω̃a〉 , (3.5)

and ψ∗, ψ̃∗ are the Legendre duals of φ, φ̃, e.g.

ψ∗(r,Ω) ≡ sup
m,Q

{
〈r,m〉 − 1

2
〈Ω,Q〉 − φ(m,Q)

}
.

This equation implies a convex duality relation between
(r, r̃,Ω, Ω̃) and (m, m̃,Q, Q̃). Namely

ri ≡
1√
β
F(mi;Q) , Ωi ≡ 1

β
G(mi;Q) , (3.6)

and similarly for r̃a, Ω̃a and m̃a, Q̃a. By strict convexity of
φ(m,Q), φ̃(m̃, Q̃) (the latter is strongly convex on the hy-
perplane 〈1, m̃〉 = 0, 〈1, Q̃1〉 = 0) we can view F(· · · ) as
a function of (r, r̃,Ω, Ω̃) or (m, m̃,Q, Q̃). With an abuse
of notation, we will writeF(r, r̃,Ω, Ω̃) orF(m, m̃,Q, Q̃)
interchangeably.

A critical (stationary) point of the free energy (3.5) is a
point at which ∇F(m, m̃,Q, Q̃) = 0. It turns out that the
mean field free energy always admits a point that does not

distinguish between the k latent factors, and in particular
m = v1T

k , m̃ = ṽ1T
k , as stated in detail below. We will

refer to this as the uninformative critical point (or uninfor-
mative fixed point).
Lemma 3.2. The naive mean field free energy of Eq. (3.5)
admits a stationary point whereby, for all i ∈ [d], a ∈ [n],

m∗i =

√
β

k
(XT1n)i 1k , (3.7)

m̃∗a =
β

k(1 + q∗1 + kq∗2)
(XXT1n)a 1k , (3.8)

and further Q=
i q
∗
1Ik + q∗2Jk, Q̃

∗
a = q̃∗1Ik + q̃∗2Jk. The

parameters q∗i , q̃
∗
i are explicitly given in the Supplementary

Material.

We note that there appear always to be a unique stationary
point of the form given by this lemma. Although we do not
have a proof of uniqueness, in the SM we prove that the
solution is unique conditional on a certain inequality that
can be easily checked numerically.

3.3. Naive Mean Field Iteration

As mentioned in the introduction, the variational approxima-
tion of the free energy is often minimized by alternating min-
imization over the marginals (qi)i≤d, (q̃a)a≤n of Eq. (1.3).
Using the parametrization (3.2), we obtain the following
naive mean field iteration formt, m̃t,Qt, Q̃

t
(see SM):

mt+1 = XT F̃(m̃t; Q̃
t
) , Qt+1 =

1

d

n∑
a=1

G̃(m̃t
a; Q̃

t
) ,

m̃t = X F(mt;Qt) , Q̃
t

=
1

d

d∑
i=1

G(mt
i;Q

t) .

Note that, while the free energy naturally depends on the
(Qi)i≤d, (Q̃a)a≤n, the iteration sets Qt

i = Qt, Q̃
t

a = Q̃
t
,

independent of the indices i, a. In fact, any stationary point
of F(m, m̃,Q, Q̃) can be shown to be of this form.

The state of the naive mean field iteration is given by the pair
(mt,Qt) ∈ Rd×k × Rk×k, and (m̃t, Q̃

t
) can be viewed

as derived variables. The iteration hence defines a map-
ping MX : Rd×k × Rk×k → Rd×k × Rk×k, and we
can write it in the form (mt+1,Qt+1) = MX(mt,Qt).
Any critical point of the free energy (3.5) is a fixed point
of the naive mean field iteration and vice-versa, as shown
in the SM. In particular, the uninformative critical point
(m∗, m̃∗,Q∗, Q̃

∗
) is a fixed point of the naive mean field

iteration.

3.4. Instability

In view of Section 3.1, for β < βBayes(k, δ, ν), the real
posterior should be centered around a point symmetric under
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permutations of the topics. In particular, the posterior q̃(wa)
over the weights of document a should be centered around
the symmetric distribution wa = (1/k, . . . , 1/k).

A minimum consistency condition for variational inference
is that the uninformative stationary point is a local minimum
of the posterior for β < βBayes. The next theorem provides a
necessary condition for stability of the uninformative point,
which we expect to be tight. As discussed below, it implies
that this point is a saddle in an interval of β below βBayes.
We recall that the index of a smooth function f at stationary
point x∗ is the number of the negative eigenvalues of the
Hessian∇2f(x∗).

Theorem 3. Define q∗1 , q∗2 as in Lemma 3.2, and let

L(β, k, δ, ν) ≡ β(1 +
√
δ)2

1 + q∗1

(
q∗1
δβ

+ k

[
q∗2

1 + q∗1 + kq∗2

(
1

δβ
+

1

k

)
− 1

k2

]
+

)
.

If L(β, k, δ, ν) > 1, then there exists ε1, ε2 > 0
such that the uninformative critical point of Lemma 3.2,
(m∗, m̃∗,Q∗, Q̃

∗
) is, with high probability, a saddle point,

with index at least nε1 and λmin(F|m∗,m̃∗,Q∗,Q̃
∗) ≤ −ε2.

Correspondingly (m∗,Q∗) is an unstable critical point of
the mapping MX in the sense that the Jacobian DMX

has spectral radius larger than one at (m∗,Q∗).

Remark 3.2. We established an analogous instability phase
transition for the Dirichlet case. The corresponding predic-
tion is reported in Figure 3. Explicit formulas are reported
in the SM.

In the following, we will say that a fixed point (m∗,Q∗)
is stable if the linearization of MX( · ) at (m∗,Q∗) (i.e.
the Jacobian matrix DMX(m∗,Q∗)) has spectral radius
smaller than one. By the Hartman-Grobman linearization
theorem (Perko, 2013), this implies that (m∗,Q∗) is an
attractive fixed point. Vice-versa, we say that (m∗,Q∗)
is unstable if the Jacobian DMX(m∗,Q∗) has spectral
radius larger than one. In this case, for any neighborhood of
(m∗,Q∗), and a generic initialization in that neighborhood,
(mt,Qt) does not converge to the fixed point.

Motivated by Theorem 3, we define the instability thresh-
old βinst = βinst(k, δ, ν) as the infimum β ≥ 0 such that
L(β, k, δ, ν) > 1. Let us emphasize that, while we discuss
the consequences of the instability at βinst on the naive mean
field iteration, this is a problem of the variational free energy
(3.5) and not of the specific optimization algorithm.

3.5. Numerical Results for Naive Mean Field

In order to investigate the impact of the instability described
above, we carried out extensive numerical simulations with
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Figure 1. Normalized distances V(Ĥ), V(Ŵ ) of the naive mean
field estimates from the uninformative fixed point. Here k = 2,
d = 1000 and n = dδ: each data point corresponds to an average
over 400 random realizations.

the naive mean field iteration. After any number of iterations
t, estimates of the factorsH ,W are obtained by computing
expectations with respect to the marginals (3.2). This results
in

Ĥ
t

= rt =
1√
β
F(mt;Qt) , Ŵ

t
= r̃t =

1√
β
F̃(m̃t; Q̃t) .

We select a two-dimensional grid of (δ, β)’s and generate
400 different instances according to the LDA model for
each grid point. We report various statistics of the estimates
aggregated over the 400 instances. We have performed the
simulations for ν = ν̃ = 1 and k ∈ {2, 3}, both for the
Gaussian and the Dirichlet models. For space considera-
tions, we focus here on the case ν = 1, k = 2, and discuss
other results in the SM. (Simulations for other values of ν
also yield similar results.)

We initialize the naive mean field iteration near the uninfor-
mative fixed-point and iterate until a convergence criterion
or the maximum number of 300 iterations is reached.

Recall the definition P⊥ = Ik−1k1
T
k/k. In order to inves-

tigate the instability of Theorem 3, we define the quantities

V(Ŵ ) ≡ 1√
n
‖ŴP⊥‖F , V(Ĥ) ≡ 1√

d
‖ĤP⊥‖F

In Figure 1 we plot empirical results for the average V(Ŵ ),
V(Ĥ) for k = 2, ν = 1 and four values of δ, within the
Gaussian model. In Figure 2 (left frame), we plot the em-
pirical probability that variational inference does not con-
verge to the uninformative fixed point or, more precisely,
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P̂(V(Ŵ ) ≥ ε0) with ε0 = 10−4, evaluated on a grid of
(β, δ) values, for the same model. We also plot the Bayes
threshold βBayes (which numerically coincides with the spec-
tral threshold βspect) and the instability βinst.

It is clear from Figures 1, 2 (left frame), that variational
inference stops converging to the uninformative fixed point
(although we initialize close to it) when β is still signif-
icantly smaller than the Bayes threshold βBayes (i.e. in a
regime in which the uninformative fixed point would a rea-
sonable output). The data are consistent with the hypothesis
that variational inference becomes unstable at βinst, as pre-
dicted by Theorem 3.
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Figure 2. Gaussian model. Left frame: Empirical fraction of in-
stances such that V(Ŵ ) ≥ ε0 = 10−4, where Ŵ is the naive
mean field estimate. Here k = 2, d = 1000 and, for each (δ, β)
point on a grid, we used 400 random realizations to estimate the
probability of V(Ŵ ) ≥ ε0. Right frame: Binder cumulant for
the correlation between the naive mean field estimate Ŵ , and the
true weights W , H . Here k = 2, d = 1000 and n = dδ, and we
averaged over 400 realizations. Solid lines: The instability curve
βinst(δ). Dashed lines: The Bayes phase transition βBayes.
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Figure 3. Same as for Figure 2, for the Dirichlet model.

Because of Proposition 3.1, we expect the estimates Ĥ, Ŵ
produced by variational inference to be asymptotically un-
correlated with the true factors for βinst < β < βBayes. In
order to test this hypothesis, we compute suitable correla-
tion ratios between Ĥ, Ŵ and the true parameters (known
as ‘Binder cumulants’ BH and BW ). These quantities grow
from 0 to 1 as β grows, and the transition is centered around
βBayes. Figure 2 (right frame) reports the results BW on a
grid of (β, δ) values. Again, the transition is well predicted
by the analytical curve βBayes. These data support our claim
that, for βinst < β < βBayes, the output of variational infer-
ence is non-uniform but uncorrelated with the true signal.

In Figure 3, we repeat the same experiment carried out in
Figure 2, but for the Dirichlet model, with ν̃ = ν = 1.
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Figure 4. Gaussian model. Bayesian credible intervals as com-
puted by variational inference at nominal coverage level 1− α =
0.9. Here k = 2, n = d = 5000, β ∈ {2, 4.1, 6} (for reference
βinst ≈ 2.3, βBayes = 6). Circles: posterior mean. Squares: true
weights. Red: coordinates on which the credible interval does not
cover the true value of wi,1.

Once more we observe a large region of model parameters
for which the variational posterior is not centered on the
uninformative point, but is uncorrelated with the ground
truth. The instability phase transition is well captured by
our theoretical prediction βinst also in the Dirichlet case.
Finally, in Figure 4 we plot the estimates obtained for 100
entries of the weights vector wi,1 for three instances with
n = d = 5000 and β = 2 < βinst, β = 4.1 ∈ (βinst, βBayes)
and β = 6 = βBayes. The interval for wa,1 is the form
{wa,1 ∈ [0, 1] : q̃a(wa,1) ≥ ta(α)} and are constructed to
achieve nominal coverage level 1− α = 0.9. It is visually
clear that the claimed coverage level is not verified in these
simulations for β > βinst, confirming our analytical results.
Indeed, for the three simulations in Figure 4 we achieve
coverage 0.87 (for β = 2 < βinst), 0.65 (for β = 4.1 ∈
(βinst, βBayes)), and 0.51 (for β = 6 = βBayes). Further results
of this type are reported in the SM.

4. Fixing the Instability
The fact that naive mean field is not accurate for certain
classes of random high-dimensional probability distribu-
tions is well understood within statistical physics. In partic-
ular, in the context of mean field spin glasses (Mezard et al.,
1988), naive mean field is known to lead to an asymptoti-
cally incorrect expression for the free energy. We expect the
same mechanism to be relevant for topic models.

Namely, the product-form expression (1.3) only holds
asymptotically in the sense of finite-dimensional
marginals. However, when computing the term
Eq̂ log pX|W ,H(X|H,W ) in the KL divergence
(1.2), the error due to the product form approximation is
non-negligible. Keeping track of this error leads to the
so-called TAP free energy.

The TAP approach replaces the free energy (3.5) with



An Instability in Variational Inference

FTAP = FTAP(r, r̃) defined as follows (see SM)

FTAP(r, r̃) = −
√
βTr

(
Xrr̃T

)
− β

2d

d∑
i=1

n∑
a=1

〈ri, r̃a〉2

+

d∑
i=1

ψ

(
ri,

β

d

n∑
a=1

r̃⊗2a

)
+

n∑
a=1

ψ̃

(
r̃a,

β

d

d∑
i=1

r⊗2i

)
,

where r̃1k = 1n, and we defined the partial Legendre trans-
forms ψ(r,Q) ≡ supm{〈r,m〉−φ(m,Q)} and similarly
for ψ̃(r̃, Q̃).

Calculus shows that stationary points of this free energy are
in one-to-one correspondence with the fixed points of the
following iteration:

mt+1 = XT F̃(m̃t; Q̃
t
)− F(mt;Qt)Ω̃t ,

m̃t = X F(mt;Qt)− F̃(m̃t−1; Q̃
t−1

)Ωt ,

Qt+1 =
1

d

n∑
a=1

F̃(m̃t
a; Q̃

t
)⊗2 , Q̃

t
=

1

d

d∑
i=1

F(mt
i;Q

t)⊗2 .

where Ωt, Ω̃t ∈ Rk×k are matrices defined in the SM. The
stationarity conditions for the TAP free energy FTAP are
known as TAP equations, and the above iterative algorithm
is a special case of approximate message passing (AMP),
with Bayesian updates.

Estimates of the factors W , H are computed following
the same recipe as for naive mean field, cf. Eq. (??),
namely Ĥ

t
= rt = F(mt;Qt)/

√
β, Ŵ

t
= r̃t =

F̃(m̃t; Q̃t)/
√
β.

It is not hard to see that the AMP iteration admits an unin-
formative fixed point, which is a stationary point of the TAP
free energy. This construction is analogous to the one for
naive mean field, and we omit it here.

The next theorem establishes that the uninformative fixed
point of the TAP free energy is a local minimum for
all β below the spectral threshold βspect(k, ν, δ). Since
βBayes(k, ν, δ) ≤ βspect(k, ν, δ), this shows that the instability
we discovered in the case of naive mean field is corrected
by the TAP free energy.

Theorem 4. Let (r∗, r̃∗) be the uninformative station-
ary point of the TAP free energy. If β < βspect(k, ν, δ),
then there exists ε > 0 such that, with high probability
λmin

(
∇2FTAP|(r∗,r̃∗)

)
≥ ε.

In order to confirm the stability analysis at the previous sec-
tion, we carried out numerical simulations analogous to the
ones of Section 3.5. We initialize the iteration as for naive
mean field, and monitor the same quantities, as in Section
3.5. In Figure 5 we report results on the distance from the
uninformative subspaceV(Ŵ ), (left frame), and the Binder

2 4 6 8 10 12 14 16

β

0.5

1.0

1.5

2.0

2.5

3.0

δ

V(�W)

βBayes

βinst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16

β

0.5

1.0

1.5

2.0

2.5

3.0

δ

BW

βBayes

βinst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5. Left frame: Empirical fraction of instances such that
V(Ŵ ) ≥ ε0 = 5 · 10−3, where Ŵ is the AMP estimate. Here
k = 2, d = 1000, and for each (δ, β) point on the grid we ran
AMP on 400 random realizations. Right frame: Binder cumulant
for the correlation between AMP estimates Ŵ , Ĥ and the true
weights and topics W ,H . Here k = 2,d = 1000 and estimates
are obtained by averaging over 400 realizations.
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Figure 6. Same as in Figure 5, except for the Dirichlet model.

cumulant BW , measuring the correlation between AMP es-
timates and the true factorsW ,H (right frame). We repeat
the same experiment in Figure 6 for the Dirichlet model.

In the intermediate regime β ∈ (βinst, βspect), the behavior
of AMP is strikingly different from the one of naive mean
field. AMP remains close to the uninformative fixed point,
confirming that this is a local minimum of the TAP free
energy. The distance from the uninformative subspace starts
growing only at the spectral threshold βspect (which coin-
cides, in the present cases, with the Bayes threshold βBayes).
At the same point, the correlation with the true factorsW ,
H also becomes strictly positive.

5. Discussion
Bayesian methods are particularly attractive in unsupervised
learning problems such as topic modeling. Even after a
low-rank factorizationX ≈WHT is computed, it is still
unclear how to evaluate it, or to which extent it should be
trusted. Bayesian approaches provide estimates of the fac-
torsW ,H , but also a probabilistic measure of how much
these estimates should be trusted. To the extent that the pos-
terior concentrates around its mean, this can be considered
as a good estimate of a true underlying signal.

It is well understood that Bayesian estimates can be unre-
liable if the prior is not chosen carefully. Our work points
at a second reason for caution. When variational inference
is used for approximating the posterior, the result can be
substantially incorrect.
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Féral, D. and Péché, S. The largest eigenvalue of rank one
deformation of large wigner matrices. Communications
in mathematical physics, 272(1):185–228, 2007.

Giordano, R. J., Broderick, T., and Jordan, M. I. Linear
response methods for accurate covariance estimates from
mean field variational bayes. In Advances in Neural
Information Processing Systems, pp. 1441–1449, 2015.

Hoffman, M., Bach, F. R., and Blei, D. M. Online learn-
ing for latent dirichlet allocation. In advances in neural
information processing systems, pp. 856–864, 2010.

Javanmard, A. and Montanari, A. State evolution for general
approximate message passing algorithms, with applica-
tions to spatial coupling. Information and Inference: A
Journal of the IMA, 2(2):115–144, 2013.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

Korada, S. B. and Macris, N. Exact solution of the gauge
symmetric p-spin glass model on a complete graph. Jour-
nal of Statistical Physics, 136(2):205–230, 2009.

Krzakala, F., Xu, J., and Zdeborová, L. Mutual infor-
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