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Abstract
To understand the dynamics of optimization in
deep neural networks, we develop a tool to study
the evolution of the entire Hessian spectrum
throughout the optimization process. Using this,
we study a number of hypotheses concerning
smoothness, curvature, and sharpness in the deep
learning literature. We then thoroughly analyze
a crucial structural feature of the spectra: in non-
batch normalized networks, we observe the rapid
appearance of large isolated eigenvalues in the
spectrum, along with a surprising concentration
of the gradient in the corresponding eigenspaces.
In batch normalized networks, these two effects
are almost absent. We characterize these effects,
and explain how they affect optimization speed
through both theory and experiments. As part of
this work, we adapt advanced tools from numer-
ical linear algebra that allow scalable and accu-
rate estimation of the entire Hessian spectrum of
ImageNet-scale neural networks; this technique
may be of independent interest in other applica-
tions.

1. Introduction
The Hessian of the training loss (with respect to the param-
eters) is crucial in determining many behaviors of neural
networks. The eigenvalues of the Hessian characterize the
local curvature of the loss which, for example, determine
how fast models can be optimized via first-order methods
(at least for convex problems), and is also conjectured to
influence the generalization properties. Unfortunately, even
for moderate sized models, exact computation of the Hes-
sian eigenvalues is computationally impossible. Previous
studies on the Hessian have focused on small models, or
are limited to computing only a few eigenvalues (Sagun
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et al., 2016; 2017; Yao et al., 2018). In the absence of such
concrete information about the eigenvalue spectrum, many
researchers have developed clever ad hoc methods to under-
stand notions of smoothness, curvature, sharpness, and poor
conditioning in the landscape of the loss surface. Examples
of such work, where some surrogate is defined for the cur-
vature, include the debate on flat vs sharp minima (Keskar
et al., 2016; Dinh et al., 2017; Wu et al., 2017; Jastrzębski
et al., 2017), explanations of the efficacy of residual connec-
tions (Li et al., 2018b; Orhan & Pitkow, 2017) and batch
normalization (Santurkar et al., 2018), the construction of
low-energy paths between different local minima (Draxler
et al., 2018), qualitative studies and visualizations of the
loss surface (Goodfellow et al., 2014), and characterization
of the intrinsic dimensionality of the loss (Li et al., 2018a;
Fort & Scherlis, 2018). In each of these cases, detailed
knowledge of the entire Hessian spectrum would surely be
informative, if not decisive, in explaining the phenomena at
hand.

In this paper, we develop a tool that allows us access to
the entire spectrum of a deep neural network. The tool is
both highly accurate (we validate it to a double-precision
accuracy of 10−14 for a 15000 parameter model), and highly
scalable (we are able to generate the spectra of Resnets (He
et al., 2016) and Inception V3 (Szegedy et al., 2016) on
ImageNet in a small multiple of the time it takes to train
the model). The underlying algorithm is extremely elegant,
and has been known in the numerical analysis literature for
decades (Bai et al., 1996) (based on foundational work by
Golub and Welsch (1969)); here we introduce it to the ma-
chine learning community, and build (and release) a system
to run it at modern deep learning scale.

This algorithm allows us to peer into the optimization pro-
cess with unprecedented clarity. By generating Hessian
spectra with fine time resolution, we are able to study all
phases of training, and are able to comment fruitfully on a
number of hypotheses in the literature about the geometry
of the loss surface. Our main experimental result focuses on
the role of outlier eigenvalues, we analyze how the outlier
eigenvalues affect the speed of optimization; this in turn pro-
vides significant insight into how batch normalization (Ioffe
& Szegedy, 2015), one of the most popular innovations in
training deep neural nets, speeds up optimization.
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We believe our tool and style of analysis will open up new
avenues of research in optimization, generalization, archi-
tecture design etc. So we release our code to the community
to accelerate a Hessian based analysis of deep learning.

1.1. Contributions

In this paper, we empirically study the full Hessian spec-
trum of the loss function of deep neural networks. Our
contributions are as follows:

In Section 2, we introduce a tool and a system, for estimating
the full Hessian spectrum, capable of tackling models with
tens of millions of parameters, and millions of data points.
We both theoretically prove convergence properties of the
underlying algorithm, and validate the system to double
precision accuracy 10−14 on a toy model.

In Section 3, we use our tool to generate Hessian spectra
along the optimization trajectory of a variety of deep learn-
ing models. In doing so, we revisit a number of hypotheses
in the machine learning literature surrounding curvature and
optimization. With access to the entire Hessian spectrum,
we are able to provide new perspectives on a variety of
interesting problems: we concur with many of the coarse de-
scriptions of the loss surface, but disagree with a number of
hypotheses about how learning rate and residual connections
interact with the loss surface. Our goal is not necessarily to
provide proofs or refutation – at the very least, that would
require the study of a more diverse set of models – but to
provide strong evidence for/against certain interesting ideas,
and simultaneously to highlight some applications of our
tool.

In Section 4, we observe that models with significant out-
lier Hessian eigenvalues exhibit slow training behavior. We
provide a theoretical justification for this in Section 4.1 –
we argue that a non-trivial fraction of energy of the Hessian
is distributed across the bulk in tiny eigenvalues, and that
a coupling between the stochastic gradients and the outlier
eigenvalues prevents progress in those directions. We then
show that batch normalization pushes these outliers back
into the bulk, and are able to isolate this effect by ablating
the batch normalization operation. In Section 4.2, we con-
firm the predictions of our hypothesis by studying a careful
intervention to batch normalization that causes the resur-
gence of outlier eigenvalues, and dramatic slowdowns in
optimization.

1.2. Related Work

Empirical analysis of the Hessian has been of significance
interest in the deep learning community. Due to compu-
tational costs of computing the exact eigenvalues (O(n3)
for an explicit n × n matrix), most of the papers in this
line of research either focus on smaller models or on low-

dimensional projections of the loss surface. Sagun et al.
(2016; 2017) study the spectrum of the Hessian for small
two-layer feed-forward networks. They show that the spec-
trum is divided into two parts: (1) a bulk concentrated near
zero which includes almost all of the eigenvalues and (2)
roughly “number of classes - 1” outlier eigenvalues emerg-
ing from the bulk. We extend this analysis in two ways.
First, we calculate the Hessian for models with > 107 pa-
rameters on datasets with > 106 examples – we find that
many, but not all of the above observations hold at this scale,
and refine some of their observations. Secondly, we lever-
age the scalability of our algorithm to compute and track the
Hessian spectrum throughout the optimization (as opposed
to only at the end). Observing this evolution allows us to
study how individual architecture choices affect optimiza-
tion. There is an extensive literature regarding estimating
the eigenvalues distribution of large matrices (for a small
survey, see Lin et al. (2016)). The algorithm we use is
due to Golub and Welsch (1969); the application of this to
trace estimators is due to Bai et al. (1996). While many of
these algorithms have theoretical guarantees, their empirical
success is highly dependent on the problem structure. We
perform a thorough comparison of our work to the recent
proposal of Adams et al. (2018) in Appendix D.

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is one
of the most influential innovations in optimizing deep neural
networks as it substantially reduces the training time and
the dependence of the training on initialization. There has
been much interest in determining the underlying reasons
for this effect. The original BN paper suggests that as the
model trains, the distribution of inputs to each layer changes
drastically, a phenomenon called internal covariance shift
(ICS). They suggest that BN improves training by reduc-
ing ICS. There has been a series of exciting new works
exploring the effects of BN on the loss surface. Santurkar
et al. (2018) empirically show that ICS is not necessarily
related to the success of the optimization. They instead
prove that under certain conditions, the Lipschitz constant
of the loss and β-smoothness of the loss with respect to
the activations and weights of a linear layer are improved
when BN is present. Unfortunately, these bounds are on a
per-layer basis; this yields bounds on the diagonal blocks
of the overall Hessian, but does not directly imply anything
about the overall β-smoothness of the entire Hessian. In
fact even exact knowledge of β for the entire Hessian and
parameter norms (to control the distance from the optimum)
is insufficient to determine the speed of optimization: in
Section 4.2, we exhibit two almost identical networks that
differ only in the way batch norm statistics are calculated;
they have almost exactly the same largest eigenvalue and
the parameters have the same scale, yet the optimization
speeds are vastly different.

During the preparation of this paper, (Papyan, 2018) ap-
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peared on Arxiv which briefly introduces the same spectrum
estimation methodology and studies the Hessian on small
subsamples of MNIST and CIFAR-10 at the end of the
training. In comparison, we provide a detailed exposition,
error analysis and validation of the estimator in Section 2,
and present optimization results on full datasets, up to and
including ImageNet.

1.3. Notation

Neural networks are trained iteratively. We call the esti-
mated weights at optimization iteration t, θ̂t, 0 ≤ t ≤ T .
We define the loss associated with batch i be Li(θ). The full-
batch loss is defined as L(θ) ≡ 1

N

∑N
i=1 Li(θ) where N

is the number of batches.1 The Hessian, ∇2L(θ) ∈ Rn×n

is a symmetric matrix such that ∇2L(θ)i,j = ∂2

∂θi∂θj
L(θ).

Note that our Hessians are all “full-batch” Hessians (i.e.,
they are computed using the entire dataset). When there
is no confusion, we represent ∇2L(θ̂t) with H ∈ Rn×n.
Throughout the paper, H has the spectral decomposition
QΛQT where Λ = diag(λ1, . . . , λn), Q = [q1, . . . , qn]
and λ1 ≥ λ2 · · · ≥ λn.

2. Accurate and Scalable Estimation of
Hessian Eigenvalue Densities for n > 107

To understand the Hessian, we would like to compute
the eigenvalue (or spectral) density, defined as φ(t) =
1
n

∑n
i=1 δ(t− λi) where δ is the Dirac delta operator. The

naive approach requires calculating λi; however, when the
number of parameters, n, is large this is not tractable. We
relax the problem by convolving with a Gaussian density of
variance σ2 to obtain:

φσ(t) =
1

n

n∑
i=1

f(λi; t, σ
2) (1)

where f(λ; t, σ2) = 1
σ
√
2π

exp
(
− (t−λ)2

2σ2

)
. For small

enough σ2, φσ(t) provides all practically relevant informa-
tion regarding the eigenvalues of H . Explicit representation
of the Hessian matrix is infeasible when n is large, but us-
ing Pearlmutter’s trick (Pearlmutter, 1994) we are able to
compute Hessian-vector products for any chosen vector.

2.1. Stochastic Lanczos Quadrature

It has long been known in the numerical analysis literature
that accurate stochastic approximations to the eigenvalue
density can be achieved with much less computation than
a full eigenvalue decomposition. In this section, we de-
scribe the stochastic Lanczos quadrature algorithm (Golub
& Welsch, 1969; Lin et al., 2016). Although the algorithm

1We define the loss in terms of per-batch loss (as opposed to
the per sample loss) in order to accommodate batch normalization.

is already known, its mathematical complexity and potential
as a research tool warrant a clear exposition for a machine
learning audience. We give the pseudo-code in Algorithm 1,
and describe the individual steps below, deferring a discus-
sion of the various approximations to Section 2.2.

Since H is diagonalizable and f is analytic, we can define
f(H) = Qf(Λ)QT where f(·) acts point-wise on the di-
agonal of Λ. Now observe that if v ∼ N(0, 1

nIn×n), we
have

φσ(t) =
1

n
tr
(
f(H, t, σ2)

)
= E

[
vT f(H, t, σ2)v

]
(2)

Thus, as long as φ(v)σ (t) ≡ vT f(H, t, σ2)v concentrates
fast enough, to estimate φσ(t), it suffices to sample a small
number of random v’s and average φ(v)σ (t).

Algorithm 1 Two Stage Estimation of φσ(t)

Draw k i.i.d realizations of v, {v1, . . . , vk}.

I. Estimate φ(vi)σ (t) by a quantity φ̂(vi)(t):

– Run the Lanczos algorithm for m steps on matrix
H starting from vi to obtain tridiagonal matrix T .

– Compute eigenvalue decomposition T = ULUT .
– Set the nodes `i = Lii and weights ωi = U2

1,i.

– Output φ̂(vi)(t) =
∑m
i=1 ωif(`i; t, σ

2).

II. Set φ̂σ(t) = 1
k

∑k
i=1 φ̂

(vi)(t).

By definition, we can write

φ(v)σ (t) = vTQf(Λ; t, σ2)QT v =

n∑
i=1

(vT qi)
2f(λi; t, σ

2)

=

n∑
i=1

β2
i f(λi; t, σ

2) (3)

where βi ≡ (vT qi). Instead of summing over the discrete
index variable i, we can rewrite this as a Riemann-Stieltjes
integral over a continuous variable λ weighted by µ:

φ(v)σ (t) =

∫ λ1

λn

f(λ; t, σ2)dµ(λ) (4)

where µ is a CDF (note that the probability density dµ is a
sum of delta functions that directly recovers Equation 3)2.

µ(λ) =


0 λ < λn∑k
i=1 β

2
i λk ≤ λ < λk+1∑n

i=1 β
2
i λ ≥ λ1

.

2Technically µ is a positive measure, not a probability distri-
bution, because ||v||2 only concentrates on 1. This wrinkle is
irrelevant.
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To evaluate this integral, we apply a quadrature rule (a
quadrature rule approximates an integral as a weighted sum
– the well-known high-school trapezoid rule is a simple
example). In particular, we want to pick a set of weights ωi
and a set of nodes li so that

φ(v)σ (t) ≈
m∑
i=1

ωif(`i; t, σ
2) ≡ φ̂(v)(t) (5)

The hope is that there exists a good choice of (ωi, `i)
m
i=1

where m � n such that φ(v)σ (t) and φ̂(v)(t) are close for
all t, and that we can find the nodes and weights efficiently
for our particular integrand f and the CDF µ. The construc-
tion of a set of suitable nodes and weights is a somewhat
complicated affair. It turns out that if the integrand were a
polynomial g of degree d, with d small enough compared to
m, it is possible to compute the integral exactly,∫

gdµ =

m∑
i=1

wig(li). (6)

Theorem 2.1 ((Golub & Meurant, 2009) Chapter 6). Fix m.
For all (βi, λi)

n
i=1, there exists an approximation rule gen-

erating node-weight pairs (ωi, `i)
m
i=1 such that for any poly-

nomial, g with deg(g) ≤ 2m− 1, (6) is true. This approxi-
mation rule is called the Gaussian quadrature. The degree
2m − 1 achieved is maximal: for a general (βi, λi)

n
i=1,

no other approximation rule can guarantee exactness of
Equation (6) for a higher polynomial.

The Gaussian quadrature rule always generates non-negative
weights. Therefore, as f(·; t, σ) ≥ 0, it is guaranteed that
φ̂ ≥ 0 which is a desirable property for a density estimate.
For these reasons, despite the fact that our integrand f is not
a polynomial, we use the Gaussian quadrature rule. For the
construction of the Gaussian quadrature nodes and weights,
we rely on a deep connection between Gaussian quadrature
and Krylov subspaces via orthogonal polynomials. We refer
the interested reader to the excellent (Golub & Meurant,
2009) for this connection.

Theorem 2.2 ((Golub & Welsch, 1969)). Let V =
[v,Hv, · · · , Hm−1v] ∈ Rn×m and Ṽ be the incomplete
basis resulting from applying QR factorization on V . Let
T ≡ Ṽ THṼ ∈ Rm×m and ULUT be the spectral de-
composition of T . Then the Gaussian quadrature nodes
`i = Li,i, and the Gaussian quadrature weights ωi = U2

1,i,
for i = 1, . . . ,m.

Theorem 2.2 presents a theoretical way to compute the Gaus-
sian quadrature rule (i.e., apply the H matrix repeatedly and
orthogonalize the resulting vectors). There are well-known
algorithms that circumvent calculating the numerically un-
stable V , and compute T and Ṽ directly. We use Lanczos
algorithm (Lanczos, 1950) (with full re-orthogonalization)
to perform this computation in a numerically stable manner.

2.2. Accuracy of Gaussian Quadrature Approximation

Intuition suggests that as long as f(·; t, σ2) is close to some
polynomial of degree at most 2m − 1, our approximation
must be accurate (i.e., Theorem 2.1). Crucially, it is not
necessary to know the exact approximating polynomial, its
mere existence is sufficient for an accurate estimate. There
exists an extensive literature on bounding this error; Ubaru
et al. (2017) prove that under suitable conditions that

|φ̂(v)(t)− φ(v)σ (t)| ≤ c 1

(ρ2 − 1)ρ2m
(7)

where ρ > 1. The constant ρ is closely tied to how well
f(·; t, σ2) can be approximated by Chebyshev polynomials.
3 In our setting, as σ2 decreases, higher-order polynomials
become necessary to approximate f well. Therefore, as σ2

decreases, ρ decreases and more Lanczos iterations become
necessary to approximate the integral well.

To establish a suitable value of m, we perform an empirical
analysis of the error decay when H corresponds to a neural
network loss Hessian. In Appendix B, we study this error
on a 15910 parameter feed-forward MNIST network, where
the model is small enough that we can compute φ(v)σ (t)
exactly. For σ2 = 10−5, a quadrature approximation of
order 80 achieves maximum double-precision accuracy of
10−14. Following these results, we use σ2 = 10−5,m =
90 for our experiments. Equation 7 implies that the error
decreases exponentially in m, and since GPUs are typically
run in single precision, our m is an extremely conservative
choice.

2.3. Concentration of the Quadratic Forms

Although φ
(v)
σ (·) is an unbiased estimator for φσ(·), we

must still study its concentration towards its mean. We
prove:

Claim 2.3. Let t be a fixed evaluation point and k be the
number of realizations of v in step II of Algorithm 1. Let
a = ‖f(H; t, σ2)‖F and b = ‖f(H; t, σ2)‖2. Then ∀x >
0,

P

(
|φσ(t)− φ̂σ(t)| > 2a

n
√
k

√
x+

2b

kn
x

)
≤ 2 exp(−x).

Alternatively, since f(·) is a Gaussian density, we can give
norm independent bounds: ∀x > 0,

P

(
|φσ(t)− φ̂σ(t)| > ε(x)

)
≤ 2 exp(−x). (8)

where ε(x) ≡
√

2
πσ2 (

√
x
nk + x

nk ).

3We refer the interested reader to (Ubaru et al., 2017; Demanet
& Ying, 2010) for more details
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Claim (2.3) shows that φ̂σ(t) concentrates exponentially
fast around its expectation. Note in particular the

√
n and

higher powers in the denominator – since the number of
parameters n > 106 for cases of interest, we expect the
deviations to be negligible. We plot these error bounds and
prove Claim 2.3 in Appendix A.

2.4. Implementation, Validation and Runtime

We implemented a large scale version of Algorithm 1 in
TensorFlow (Abadi et al., 2016); the main component is a
distributed Lanczos Algorithm. We describe the implemen-
tation and performance in Appendix C. To validate our sys-
tem, we computed the exact eigenvalue distribution on the
15910 parameter MNIST model. Our proposed framework
achieves L1(φσ, φ̂σ) ≡

∫∞
−∞ |φσ(t) − φ̂(t)|dt ≈ 0.0012

which corresponds to an extremely accurate solution. The
largest model we’ve run our algorithm on is Inception V3 on
ImageNet. The runtime is dominated by the Hessian-vector
products within the Lanczos algorithm; we run mk full-
batch Hessian vector products. The remaining cost of full
reorthogonalization is negligible (O(km2n) floating point
operations). For a Resnet-18 on ImageNet, running a single
draw takes about half the time of training the model.

Figure 1. Comparison of the estimated smoothed density (dashed)
and the exact smoothed density (solid) in the interval [−0.2, 0.4].
We use σ2 = 10−5, k = 10 and degree 90 quadrature. For
completeness, the histogram of the exact eigenvalues is also plotted.

In Appendix D, we compare our approach to a recent pro-
posal (Adams et al., 2018) to use Chebyshev approximation
for estimating the spectral density.

3. Spectral Densities Throughout Training
The tool we developed in Section 2 gives us an unprece-
dented ability to examine the loss landscape of deep neural
networks. In particular, we can track the spectral density
throughout the entire optimization process. Our goal in
this section is to provide direct curvature evidence for (and
against) a number of hypotheses about the loss surface and
optimization in the literature. While we cannot conclusively
prove or refute any hypothesis (given the space constraints),
we believe that the evidence is very strong in many of these
cases.

For our analysis, we study a variety of Resnet and VGG (Si-

monyan & Zisserman, 2014) architectures on both CIFAR-
10 and ImageNet. Details are presented in Appendix F. The
Resnet-32 on CIFAR-10 has 4.6× 105 parameters; all other
models have at least 107. For consistency, our plots in this
section are of Resnet spectral densities; we have reproduced
all these results on non-residual (VGG) architectures.

At initialization, we observe that large negative eigenvalues
dominate the spectrum. However, as Figure 2 shows, in
only very few steps (< 1% of the total number of steps;
we made no attempt to optimize this bound), these large
negative eigenvalues disappear and the overall shape of the
spectrum stabilizes. Sagun et al. (2016) had observed a
similar disappearance of negative eigenvalues for toy feed-
forward models after the training, but we are able to pinpoint
this phase to the very start of optimization. This observation
is readily reproducible on ImageNet.

Figure 2. The evolution of the spectrum of a Resnet-32 in the be-
ginning of training. After just 400 momentum steps, large negative
eigenvalues disappear.

Throughout the rest of the optimization, the spectrum is
almost entirely flat, with the vast majority (> 99.99% of
eigenvalues being close to 0). This is in accordance with
the ideas of Li et al. (2018a), who hypothesize that the
loss surface has low intrinsic dimensionality, and also with
results of Sagun et al. on toy models. In the case of K-class
classification with small two-layer feed-forward networks,
Sagun et al. had observed that the Hessian spectrum contains
roughly K outliers which are a few orders of magnitudes
larger than the rest of the eigenvalues. Contrary to this, we
find that the emergence of these outliers is highly dependent
on whether BN is present in the model or not. We study this
behavior in depth in Section 4.

Sagun et al. also observe that the negative eigenvalues at the
end of the training are orders of magnitude smaller than the
positive ones. While we are able to observe this on CIFAR-
10, what happens on ImageNet seems to be less clear (Figure
3). We believe that the observation of Sagun et al. may be
an artifact of the size of the datasets used – on MNIST
and CIFAR-10 one can easily attain zero classification loss
(presumably a global minimum); on ImageNet, even a much
larger model will fail to find a zero loss solution.

It is received wisdom in deep learning that low learning
rates lead SGD to be attracted to sharp minima; this idea is
explicit in Kleinberg et al (2018) and implicit in Jastrzęb-
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Figure 3. Spectral densities of Resnet-18 on ImageNet towards the
start, and at the end of optimization. There is a notable negative
density towards the end of optimization.

ski et al. (2017), where it hypothesized that that lower
(constant) learning rates correspond to sharper optima. We
consider this question by inspecting the spectral densities
immediately preceding and following a learning rate drop.
According to the hypothesis, we would then expect the spec-
tral density to exhibit more extremal eigenvalues. In fact, we
find the exact opposite to be true in Figure 4 – not only do
the large eigenvalues contract substantially after the learning
rate drop at 40k steps, we have a lower density at all values
of λ except in a tiny ball around 0. This is an extremely sur-
prising result, and violates the common intuition that lower
learning rates allow one to slip into small, sharp crevices
in the loss surface. We note that this is not a transient phe-
nomenon – the spectrum before and afterwards are stable
over time.

Figure 4. Spectral densities of Resnet-32 preceding and following
a learning rate decrease (at step 40000). The Hessian prior to the
learning rate drop appears sharper.

Finally, Li et al. (2018b) recently hypothesized that adding
residual connections significantly smooths the optimiza-
tion landscape, producing a series of compelling two-
dimensional visualizations. We compared a Resnet-32 with
and without residual connections, and we observe in Figure
5 that without residual connections all eigenvalues contract
substantially towards zero. This is contrary to the visualiza-
tions of Li et al.

4. Outlier Eigenvalues Slow Optimization;
Batch Norm Suppresses Outliers

In some of the spectral densities presented so far, perhaps
the most salient feature is the presence of a small number

Figure 5. Spectral densities of Resnet-32 with and without resid-
ual connections (at step 40000). The Hessian without residual
connections appears to be smoother.

of outlier eigenvalues that are located far from the bulk
of the spectrum. We noticed that these outliers are much
larger and much further from the bulk for some architectures
than others. Suspecting that batch normalization was the
crucial difference, we ran a series of ablation experiments
contrasting the spectral density in the presence and absence
of batch normalization (i.e., we added BN to models that
did not already have it, and removed BN from models that
already did). Figure 8 contrasts the the Hessian spectrum in
the presence of BN vs the spectrum when BN is removed.
The experiment yields the same results on VGG on CIFAR-
10 (Figure 9), and Resnet-18 on ImageNet (Figure 7), and
at various points through training.

Our experiments reveal that, in the presence of BN, the
largest eigenvalue of the Hessian, λ1(H) tend to not to devi-
ate as much from the bulk. In contrast, in non-BN networks,
the outliers grow much larger, and further from the bulk. To
probe this behavior further we formalize the notion of an
outlier with a metric: ζ(t) := λ1(∇2L(θt))/λK(∇2L(θt)).
This provides a scale-invariant measure of the presence of
outliers in the spectrum. In particular, ifK−1 (as suggested
by Sagun et al.) outliers are present in the spectrum, we
expect ζ � 1. Figure 6 plots ζ(t) throughout training. It
is evident that relative large eigenvalues appear in the spec-
trum. Normalization layer induces an odd dependency on
parameter scale – scaling the (batch normalized) weights
leads to unchanged activations, and inversely scales the gra-
dients. Obviously, we can not conclude that the problem
is much easier! Thus, for studying the optimization per-
formance of batch normalization, we must have at least a
scale-invariant quantity – which ζ(t) is. In contrast, the
analysis in (Santurkar et al., 2018) varies wildly with scale4.

Informed by the experimental results in this section, we hy-
pothesize a mechanistic explanation for why batch normal-
ization speeds up optimization: it does so via suppression
of outlier eigenvalues which slow down optimization.

4We have also tried normalizing individual weights matrices
and filters, but this leads to blowup in some gradient components.



An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

Figure 6. ζ(t) for Resnet-32 throughout training. The model with-
out BN (red) consistently shows much higher eigenvalue fraction.

Figure 7. The eigenvalue comparison of the Hessian of Resnet-18
trained on ImageNet dataset with (blue) and without (red) BN. The
Hessians are computed at the end of training.

4.1. Mechanisms by Which Outliers Slow Optimization

In this section, we seek to answer the question “Why do
outlier eigenvalues slow optimization?” One answer to
this question is obvious. Large λ1 implies that one must
use a very low learning rate; but this an incomplete ex-
planation – λ1 has to be large with respect to the rest of
the spectrum. To make this explicit, consider a simple
quadratic approximation to the loss around the optimum,
θ∗: L(θ) ≈ L(θ∗) + 1

2 (θ − θ∗)TH(θ − θ∗) where without
loss of generality, we assume H = diag(λ1, · · · , λn) with
λi > 0. We can easily show that when optimized with
gradient descent with a learning rate η < 2/λ1 sufficiently
small for convergence, we have:

|θ̂t − θ∗|i ≤
∣∣∣∣1− 2λi

λ1

∣∣∣∣t|θ̂0 − θ∗|i (9)

For all directions where λi is small with respect to λ1, we
expect convergence to be slow. One might hope that these
small λi do not contribute significantly to the loss; unfor-
tunately, when we measure this in a Resnet-32 with no
batch normalization, a small ball around 0 accounts for
almost 50% of the total L1 energy of the Hessian eigenval-
ues for a converged model (the L1 reflects the loss function∑
i λi(θ−θ∗)2i ). Therefore, for successful optimization, we

are forced to optimize these slowly converging directions5.

A second, more pernicious reason lies in the interaction be-

5While the loss function in deep nets is not quadratic, the
intuition that the result above provides is still valid in practice.

Figure 8. The eigenvalue comparison of the Hessian of the Resnet-
32 model with BN (blue) and without BN (red). To allow compari-
son on the same plot, the densities have been normalized by their
respective 10th largest eigenvalue. The Hessians are computed
after 48k steps of training.

Figure 9. The eigenvalue comparison of the Hessian of the VGG
network with BN (blue) and without BN (red). The Hessians are
computed after 5058 steps of training.

tween the large eigenvalues of the Hessian and the stochas-
tic gradients. Define the gradient covariance at time t to be
Σ(t) = 1

N

∑N
i=1∇Li∇LTi . The eigenvalue density of Σ

characterizes how the energy of the (mini-batch) gradients
is distributed (the tools of Section 2 apply just as well here).
As with the Hessian, we observe that in non-BN networks
the spectrum of Σ has outliers (Figure 11). In addition, we
numerically verify that the outlier subspaces of H and Σ
mostly coincide: throughout the training, for a Resnet-32,
99% of the energy of the outlier Hessian eigenvectors lie
in the outlier subspace of Σ. Moreover, we observe that
almost all of the gradient energy is concentrated in these
subspaces (Figure 10), reproducing an observation of Gur-
Ari et al. (2018). We observe that when BN is introduced in
the model, this concentration subsides substantially.

Figure 10. ‖P∇L(θ̂i)‖
2
2

‖∇Lθ̂i‖22
for a Resnet-32. Here P is the projection

operator to the subspace spanned by the 10 most dominant eigen-
vectors of∇2L(θ̂i). Almost all the variance of the gradient of the
non-BN model is in this subspace.
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Figure 11. The histogram of the eigenvalues of Σ for a Resnet-32
with (left) and without (right) BN after 9k training steps. In no
BN case, almost 99% of the energy is in the top few subspaces.
For easier comparison, the distributions are normalized to have the
same mean.

Since almost all of the gradient energy is in the very few
outlier directions, the projection of the gradient in the com-
plement of this subspace is minuscule. Thus, most gradient
updates do not optimize the model in the flatter directions
of the loss. As argued earlier, a significant portion of the
loss comes from these flatter directions and a large fraction
of the path towards the optimum lies in these subspaces.
The fact that the gradient vanishes in these directions forces
the training to be very slow. In Figure 12, we examines
the normalized inner product between the path towards the
optimum, θ∗ − θ̂t, 6 and the gradients, ∇L(θ̂t), throughout
the training trajectory. The figure suggests that the gradient
is almost uninformative about the optimum. The situation
in BN networks is significantly better as the gradient is less
influenced by the high curvature directions of the loss.

We give a theoretical explanation (Theorem E.1) for why
outliers inH can cause the concentration of the gradient phe-
nomenon by studying a simple stochastic quadratic model
in Appendix E.

Figure 12. Normalized inner product between∇L(θt) and θt−θ∗
throughout the optimization for a Resnet-32 model.

4.2. Testing Our Hypothesis

Our hypothesis that batch norm suppresses outliers, and
hence speeds up training, is simple enough to allow us to
make predictions based on it. The original batch normal-
ization paper (Ioffe & Szegedy, 2015) observed that the
normalization parameters of BN, σB and µB , have to be
computed (and back-propagated through) using the mini-

6We use the parameter at the end of the training as a surrogate
for θ∗.

batch. If σB , µB are computed using the complete dataset,
the training becomes slow and unstable. Therefore, we
postulate that when σB and µB are calculated from the pop-
ulation (i.e. full-batch) statistics, the outliers persist in the
spectrum.

To test our prediction, we train a Resnet-32 on Cifar-10
once using mini-batch normalization constants (denoted by
mini-batch-BN network), and once using full-batch normal-
ization constants (denoted by full-batch-BN network). The
model trained with full-batch statistics trains much slower
(Appendix G). Figure 13 compares the spectrum of the two
networks in the early stages of the training (the behavior
is the same during the rest of training). The plot suggests
strong outliers are present in the spectrum with full-batch-
BN. This observation supports our hypothesis. Moreover,
we observe that the magnitude of the largest eigenvalue
of the Hessian in between the two models is roughly the
same throughout the training. Given that full-batch-BN net-
work trains much more slowly, this observation shows that
analyses based on the top eigenvalue of the Hessian do not
provide the full-picture of the optimization hardness.

Figure 13. The Hessian spectrum for a Resnet-32 after 6k steps.
The network on the left is trained with BN and mini-batch statistics.
The network on the right is trained with population statistics.

5. Conclusion
We presented tools from advanced numerical analysis that
allow for computing the spectrum of the Hessian of deep
neural networks in an extremely accurate and scalable man-
ner. We believe this tool is valuable for the research commu-
nity as it gives a comprehensive view of the local geometry
of the loss. This information can be used to further our
understanding of neural networks.

We used this toolbox to study how the loss landscape lo-
cally evolves throughout the optimization. We uncovered
surprising phenomena, some of which run contrary to the
widely held beliefs in the machine learning community. In
addition, we provided simple and clear answers to how
batch-normalization speeds up training. We believe that BN
is only one of the many architecture choices that can be stud-
ied using our framework. Studying these other architecture
choices can be an interesting avenue for future research.
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