
Efficient Dictionary Learning with Gradient Descent

A. Proofs - Separable Objective
Proof of Lemma 1: (Critical point structure of separa-
ble objective) .

Denoting by tanh( qµ ) a vector in Rn with elements
tanh( qµ )i = tanh( qiµ ) we have

grad[fSep](q)i = (I − qq∗) tanh(
q

µ
).

Thus critical points are ones where either tanh( qµ ) = 0

(which cannot happen on Sn−1) or tanh( qµ ) is in the
nullspace of (I − qq∗), which implies tanh( qµ ) = bq

for some constant b. The equation tanh( xµ ) = bx has
either a single solution at the origin or 3 solutions at
{0,±r(b)} for some r(b). Since this equation must be
solved simultaneously for every element of q, we obtain
∀i ∈ [n] : qi ∈ {0,±r(b)}. To obtain solutions on the
sphere, one then uses the freedom we have in choosing b
(and thus r(b)) such that ‖q‖ = 1. The resulting set of
critical points is thus

A = PSn−1

[
{−1, 0, 1}n \ {0}

]
.

To prove the form of the stable manifolds, we first show
that for qi such that |qi| = ‖q‖∞ and any qj such that
|qj |+ ∆ = |qi| and sufficiently small ∆ > 0, we have

−grad[fSep](q)isign(qi) > −grad[fSep](q)jsign(qj)
(9)

For ease of notation we now assume qi, qj > 0 and hence
∆ = qi−qj , otherwise the argument can be repeated exactly
with absolute values instead. The above inequality can then
be written as

(qi − qj)
n∑
k=1

tanh(
qk
µ

)qk − tanh(
qi
µ

) + tanh(
qj
µ

)︸ ︷︷ ︸
≡h

> 0.

If we now define s2 =
n−1∑
k = 1
k 6= i

q2
k and qn =

√
1− s2 − (qj + ∆)2we have

h =
∆

(
tanh(

qj+∆
µ ) (qj + ∆) +

tanh(

√
1−s2−(qj+∆)2

µ )
√

1− s2 − (qj + ∆)2

)
+∆

∑
k 6=i,n

tanh( qkµ )qk − tanh(
qj+∆
µ ) + tanh(

qj
µ )

= ∆



∑
k 6=i,n

tanh( qkµ )qk + tanh(
qj
µ )qj

+ tanh(

√
1−s2−q2j
µ )

√
1− s2 − q2

j︸ ︷︷ ︸
≡h1

− sech2(
qj
µ

)
1

µ︸ ︷︷ ︸
≡h2


+O(∆2)

where the O(∆2) term is bounded. Defining a vector r ∈
Rn by

k 6= i, n : rk = qk, ri = qj , rn =
√

1− s2 − q2
j

we have ‖r‖2 = 1. Since tanh(x) is concave for x > 0,
and |ri| ≤ 1, we find

h1 =

n∑
k=1

tanh(
rk
µ

)rk ≥ tanh(
1

µ
)

n∑
k=1

r2
k = tanh(

1

µ
).

From |qi| = ‖q‖∞ it follows that qi ≥ 1√
n

and thus
qj ≥ 1√

n
− ∆. Using this inequality and properties of

the hyperbolic secant we obtain

h2 ≤ 4 exp(−2
qj
µ
−logµ) ≤ exp(

2∆

µ
− 2

µ
√
n
−logµ+log 4)

and plugging in µ = c√
n logn

for some c < 1

≤ exp(
2∆

µ
− 2 log n

c
− log c+

1

2
log n+log log n+log 4).

We can bound this quantity by a constant, say h2 ≤ 1
2 , by

requiring

A ≡ 2∆

µ
− log c+ (

1

2
− 2

c
) log n+ log log n ≤ − log 8

and for and c < 1, using − log n+ log log n < 0 we have

A <
2∆

µ
− log c− (

2

c
− 1) log n.

Since ∆ can be taken arbitrarily small, it is clear that c can be
chosen in an n-independent manner such that A ≤ − log 8.
We then find



Efficient Dictionary Learning with Gradient Descent

h1 − h2 ≥ tanh(
1

µ
)− 1

2
≥ tanh(

√
n log n)− 1

2
> 0

since this inequality is strict, ∆ can be chosen small enough
such that

∣∣O(∆2)
∣∣ < ∆(h1 − h2) and hence

h > 0,

proving 9.

It follows that under negative gradient flow, a point with
|qj | < ||q||∞ cannot flow to a point q′ such that |q′j | =
||q′||∞. From the form of the critical points, for every such
j, q must thus flow to a point such that q′j = 0 (the value
of the j coordinate cannot pass through 0 to a point where
|q′j | = ||q′||∞ since from smoothness of the objective this
would require passing some q′′ with q′′j = 0, at which point
grad [fSep] (q′′)j = 0).

As for the maximal magnitude coordinates, if there is more
than one coordinate satisfying |qi1 | = |qi2 | = ‖q‖∞, it is
clear from symmetry that at any subsequent point q′ along
the gradient flow line

∣∣q′i1∣∣ =
∣∣q′i2 ∣∣. These coordinates can-

not change sign since from the smoothness of the objective
this would require that they pass through a point where they
have magnitude smaller than 1/

√
n, at which point some

other coordinate must have a larger magnitude (in order not
to violate the spherical constraint), contradicting the above
result for non-maximal elements. It follows that the sign
pattern of these elements is preserved during the flow. Thus
there is a single critical point to which any q can flow, and
this is given by setting all the coordinates with |qj | < ‖q‖∞
to 0 and multiplying the remaining coordinates by a positive
constant to ensure the resulting vector is on Sn. Denot-
ing this critical point by α, there is a vector b such that
q = PSn−1 [a(α) + b] and supp(a(α)) ∩ supp(b) = ∅,
‖b‖∞ < 1 with the form of a(α) given by 5 . The collec-
tion of all such points defines the stable manifold of α.

Proof of Lemma 2: (Separable objective gradient projection).
i) We consider the sign(wi) = 1 case; the
sign(wi) = −1 case follows directly. Recalling that
u(i)∗grad[fSep](q(w)) = tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn

,
we first prove

tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
≥ c(qn − wi) (10)

for some c > 0 whose form will be determined later. The
inequality clearly holds for wi = qn. To verify that it holds
for smaller values of wi as well, we now show that

∂

∂wi

[
tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
− c(qn − wi)

]
< 0

which will ensure that it holds for all wi. We define s2 =
1− ||w||2 + w2

i and denote qn =
√
s2 − w2

i to extract the
wi dependence, giving

∂

∂wi

[
tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
− c(qn − wi)

]

=

1
µ sech2

(
wi
µ

)
+ 1

µ sech2

(√
s2−w2

i

µ

)
w2
i

s2−w2
i

− tanh

(√
s2−w2

i

µ

)
s2

(s2−w2
i )3/2

+ c( wi√
s2−w2

i

+ 1)

≤
4
µ

(
e−2

wi
µ + e−2

√
s2−w2

i
µ

)
− tanh

(√
s2−w2

i

µ

)
s2

(s2−w2
i )3/2

+ 2c

Where in the last inequality we used properties of the sech
function and qn ≥ wi. We thus want to show

4

µ

(
e−2

wi
µ + e−2 qnµ

)
+ 2c ≤ tanh

(
qn
µ

)
q2
n + w2

i

q3
n

and using log( 1
µ )µ ≤ wi ≤ qn and c =

1−µ2

1+µ2
−8µ

2 we have

4

µ

(
e−2

wi
µ + e−2 qnµ

)
+ 2c

≤ 8e−2
wi
µ

µ
+ 2c ≤ 8µ+ 2c ≤ 1− µ2

1 + µ2

= tanh

(
log(

1

µ
)

)
≤ tanh

(
qn
µ

)
1

qn

< tanh

(
qn
µ

)
q2
n + w2

i

q3
n

and it follows that 10 holds. For µ < 1
16 we are guaranteed

that c > 0.

From examining the RHS of 10 (and plugging in qn =√
s2 − w2

i ) we see that any lower bound on the gradient
of an element wj applies also to any element |wi| ≤ |wj |.
Since for |wj | = ||w||∞ we have qn−wj = wjζ , for every
log( 1

µ )µ ≤ wi we obtain the bound
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u(i)∗grad[fSep](q(w)) ≥ c ‖w‖∞ ζ

Proof of Theorem 1: (Gradient descent convergence
rate for separable function) .

We obtain a convergence rate by first bounding the number
of iterations of Riemannian gradient descent in Cζ0\C1, and
then considering C1\B∞r .

From Lemma 16 we obtain Cζ0\C1 ⊆ Cζ0\B∞1/√n+3
.

Choosing c2 so that µ < 1
2 , we can apply Lemma 2, and for

u defined in 7, we thus have

|wi| > µ log(
1

µ
)⇒ u(i)∗grad[fSep](q(w)) > c||w||∞ζ0.

Since from Lemma 7 the Riemannian gradient norm is
bounded by

√
n, we can choose c1, c2 such that µ log( 1

µ ) <
1

2
√
n+3

, η < 1
6
√
n2+3n

. This choice of η then satisfies
the conditions of Lemma 17 with r = µ log( 1

µ ), b =
1√
n+3

,M =
√
n, which gives that after a gradient step

ζ ′ ≥ ζ
(

1 +
c

2

√
n

n+ 3
η

)
≥ ζ (1 + c̃η) (11)

for some suitably chosen c̃ > 0. If we now define by
w(t) the t-th iterate of Riemannian gradient descent and
ζ(t) ≡ q(t)n

‖w(t)‖∞
− 1, ζ(0) ≡ ζ0, for iterations such that

w(t) ∈ Cζ\C1 we find

ζ(t) ≥ ζ(t−1) (1 + c̃η) ≥ ζ0 (1 + c̃η)
t

and the number of iterations required to exit Cζ0\C1 is

t1 =
log( 1

ζ0
)

log(1 + c̃η)
. (12)

To bound the remaining iterations, we use Lemma 2 to
obtain that for every w ∈ Cζ0\B∞r ,

‖grad[fSep](q(w))‖2 ≥
∥∥u(i)∗grad[fSep](q(w))

∥∥2

||u(i)||2
≥ ζ2

0c
2r2

where we have used ||u(i)||2 = 1 +
w2
i

q2n
≤ 2. We thus have

T−1∑
i=0

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

=

t1−1∑
i=0

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

+

T−1∑
i=t1

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

>
ζ2
0c

2

(n+ 3)
t1 + (T − t1)c2r2. (13)

Choosing η < 1
2L whereL is the gradient Lipschitz constant

of fs, from Lemma 5 we obtain

2
(
fSep(q(0))− f∗Sep

)
η

>

T−1∑
i=0

∥∥∥grad[fSep](q(i))
∥∥∥2

.

According to Lemma B, L = 1/µ and thus the above holds
if we demand η < µ

2 . Combining 12 and 13 gives

T <
2
(
fSep(q(0))− f∗Sep

)
ηc2r2

+

(
1− ζ20

(n+3)r2

)
log( 1

ζ0
)

log(1 + c̃η)
.

To obtain the final rate, we use in g(w0) − g∗ ≤
√
n and

c̃η < 1 ⇒ 1
log(1+c̃η) <

C̃
c̃η for some C̃ > 0. Thus one can

choose C > 0 such that

T <
C

η

(√
n

r2
+ log(

1

ζ0
)

)
. (14)

From Lemma 1 the ball B∞r contains a global minimizer of
the objective, located at the origin.

The probability of initializing in
⋃̆
A

Cζ0 is simply given from

Lemma 3 and by summing over the 2n possible choices
of Cζ0 , one for each global minimizer (corresponding to a
single signed basis vector).

Lemma 5 (Riemannian gradient descent iterate bound). For
a Riemannian gradient descent algorithm on the sphere with
step size tk < 1

2L , where L is a lipschitz constant for∇f(q),
one has

f(q1)− f(q?) ≥ f(q1)− f(qT )

≥ tk
2
‖grad [f ] (qk)‖2.

Proof. Just as in the euclidean setting, we can obtain a lower
bound on progress in function values of iterates of the Rie-
mannian gradient descent algorithm from a lower bound on
the Riemannian gradient. Consider f : Sn−1 → R, which
has L-lipschitz gradient. Let qk denote the current iterate
of Riemannian gradient descent, and let tk > 0 denote the
step size. Then we can form the Taylor approximation to
f ◦ Expqk(v) at 0qk :

f̂ : B1(0qk)∩TqkS
n−1 → R : v 7→ f(qk)+〈v,∇f(qk)〉.
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From Taylor’s theorem, we have for any v ∈ B1(0qk) ∩
TqkS

n−1

|f̂(v)− f ◦ Expqk(v)| ≤ 1

2
‖Hess[f ](qk)‖‖v − 0qk‖

2
,

where the matrix norm is the operator norm on Rn×n. Using
the gradient-lipschitz property of f , we readily compute

‖Hess[f ](qk)‖ ≤ ‖∇2f(qk)‖+ |〈∇f(qk), qk〉|
≤ 2L,

since ∇f(0) = 0 and qk ∈ Sn−1. We thus have

f ◦ Expqk(v) ≤ f(qk) + 〈v,∇f(qk)〉+ L‖v‖2.

If we put v = −tkgrad[f ](qk) and write qk+1 =
Expqk(−tkgrad [f ] (qk)), the previous expression be-
comes

f(qk+1) ≤ f(qk)− tk‖grad [f ] (qk)‖2 + t2kL‖grad [f ] (qk)‖2

≤ f(qk)− tk
2
‖grad [f ] (qk)‖2

if tk < 1
2L . Thus progress in objective value is guaranteed

by lower-bounding the Riemannian gradient.

As in the euclidean setting, summing the previous expres-
sion over iterations k now yields

T−1∑
k=1

f(qk)− f(qk+1) = f(q1)− f(qT )

≥ tk
2

T−1∑
k=1

‖grad [f ] (qk)‖2;

in addition, it holds f(q1)−f(qT ) ≤ f(q1)−f(q?). Plug-
ging in a constant step size gives the desired result.

Lemma 6 (Lipschitz constant of ∇f ). For any x1,x2 ∈
Rn, it holds

‖∇f(x1)−∇f(x2)‖ ≤ 1

µ
‖x1 − x2‖.

Proof. It will be enough to study a single coordinate func-
tion of∇f . Using a derivative given in section D.1, we have
for x ∈ R

d

dx
tanh(x/µ) =

1

µ
sech2

(
x

µ

)
.

A bound on the magnitude of the derivative of this smooth
function implies a lipschitz constant for x 7→ tanh(x/µ).
To find the bound, we differentiate again and find the critical

points of the function. We have, using the chain rule,

d

dx

(
1

µ
sech2

(
x

µ

))
=
−4

µ
sech

(
x

µ

)
· 1

(ex/µ + e−x/µ)2

·
(

1

µ
ex/µ − 1

µ
e−x/µ

)
= − 1

µ2

ex/µ − e−x/µ

(ex/µ + e−x/µ)3
.

The denominator of this final expression vanishes nowhere.
Hence, the only critical point satisfies x/µ = −x/µ, which
implies x = 0. Therefore it holds

d

dx
tanh(x/µ) ≤ 1

µ
sech2(0) =

1

µ
,

which shows that tanh(x/µ) is (1/µ)-lipschitz.

Now let x1 and x2 be any two points of Rn. Then one has

‖∇f(x1)−∇f(x2)‖ =

(∑
i

(tanh(x1i/µ)− tanh(x2i/µ))
2

)1/2

=

(∑
i

|tanh(x1i/µ)− tanh(x2i/µ)|2
)1/2

≤

(∑
i

1

µ

∣∣∣∣x1i

µ
− x2i

µ

∣∣∣∣2
)1/2

=
1

µ
‖x1 − x2‖,

completing the proof.

Lemma 7 (Separable objective gradient bound). The sepa-
rable objective gradient obeys

‖∇wg(w)‖ ≤
√

2n

‖grad[f ](q)‖ ≤
√
n

Proof. Recalling that the Euclidean gradient is given by
∇fSep(q)i = tanh

(
qi
µ

)
we use Jensen’s inequality, con-

vexity of the L2 norm and the triangle inequality to obtain

‖∇gs(w)‖2 ≤ ‖∇fSep(q)‖2+

∣∣∣∣tanh

(
qn
µ

)∣∣∣∣2 ‖w‖2q2
n

≤ 2n

while

‖grad[fSep](q)‖ = ‖(I − qq∗)∇fSep(q)‖ ≤ ‖∇fSep(q)‖ =
√
n
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B. Proofs - Dictionary Learning
Proof of Lemma 4:(Dictionary learning population gra-
dient) .

For simplicity we consider the case sign(wi) = 1. The
converse follows by a similar argument. We have

u(i)∗grad[fpopDL ](q(w)) =

Ex
[
tanh

(
q∗(w)x

µ

)(
−xn

wi
qn

+ xi

)]
(15)

Following the notation of (Sun et al., 2017), we write
xj = bjvj where bj ∼ Bern(θ), vj ∼ N (0, 1) and denote
the vectors of these variables by J , v respectively. Defining
Y (n) =

∑
j 6=n

q(w)jxj , X
(n) = qnvn, Y is Gaussian condi-

tioned on a certain setting of J . Using Lemma 40 in (Sun
et al., 2017) the first term in 15 is

−wiθ
q2
n

Ev,J |bn=1

[
tanh

(
Y (n) +X(n)

µ

)
X(n)

]

= −wi
µ
θEv,J |bn=1

[
sech2

(
Y (n) +X(n)

µ

)]

and similarly the second term in 15 is, with X(i) =
wivi, Y

(i) =
∑
j 6=i
q(w)jxj

θ

wi
Ev,J |bi=1

[
tanh

(
Y (i) +X(i)

µ

)
X(i)

]

=
wiθ

µ
Ev,J |bi=1

[
sech2

(
q∗(w)x

µ

)]
if we now define X =

∑
j 6=n,i

q∗(w)jxj we have

u(i)∗grad[fpopDL ](q(w)) =

=
wiθ

µ

 Ev,J |bi=1

[
sech2

(
q∗(w)x

µ

)]
−Ev,J |bn=1

[
sech2

(
q∗(w)x

µ

)] 

=
wiθ

µ
Ev,J

 sech2
(
X+bnqnvn+wivi

µ

)
−sech2

(
X+qnvn+wibivi

µ

) 

=
wiθ(1− θ)

µ
Ev,J\{n,i}

 sech2
(
X+wivi

µ

)
−sech2

(
X+qnvn

µ

)  (16)

B.1. Bounds for E
[
sech2(Y )

]
We already have a lower bound in Lemma 20 of (Sun et al.,
2017) that we can use for the second term, so we need an
upper bound for the first term. Following from p. 865, we
define Y ∼ N (0, σ2

Y ) , Z = exp
(
−2Y
µ

)
, and defining

β = 1− 1√
T

for some T > 1 we have

sech2(Y/µ) =
4Z

(1 + Z)2
≤ 4Z

(1 + βZ)2
=

∞∑
k=0

bkZ
k+1

Where bk = (−β)k(k + 1). Using B.3 from Lemma 40 in
(Sun et al., 2017) we have

E

[ ∞∑
k=0

bkZ
k+1

1Y >0

]
=

∞∑
k=0

bkE
[
e−2(k+1)Y/µ

1Y >0

]

=

∞∑
k=0

bk exp

(
1

2

(
2(k + 1)

µ

)2

σ2
Y

)
Φc
(

2(k + 1)

µ
σY

)

Where Φc(x) is the complementary Gaussian CDF (The
exchange of summation and expectation is justified since
Y > 0 implies Z ∈ [0, 1], see proof of Lemma
18 in (Sun et al., 2017) for details). Using the
following bounds 1√

2π

(
1
x −

1
x3

)
e−x

2/2 ≤ Φc(x) ≤
1√
2π

(
1
x −

1
x3 + 3

x5

)
e−x

2/2 by applying the upper (lower)
bound to the even (odd) terms in the sum, and then adding a
non-negative quantity, we obtain

≤ 1√
2π

∞∑
k=0

(−β)k(k+ 1)

 1
2(k+1)
µ σY

− 1(
2(k+1)
µ σY

)3



+
1√
2π

∞∑
k=0

βk(k + 1)

 3(
2(k+1)
µ σY

)5


and using

∞∑
k=0

(−β)k = 1
1+β ,

∞∑
k=0

bk
(k+1)3 ≥ 0,

∞∑
k=0

|bk|
(k+1)5 ≤

2 (from Lemma 17 in (Sun et al., 2017)) and taking T →∞
so that β → 1 we have

∞∑
k=0

bkE
[
Zk+1

1Y >0

]
≤ 1

2
√

2π

1
2
µσY

+
1√
2π

6(
2
µσY

)5

giving the upper bound
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E
[
sech2(Y/µ)

]
= E

[
1− tanh2(Y/µ)

]
≤ 8

∞∑
k=0

bkE
[
Zk+1

1Y >0

]

≤
√

2

π

µ

σY
+

3µ5

2
√

2πσ5
Y

while the lower bound (Lemma 20 in (Sun et al., 2017)) is√
2

π

µ

σY
− 2µ3

√
2πσ3

Y

− 3µ5

2
√

2πσ5
Y

≤ E
[
sech2(Y )

]
B.2. Gradient bounds

After conditioning on J \{n, i} the variablesX+qnvn, X+
qivi are Gaussian. We can thus plug the bounds into 16 to
obtain

u(i)∗grad[fpopDL ](q(w)) ≥
√

2

π
wiθ(1− θ)

∗EJ\{n,i}

 1√
σ2
X+w2

i

− µ2

(σ2
X+w2

i )
3/2 − 3µ4

4(σ2
X+w2

i )
5/2

− 1√
σ2
X+q2n

− 3µ4

4(σ2
X+q2n)

5/2



≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[√

σ2
X+q2n−

√
σ2
X+w2

i√
σ2
X+q2n

√
σ2
X+w2

i

]
− µ2

w3
i
− 3µ4

2w5
i


the term in the expectation is positive since qn >
||w||∞ (1 + ζ) > wi giving

≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[ √

σ2
X + q2

n

−
√
σ2
X + w2

i

]
− µ2

w3
i
− 3µ4

2w5
i


. To extract the ζ dependence we plug in qn > wi (1 + ζ)
and develop to first order in ζ (since the resulting function
of ζ is convex) giving

≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[

w2
i ζ√

σ2
X+w2

i

]
− µ2

w3
i
− 3µ4

2w5
i



≥
√

2

π
θ(1− θ)

(
w3
i ζ −

µ2

w2
i

− 3µ4

2w4
i

)
Given some ζ and r such that wi > r, if we now choose µ

such that µ <
√√

1+ 3
4 r

3ζ−1

3 r we have the desired result.

This can be achieved by requiring µ < c1r
5/2
√
ζ for a

suitably chosen c1 > 0.

Lemma 8 (Point-wise concentration of projected gradient).
For u(i) defined in 7, the gradient of the objective 1 obeys

P
[∣∣∣u(i)∗grad[fDL](q)− E

[
u(i)∗grad[fDL](q)

]∣∣∣ ≥ t]
≤ 2 exp

(
− pt2

4 + 2
√

2t

)
Proof of Lemma 8: (Point-wise concentration of pro-
jected gradient) .

If we denote by xi a column of the data matrix with entries
xij ∼ BG(θ), we have

u(i)∗grad[fDL](q(w))

=
1

p

p∑
k=1

tanh

(
q∗(w)xk

µ

)(
xki − xkn

wi
qn

)
≡ 1

p

p∑
k=1

Zk

. Since tanh(x) is bounded by 1,

|Zk| ≤
∣∣∣∣(xki − xknwiqn

)∣∣∣∣ ≡ ∣∣uTxk∣∣
. Invoking Lemma 21 from (Sun et al., 2017) and ‖u‖2 =

1 +
w2
i

q2n
≤ 2 we obtain

E [|Zk|m] ≤ EZ∼N (0,2) [|Z|m] ≤
√

2
m

(m− 1)!!

≤ 2
√

2
m−2m!

2

and using Lemma 36 in (Sun et al., 2017) with R =√
2, σ =

√
2 we have

P [|∇gDL(w)i − E [∇gDL(w)i]| ≥ t]

≤ 2 exp

(
− pt2

4 + 2
√

2t

)

Lemma 9 (Projection Lipschitz Constant). The Lipschitz
constant for u(i)∗grad[fDL](q(w)) is

L = 2
√
n ‖X‖∞

(
‖X‖∞
µ

+ 1

)
Proof of Lemma 9: (Projection Lipschitz Constant).
We have

|u(j)∗grad[fDL](q(w))− u(j)∗grad[fDL](q(w′))|
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=

∣∣∣∣∣∣1p
p∑
i=1

 tanh(q
∗(w)xi

µ )
(
xij −

xin
qn(w)wj

)
−tanh(q

∗(w′)xi

µ )
(
xij −

xin
qn(w′)w

′
j

) ∣∣∣∣∣∣

≡

∣∣∣∣∣1p
p∑
i=1

[
tanh(

q∗(w)xi

µ
)s(w)− tanh(

q∗(w′)xi

µ
)s(w′)

]∣∣∣∣∣
where we have defined s(w) = xij − xn

qn(w)wj . Using
q(w), q(w′) ∈ C ⇒ qn(w), qn(w′) ≥ 1

2
√
n

we have

|s(w)− s(w′)| =
∣∣xin∣∣ ∣∣∣∣ wj

qn(w)
−

w′j
qn(w′)

∥∥∥∥
≤ |xn| 2

√
n ‖w −w′‖

Lemma 25 in (Sun et al., 2017) gives

∣∣∣∣tanh(
q∗(w)x

µ
)− tanh(

q∗(w′)x

µ
)

∣∣∣∣ ≤ 2
√
n

µ
‖x‖ ‖w −w′‖

We also use the fact that tanh is bounded by 1 and s(w) is
bounded by ‖X‖∞. We can then use Lemma 23 in (Sun
et al., 2017) to obtain

|u(j)∗grad[fDL](q(w))− u(j)∗grad[fDL](q(w′))|

≤ 2
√
n

p

p∑
i=1

(
1

µ

∥∥xi∥∥2

∞ +
∥∥xi∥∥∞) ‖w −w′‖

≤ 2
√
n ‖X‖∞

(
‖X‖∞
µ

+ 1

)
‖w −w′‖

we thus have L = 2
√
n ‖X‖∞

(
‖X‖∞
µ + 1

)
.

Lemma 10 (Uniformized gradient fluctuations). For all
w ∈ Cζ , i ∈ [n], with probability P > Py
we have∣∣∣∣ u(i)∗grad[fDL](q(w))

−E
[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

where

Py ≡ 2 exp

 − 1
4

py(θ,ζ)2

4+
√

2y(θ,ζ)
+ log(n)

+n log

(
48
√
n
(

4 log(np)
µ +

√
log(np)

)
y(θ,ζ)

) 
Proof: B

Proof of Lemma 10:(Uniformized gradient fluctuations).
For X ∈ Rn×p with i.i.d. BG(θ) entries, we define the
event E∞ ≡ {1 ≤ ‖X‖∞ ≤ 4

√
log(np)}. We have

P[Ec∞] ≤ θ(np)−7 + e−0.3θnp

For any ε ∈ (0, 1) we can construct an ε-net N for
Cζ\B2

1/20
√

5(n−1)
(0) with at most (3/ε)n points. Using

Lemma 9, on E∞, grad[fDL](q)i is L-Lipschitz with

L = 8
√
n

(
4 log(np)

µ
+
√

log(np)

)
. If we choose ε = y(θ,ζ)

2L we have

|N | ≤ (
6L

y(θ, ζ)
)n

. We then denote by Eg the event

max
w∈N,i∈[n]

∣∣∣∣ u(i)∗grad[fDL](q(w))
−E

[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

2

and obtain that on Eg ∩ E∞
sup

w∈Cζ ,i∈[n]

|∇gDL(w)i − E [∇gDL(w)i]| ≤ y(θ, ζ)

. Setting t = b(θ)
2 in the result of Lemma 8 gives that for all

w ∈ Cζ , i ∈ [n],

P
[∣∣∣∣ u(i)∗grad[fDL](q(w))
−E

[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≥ y(θ, ζ)

2

]
≤ 2 exp

(
−1

4

py(θ, ζ)2

4 + 2
√

2y(θ, ζ)

)
and thus

P
[
Ecg
]
≤ 2 exp

 − 1
4

py(θ,ζ)2

4+
√

2y(θ,ζ)2

+n log
(

6L
b(θ)

)
+ log(n)



Lemma 11 (Gradient descent convergence rate for dictio-
nary learning - population). For any 1 > ζ0 > 0 and
s > µ

4
√

2
, Riemannian gradient descent with step size

η < c2s
n on the dictionary learning population objective

8 with µ < c4
√
ζ0

n5/4 , θ ∈ (0, 1
2 ), enters a ball of radius c3s

from a target solution in

T <
C1

ηθ

(
1

s
+ n log

1

ζ0

)
iterations with probability

P ≥ 1− 2 log(n)ζ0

where the ci, Ci are positive constants.
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Proof of Lemma 11: (Gradient descent convergence
rate for dictionary learning - population) .

The rate will be obtained by splitting Cζ0 into three regions.
We consider convergence to B2

s (0) since this set contains
a global minimizer. Note that the balls in the proof are
defined with respect to w.

B.3. Cζ0\B2
1/20

√
5
(0)

The analysis in this region is completely analogous to that
in the first part of the proof of Lemma 1. For every point in
this set we have

‖w‖∞ >
1

20
√

5(n− 1)

. From Lemma 16 we know that
√

n−1
(2+ζ(t))ζ(t)+n

<

1
20
√

5
⇒ w(t) ∈ B2

1/20
√

5
(0) hence in this set ζ < 8. If we

choose r = 1

40
√

5(n−1)
, since for every point in this region

r3ζ < 1, we have r5/2
√
ζ

2
√

3
<

√√
1+ 3

4 r
3ζ−1

3 r = z(r, ζ) and

we thus demand µ <
√
ζ0(

40
√

5(n−1)
)5/2

2
√

3
≤ r5/2

√
ζ

2
√

3
and

obtain from Lemma 4 that for |wi| > r

u(i)∗grad[fpopDL ](q(w)) ≥ cDL
(8000(n− 1))3/2

. We now require η < 1

360
√

5θn(n−1)
= b−r

3M we can apply

Lemma 17 with b = 1

20
√

5(n−1)
, r = 1

40
√

5(n−1)
,M =

√
θn (since the maximal norm of the Riemannian gradient

is
√
θn from Lemma 12), obtaining that at every iteration in

this region

ζ ′ ≥ ζ
(

1 +

√
ncDL

2(8000(n− 1))3/2
η

)
and the maximal number of iterations required to obtain
ζ > 8 and exit this region is given by

t1 =
log(8/ζ0)

log
(

1 +
√
ncDL

2(8000(n−1))3/2
η
) (17)

B.4. B2
1/20

√
5
(0)\B2

s (0)

According to Proposition 7 in (Sun et al., 2017), which we
can apply since s ≥ µ

4
√

2
, µ < 9

50 , in this region we have

w∗∇wgpopDL(w)

‖w‖
≥ cθ

A simple calculation shows that ∇wgpopDL(w) =(
∂ϕ
∂w

)∗
grad[fpopDL ](q(w)) where ϕ is the map defined in 3,

and thus

w∗
(
∂ϕ
∂w

)∗
grad[fpopDL ](q(w))

‖w‖
=

(
w∗

−‖w‖
2

qn

)
grad[fpopDL ](q(w))

‖w‖

> θc (18)

. Defining h(q) = ‖w‖2
2 , and denoting by q′ an update

of Riemannian gradient descent with step size η, we have
(using a Lagrange remainder term)

h(q′) = h(q) +
∂h(q′)

∂η
η +

η∫
0

dt
∂2h(q′)

∂η2
η=t

(η − t)

︸ ︷︷ ︸
≡R

=
‖w‖2

2
−
〈

grad[fpopDL ](q),
∂h(q)

∂q

〉
+R

where in the last line we used q′ =

cos(gη)q − sin(gη)
grad[fpopDL ](q)

g where g ≡

‖grad[fpopDL ](q)‖. Since
〈

grad[fpopDL ](q), ∂h(q)
∂q

〉
=〈

grad[fpopDL ](q), (I − qq∗) ∂h(q)
∂q

〉
and

(I − qq∗) ∂h(q)

∂q
= (I − qq∗)

(
w
−qn

)
=

(
w
−qn

)
−(‖w‖2−q2

n)q = 2(1−‖w‖2)

(
w

−‖w‖
2

qn

)

we obtain (using 18)

‖w′‖2

2
=
‖w‖2

2
+2(1−‖w‖2)η

〈
grad[fpopDL ](q),

(
w

−‖w‖
2

qn

)〉
+R

<
‖w‖2

2
− 2(1− ‖w‖2) ‖w‖ θcη +R

It remains to bound R. Denoting r =(
w
−qn

)∗
grad[f ](q) we have

∂2h(q′)

∂η2
η=t

=

(
∂q′

∂η

)∗
∂2h(q)

∂q∂q

∂q′

∂η
η=t+

∂h(q)

∂q

∗
∂2q′

∂η2 η=t

=

cos2(gt)
(
grad[fpopDL ](q)2 − grad[fpopDL ](q)2

n

)
+g2

(
sin2(gt)− cos(gt)

) (
‖w‖2 − q2

n

)
+g sin(gt)r(1 + 2 cos(gt))
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hence for some C > 0, if ‖grad[fpopDL ](q)‖ < M we have

R < CM2η2

and thus choosing η < (1−‖w‖2)‖w‖θc
CM2 we find

‖w′‖2 < ‖w‖2 − 2(1− ‖w‖2) ‖w‖ cθη

and in our region of interest ‖w′‖2 < ‖w‖2 − c̃sθη for
some c̃ > 0 and thus summing over iterations, we obtain for
some C̃2 > 0

t2 =
C̃2

sθη
. (19)

From Lemma 12,M =
√
θn and thus with a suitably chosen

c2 > 0, η < c2s
n satisfies the above requirement on η as

well as the previous requirements, since θ < 1.

B.5. Final rate and distance to minimizer

Combining these results gives, we find that when initializ-
ing in Cζ0 , the maximal number of iterations required for
Riemannian gradient descent to enter B2

s (0) is

T ≤ t1 + t2 <
C1

ηθ

(
n log

1

ζ0
+

1

s

)
for some suitably chosen C1, where t1, t2 are given in 17,19.
The probability of such an initialization is given by the
probability of initializing in one of the 2n possible choices
of Cζ , which is bounded in Lemma 3.

Once w ∈ B2
s (0), the distance in Rn−1 between w and a

solution to the problem (which is a signed basis vector, given
by the point w = 0 or an analog on a different symmetric
section of the sphere) is no larger than s, which in turn
implies that the Riemannian distance between ϕ(w) and a
solution is no larger than c3s for some c3 > 0. We note that
the conditions on µ can be satisfied by requiring µ < c4

√
ζ0

n5/4 .

Lemma 12 (Dictionary learning gradient upper bound). The
dictionary learning population gradient obeys

‖∇wgpopDL(w)‖ ≤
√

2θn

‖grad[fpopDL ](q)‖ ≤
√
θn

while in the finite sample case

‖∇wgDL(w)‖2 ≤
√

2n ‖X‖∞

‖grad[fDL](q)‖ ≤
√
n ‖X‖∞

whereX is the data matrix with i.i.d. BG(θ) entries.

Proof. Denoting x ≡ (x, xn) we have

‖∇wgpopDL(w)‖2 =

∥∥∥∥E [tanh

(
q∗x

µ

)(
x− xn

w

qn

)]∥∥∥∥2

and using Jensen’s inequality, convexity of the L2 norm and
the triangle inequality to obtain

≤ E

[∥∥∥∥tanh

(
q∗x

µ

)
x

∥∥∥∥2

+

∥∥∥∥tanh

(
q∗x

µ

)(
xn
w

qn

)∥∥∥∥2
]

≤ E

[
‖x‖2 +

∥∥∥∥xnwqn
∥∥∥∥2
]
≤ 2θn

while
‖grad[fpopDL ](q)‖ ≤ ‖∇fpopDL (q)‖

=

∥∥∥∥E [tanh

(
q∗x

µ

)
x

]∥∥∥∥ ≤ √θn
Similarly, in the finite sample size case one obtains

‖∇wgDL(w)‖2 ≤ 1

p

p∑
i=1

∥∥xi∥∥2
+

∥∥∥∥xinwqn
∥∥∥∥2

≤ 2n ‖X‖2∞

‖grad[fDL](q)‖ ≤ 1

p

p∑
i=1

∥∥∥∥tanh

(
q∗xi

µ

)
xi
∥∥∥∥

≤
√
n ‖X‖∞

Proof of Theorem 2: (Gradient descent convergence
rate for dictionary learning) .

The proof will follow exactly that of Lemma 11, with the
finite sample size fluctuations decreasing the guaranteed
change in ζ or ||w|| at every iteration (for the initial and
final stages respectively) which will adversely affect the
bounds.

B.6. Cζ0\B2
1/20

√
5
(0)

To control the fluctuations in the gradient projection, we
choose

y(θ, ζ0) =
ζ0cDL

2(8000(n− 1))3/2

which can be satisfied by choosing y(θ, ζ0) = c7θ(1−θ)ζ0
n3/2

for an appropriate c7 > 0 . According to Lemma 10, with
probability greater than Py we then have∣∣∣∣ u(i)∗grad[fDL](q(w))

−E
[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

With the same condition on µ as in Lemma 11, combined
with the uniformized bound on finite sample fluctuations,
we have that at every point in this set

u(i)∗grad[fpopDL ](q(w)) ≥ cDL
2(8000(n− 1))3/2
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. According to Lemma 12 the Riemannian gradient norm is
bounded by M =

√
n ‖X‖∞. Choosing r, b as in Lemma

11, we require η < 1

360‖X‖∞
√

5n(n−1)
= b−r

3M and obtain

from Lemma 17

ζ ′ ≥ ζ
(

1 +

√
ncDL

4(8000(n− 1))3/2
η

)

t1 =
log(8/ζ0)

log
(

1 +
√
ncDL

4(8000(n−1))3/2
η
) (20)

B.7. B2
1/20

√
5
(0)\B2

s (0)

From Theorem 2 in (Sun et al., 2017) there are numerical
constants cb, c? such that in this region

w∗∇wgDL(w)

‖w‖
=
w∗
(
∂ϕ
∂w

)∗
grad[f ](q(w))

‖w‖
≥ c?θ

with probability P > 1 − cbp
−6. Following the same

analysis as in Lemma 11, since from Lemma 12 the norm
of the gradient gradient is bounded by

√
n||X||∞ we re-

quire η < (1−‖w‖2)‖w‖θc?
Cn||X||2∞

which is satisfied by requiring

η < c̃θs
n||X||2∞

for some chosen c̃ > 0. We then obtain

t3 =
C2

sθη
(21)

for a suitably chosen C2 > 0.

B.8. Final rate and distance to minimizer

The final bound on the rate is obtained by summing over the
terms for the three regions as in the population case, and
convergence is again to a distance of less than c3s from a
local minimizer. The probability of achieving this rate is
obtained by taking a union bound over the probability of
initialization in Cζ0 (given in Lemma 3) and the probabilities
of the bounds on the gradient fluctuations holding (from
Lemma 10 and (Sun et al., 2017)). Note that the fluctuation
bound events imply by construction the event E∞ = {1 ≤
‖X‖∞ ≤ 4

√
log(np)} hence we can replace ‖X‖∞ in the

conditions on η above by 4
√

log(np). The conditions on
η, µ can be satisfied by requiring η < c5θs

n lognp , µ <
c6
√
ζ0

n5/4

for suitably chosen c5, c6 > 0. The bound on the number
of iterations can be simplified to the form in the theorem
statement as in the population case.

C. Generalized Phase Retrieval
We show below that negative curvature normal to stable
manifolds of saddle points in strict saddle functions is a
feature that is found not only in dictionary learning, and

can be used to obtain efficient convergence rates for other
nonconvex problems as well, by presenting an analysis of
generalized phase retrieval that is along similar lines to the
dictionary learning analysis. We stress that this contribution
is not novel since a more thorough analysis was carried
out by (Chen et al., 2018). The resulting rates are also
suboptimal, and pertain only to the population objective.

Generalized phase retrieval is the problem of recovering
a vector x ∈ Cn given a set of magnitudes of projections
yk = |x∗ak| onto a known set of vectors ak ∈ Cn. It
arises in numerous domains including microscopy (Miao
et al., 2002), acoustics (Balan et al., 2006), and quantum
mechanics (Corbett, 2006) (see (Shechtman et al., 2015) for
a review). Clearly x can only be recovered up to a global
phase. We consider the setting where the elements of every
ak are i.i.d. complex Gaussian, (meaning (ak)j = u+ iv
for u, v ∼ N (0, 1/

√
2)). We analyze the least squares

formulation of the problem (Candes et al., 2015) given by

min
z∈Cn

f(z) =
1

2p

p∑
k=1

(
y2
k − |z∗ak|

2
)2

.

Taking the expectation (large p limit) of the above objec-
tive and organizing its derivatives using Wirtinger calculus
(Kreutz-Delgado, 2009), we obtain

E[f ] = ‖x‖4 + ‖z‖4 − ‖x‖2 ‖z‖2 − |x∗z|2 (22)

∇E[f ] =

[
∇zE[f ]
∇zE[f ]

]

=

 (
(2 ‖z‖2 − ‖x‖2)I − xx∗

)
z(

(2 ‖z‖2 − ‖x‖2)I − xxT
)
z

 .
For the remainder of this section, we analyze this objective,
leaving the consideration of finite sample size effects to
future work.

C.1. The geometry of the objective

In (Sun et al., 2016) it was shown that aside from the mani-
fold of minima

Ă ≡ xeiθ,

the only critical points of E[f ] are a maximum at z = 0 and
a manifold of saddle points given by

“A \ {0} ≡
{
z

∣∣∣∣ z ∈W, ‖z‖ =
‖x‖√

2

}
where W ≡ {z|z∗x = 0}. We decompose z as

z = w + ζeiφ
x

‖x‖
, (23)

where ζ > 0,w ∈ W . This gives ‖z‖2 = ‖w‖2 + ζ2.
The choice of w, ζ, φ is unique up to factors of 2π in φ, as



Efficient Dictionary Learning with Gradient Descent

can be seen by taking an inner product with x. Since the
gradient decomposes as follows:

∇zE[f ] =
(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)

(w + ζeiφ
x

‖x‖
)

=
(

2 ‖z‖2 − ‖x‖2
)
w + 2ζeiφ

(
‖z‖2 − ‖x‖2

) x

‖x‖
(24)

the directions eiφ x
‖x‖ ,

w
‖w‖ are unaffected by gradient de-

scent and thus the problem reduces to a two-dimensional
one in the space (ζ, ‖w‖). Note also that the objective for
this two-dimensional problem is a Morse function, despite
the fact that in the original space there was a manifold of
saddle points. It is also clear from this decomposition of
the gradient that the stable manifolds of the saddles are
precisely the set W .

It is evident from 24 that the dispersive property does not
hold globally in this case. For z /∈ B||x|| we see that gra-
dient descent will cause ζ to decrease, implying positive
curvature normal to the stable manifolds of the saddles. This
is a consequence of the global geometry of the objective.
Despite this, in the region of the space that is more "interest-
ing", namely B||x||, we do observe the dispersive property,
and can use it to obtain a convergence rate for gradient
descent.

We define a set that contains the regions that feeds into small
gradient regions around saddle points within B||x|| by

Qζ0 ≡ {z(ζ, ‖w‖)|ζ ≤ ζ0}.

We will show that, as in the case of orthogonal dictionary
learning, we can both bound the probability of initializing
in (a subset of) the complement of Qζ0 and obtain a rate
for convergence of gradient descent in the case of such an
initialization. 9

We now define four regions of the space which will be used
in the analysis of gradient descent:

S1 ≡
{
z
∣∣∣ ‖z‖2 ≤ 1

2 ‖x‖
2
}

S2 ≡
{
z
∣∣∣ 1

2 ‖x‖
2
< ‖z‖2 ≤ (1− c) ‖x‖2

}
S3 ≡

{
z
∣∣∣ (1− c) ‖x‖2 < ‖z‖2 ≤ ‖x‖2

}
S4 ≡

{
z
∣∣∣ ‖x‖2 < ‖z‖2 ≤ (1 + c) ‖x‖2

}
defined for some c < 1

4 . These are shown in Figure 4.

We now define

z′ ≡ z − η∇zE[f ] ≡ w′ + ζ ′eiφ
x

‖x‖
(25)

9Qζ0 is equivalent to the complement of the set Cζ used in the
analysis of the separable objective and dictionary learning.

Figure 4. The projection of the objective of generalized phase re-
trieval on the ( ζ

‖x‖ ,
‖w‖
‖x‖ ) plane. The full red curves are the bound-

aries between the sets S1, S2, S3, S4 used in the analysis. The
dashed red line is the boundary of the set Qζ0 that contains small
gradient regions around critical points that are not minima. The
maximizer and saddle point are shown in dark green, while the
minimizer is in pink.

and using 24 obtain

ζ ′ =
(

1− 2η(‖z‖2 − ‖x‖2)
)
ζ (26a)

‖w′‖ =
(

1− η
(

2 ‖z‖2 − ‖x‖2
))
‖w‖ . (26b)

These are used to find the change in ζ, ‖w‖ at every iteration
in each region:

On S1: ζ ′ ≥ (1 + η ‖x‖2)ζ (27a)
‖w′‖ ≥ ‖w‖ (27b)

On S2: ζ ′ ≥ (1 + 2cη ‖x‖2)ζ (27c)
‖w′‖ ≤ ‖w‖ (27d)

On S3:
(

1− η ‖x‖2
)
‖w‖ ≤ ‖w′‖

≤
(

1− (1− 2c)η ‖x‖2
)
‖w‖ (27e)

ζ ≤ ζ ′ ≤ (1 + 2cη ‖x‖2)ζ (27f)

On S4:
(

1− (1 + 2c)η ‖x‖2
)
‖w‖ ≤ ‖w′‖

≤
(

1− η ‖x‖2
)
‖w‖ (27g)

(1− 2cη ‖x‖2)ζ ≤ ζ ′ ≤ ζ (27h)

C.2. Behavior of gradient descent in ∪4
i=1Si

We now show that gradient descent initialized in S1\Qζ0
cannot exit ∪4

i=1Si or enter Qζ0 . Lemma 14 guarantees
that gradient descent initialized in ∪4

i=1Si remains in this
set. From equation 27 we see that a gradient descent step
can only decrease ζ if z ∈ S4. Under the mild assumption
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ζ2
0 < 7

16 ‖x‖
2 we are guaranteed from Lemma 13 that at

every iteration ζ ≥ ζ0. Thus the region with ζ < ζ0 can only
be entered if gradient descent is initialized in it. It follows
that initialization in S1\Qζ0 rules out entering Qζ0 at any
future iteration of gradient descent. Since this guarantees
that regions that feed into small gradient regions are avoided,
an efficient convergence rate can again be obtained.

C.3. Convergence rate

Theorem 3 (Gradient descent convergence rate for general-
ized phase retrieval). Gradient descent on 22 with step size
η <

√
c

4‖x‖2 , c <
1
4 , initialized uniformly in S1 converges to

a point z such that dist(z, Ă) <
√

5c ‖x‖ in

T <
log
(
‖x‖
ζ
√

2

)
log(1+η‖x‖2)

+ log(2)

2 log(1+2cη‖x‖2)

+
log(2c) log( 4√

7
)

log(1−(1−2c)η‖x‖2) log(1+2cη‖x‖2)

iterations with probability

P ≥ 1−
√

8

π
erf

(√
2n

‖x‖
ζ

)
,

Proof. Please see Appendix C.3.

We find that in order to prevent the failure probability from
approaching 1 in a high dimensional setting, if we assume
that ‖x‖ does not depend on n we require that ζ scale like

1√
n

. This is simply the consequence of the well-known
concentration of volume of a hypersphere around the equa-
tor. Even with this dependence the convergence rate itself
depends only logarithmically on dimension, and this again
is a consequence of the logarithmic dependence of ζ due to
the curvature properties of the objective.
Lemma 13. For any iterate z of gradient descent on 22,
assuming η <

√
c

4‖x‖2 , c <
1
4 and defining ζ ′ as in 25, we

have i)

z ∈
4⋃
i=1

Si ⇒ ‖w‖2 ≤
‖x‖2

2

ii)

z ∈ S4 ⇒ ζ ′2 ≥ 7

16
‖x‖2

Proof of Lemma 13. i) From 27 we see that in
4⋃
i=2

Si the

quantity ‖w‖2 cannot increase, hence this can only happen
in S1. We show that for some z ∈ S1, a point with ‖w‖ =

(1 − ε)‖x‖√
2
, ε < 1 cannot reach a point with ‖w‖′ = ‖x‖√

2
by a gradient descent step. This would mean

(
1− η

(
2 ‖w‖2 + 2ζ2 − ‖x‖2

))
‖w‖

=
(

1− η
(

(1− ε)2 ‖x‖2 + 2ζ2 − ‖x‖2
))

(1− ε)‖x‖√
2

=
‖x‖√

2

and since ζ2 ≥ 0 this implies

(
1 + εη ‖x‖2 (2− ε)

)
(1− ε) ≥ 1

by considering the product of these two factors, this in turn
implies

1

2b
(2− ε) ≥ η ‖x‖2 (2− ε) ≥ 1

where we have used η <
√
c

b‖x‖2 , c <
1
4 . Thus if we choose

b = 4 this inequality cannot be satisfied.

Additionally, if we initialize in S1 ∩ Qζ0 then we cannot
initialize at a point where ‖w‖′ = ‖x‖√

2
and hence the in-

equality is strict.

ii) Since only a step from S4 can decrease ζ, we have that
for the initial point ‖z‖2 > ‖x‖2. Combined with ‖w‖2 ≤
‖x‖2

2 this gives

ζ2 ≥ ‖x‖
2

2

and using the lower bound (1−2η ‖x‖2 c)ζ ≤ ζ ′ we obtain

ζ ′2 ≥ ‖x‖
2

2
(1− 2η ‖x‖2 c)2 ≥ ‖x‖

2

2
(1− 4η ‖x‖2 c)

≥ (1− 1

2b
)
‖x‖2

2

where in the last inequality we used c < 1
4 , η <

√
c

b‖x‖2 .
Choosing b = 4 gives

ζ ′2 ≥ 7

16
‖x‖2

If we require ζ2
0 <

7
16 ‖x‖

2 this also ensures that the next
iterate cannot lie in the small gradient regions around the
stable manifolds of the saddles.

Lemma 14. Defining z′ as in 25, under the conditions of
Lemma 13 and we have

i)

z ∈
4⋃
i=2

Si ⇒ z′ ∈
4⋃
i=2

Si
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ii)
z ∈ S1 ⇒ z′ ∈ S1 ∪ S2

Proof of Lemma 14. We use the fact that for the next iter-
ate we have

‖z′‖2 =
(

1− η(2 ‖z‖2 − ‖x‖2)
)2

‖w‖2

+
(

1− 2η(‖z‖2 − ‖x‖2)
)2

ζ2
(28)

We will also repeatedly use η <
√
c

b‖x‖2 , c <
1
4 and z ∈

4⋃
i=1

Si ⇒ ‖w‖2 ≤ ‖x‖
2

2 which is a shown in Lemma 13.

C.4. z ∈ S3 ⇒ z′ ∈
4⋃
i=2

Si

We want to show ‖x‖2
2 <

(1)
‖z′‖2 ≤

(2)
(1 + c) ‖x‖2.

1) We have z ∈ S3 ⇒ ‖z‖2 = (1−ε) ‖x‖2 for some ε ≤ c
and using 28 we must show

‖x‖2

2
≤

(
1− η ‖x‖2 (1− 2ε)

)2

‖w‖2

+
(

1 + 2η ‖x‖2 ε
)2

ζ2

or equivalently

A ≡ ε− ‖x‖
2

2

≤ η ‖x‖2
 (−2(1− 2ε) + (1− 2ε)2η ‖x‖2

)
‖w‖2

+4
(
ε+ ε2η ‖x‖2

)
ζ2

 ≡ B
and using η <

√
c

b‖x‖2 , c <
1
4

−‖x‖2

b
<
−2 ‖x‖

√
c

b
< −2η ‖x‖4 ≤ B

while on the other hand

A ≤ c− ‖x‖
2

2
< −‖x‖

2

4

thus picking b = 4 guarantees the desired result.

2) By a similar argument, ‖z′‖2 ≤ (1 + c) ‖x‖2 is equiva-
lent to

A ≡ η ‖x‖2
 (−2(1− 2ε) + η ‖x‖2 (1− 2ε)2

)
‖w‖2

+4
(
ε+ η ‖x‖2 ε2

)
ζ2


≤ ‖x‖2 (c+ ε) ≡ B

. Since ‖w‖2 ≤ ‖x‖
2

2 and ‖z‖2 ≤ ‖x‖2 ⇒ ζ2 ≤ ‖x‖
2

2 we
obtain

A ≤ η
[
η ‖x‖4 + 4

(
‖x‖2 ε+ η ‖x‖4 ε2

)] ‖x‖2
2

<
1

2b

[
1

b
+ 2

(
1 +

1

8b

)]
c ‖x‖2

. If we choose b = 4 we thus have A < B which implies

‖z′‖2 < (1 + c) ‖x‖2

C.5. z ∈ S4 ⇒ z′ ∈
4⋃
i=2

Si

We have z ∈ S4 ⇒ ‖z‖2 = ‖w‖2 + ζ2 = (1 + ε) ‖x‖2 for
some ε ≤ c .

1) ‖x‖
2

2 < ‖z′‖2 is equivalent to

A ≡ −(ε+
1

2
) ‖x‖2

≤ η ‖x‖2
 (−4(1 + 2ε) + η ‖x‖2 (1 + 2ε)2

)
‖w‖2

+4
(
−ε+ η ‖x‖2 ε2

)
ζ2

 ≡ B
. We have

B ≥ −4η ‖x‖2
(

(1 + 2ε) ‖w‖2 + εζ2
)
≥ −15

8b
‖x‖2

where the last inequality used ‖w‖2 ≤ ‖x‖2
2 and ‖z‖2 ≤

‖x‖2 (1 + c) ⇒ ζ2 ≤ ‖x‖2 ( 1
2 + c). The choice b = 4

gaurantees A ≤ B which ensures the desired result.

2) This is trivial since ‖z‖2 ≤ (1 + c) ‖x‖2 and in S4 both
ζ and ‖w‖decay at every iteration (ref eq).

C.6. z ∈ S2 ⇒ z′ ∈
4⋃
i=2

Si

1) We use z ∈ S2 ⇒ ‖z‖2 = ‖w‖2 + ζ2 = ( 1
2 + ε) ‖x‖2

for some ε ≤ 1
2 − c . Using a similar argument as in the

previous section, we are required to show

−ε ‖x‖2 < η ‖x‖2
 4

(
−ε+ ε2η ‖x‖2

)
‖w‖2

+
(

2(1− 2ε) + (1− 2ε)2η ‖x‖2
)
ζ2


≡ B

where B ≥ −ε‖x‖
2

b implies that b = 4 gives the desired
result.
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2) The condition is equivalent to

A ≡ η ‖x‖2
 4

(
−ε+ ε2η ‖x‖2

)
‖w‖2

+
(

2(1− 2ε) + (1− 2ε)2η ‖x‖2
)
ζ2

+ε ‖x‖2

≤ (
1

2
+ c) ‖x‖2 ≡ B

One can show by looking for critical points of A(ε) in the
range 0 ≤ ε ≤ 1

2 that A is maximized at ε = 0, since there

is only one critical point at ε∗ =
4− b√

c
+2
√
c
b

8
√
c
b

andA(ε∗) < 0,

while

A(
1

2
) ≤

[(
−2

√
c

b
+

c

b2

)
‖w‖2

]
+

1

2
‖x‖2

A(0) ≤ 1

2b

(
2 +

1

2b

)
‖x‖2

2

and in both cases b = 4 ensures A ≤ B.

C.7. z ∈ S1 ⇒ z′ ∈ S1 ∪ S2

We must show ‖z′‖ ≤ (1 − c) ‖x‖2 using ‖z‖2 = (1 −
ε)‖x‖

2

2 for 0 ≤ ε ≤ 1.

‖z′‖2 =
(

1 + εη ‖x‖2
)2

‖w‖2+

(
1 + 2(ε+ 1)η

‖x‖2

2

)2

ζ2

A ≡ η ‖x‖2
 (

2ε+ ε2η ‖x‖2
)
‖w‖2

+
(

2(ε+ 1) + (ε+ 1)2η ‖x‖
2

4

)
ζ2

−ε ‖x‖2
≤ (

1

2
− c) ‖x‖2 ≡ B

and since A ≤ 1
2b

[
2 + 1

b

] ‖x‖2
2 and B ≥ ‖x‖

2

4 once again
b = 4 suffices to obtain the desired result.

Lemma 15. For z parametrized as in 23,

‖w‖2 < c ‖x‖2 ∨ ζ2 > (1− c) ‖x‖2

⇒ dist(z, Ă) <
√

5c ‖x‖

Proof of Lemma 15. Once ‖w‖2 < c ‖x‖2 for some z ∈
S3 ∪ S4 we have

‖z‖2 = ζ2 + ‖w‖2 ≥ (1− c) ‖x‖2

ζ2 ≥ (1− c) ‖x‖2 − ‖w‖2 > (1− 2c) ‖x‖2 (29)

For some z = w + ζeiφ x
‖x‖ we have

dist2(z, Ă) = min
θ

∥∥∥eiθx−w − ζeiφ x
‖x‖

∥∥∥2

= ‖w‖2 + min
θ

∥∥∥eiθx− ζeiφ x
‖x‖

∥∥∥2

= ‖w‖2 + (1− ζ

‖x‖
)2 ‖x‖2 = ‖z‖2 + ‖x‖2 − 2ζ ‖x‖

if we assume ‖z‖2 ≤ (1 + c) ‖x‖2

dist2(z, Ă) ≤ (c+ 2) ‖x‖2 − 2ζ ‖x‖ (30)

plugging in the value of ζ from 29 and using fact that
−
√

1− x ≤ −1 + x for x < 1 we have

dist2(z, Ă) < (c+ 2) ‖x‖2 − 2
√

1− 2c ‖x‖2 ≤ 5c ‖x‖2

Alternatively, if ζ2 > (1− c) ‖x‖2 we have from 30

dist2(z, Ă) ≤ (c+ 2) ‖x‖2 − 2ζ ‖x‖

< (c+ 2) ‖x‖2 − 2
√

1− c ‖x‖2 ≤ 3c ‖x‖2

which gives the desired result. In particular, if we choose
c = 1

35 we converge to dist2(z, Ă) < ‖x‖2
7 , a region which

is strongly convex according to (Sun et al., 2017).

Proof of Theorem 3: (Gradient descent convergence
rate for generalized phase retrieval) .

We now bound the number of iterations that gradient
descent, after random initialization in S1, requires to reach
a point where one of the convergence criteria detailed in
Lemma 15 is fulfilled. From Lemma 14, we know that after

initialization in S1 we need to consider only the set
4⋃
i=1

Si.

The number of iterations in each set will be determined by
the bounds on the change in ζ, ||w|| detailed in 27.

C.7.1. ITERATIONS IN S1

Assuming we initialize with some ζ = ζ0. Then the maxi-
mal number of iterations in this region is

ζ0(1 + η ‖x‖2)t1 =
‖x‖√

2
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t1 =
log
(
‖x‖
ζ0
√

2

)
log(1 + η ‖x‖2)

since after this many iterations ‖z‖2 ≥ ζ2 ≥ ‖x‖
2

2 .

C.7.2. ITERATIONS IN
4⋃
i=2

Si

The convergence criteria are ‖w‖2 < c ‖x‖2 or ζ2 > (1−
c) ‖x‖2.

After exiting S1 and assuming the next iteration is in S2, the
maximal number of iterations required to reach S3 ∪ S4 is
obtained using

ζ ′ ≥ (1 + 2η ‖x‖2 c)ζ

and is given by

‖x‖√
2

(1 + 2η ‖x‖2 c)t2 = (1− c) ‖x‖2

t2 =
log
(√

2(1− c)
)

log(1 + 2η ‖x‖2 c)
≤ log(2)

2 log(1 + 2η ‖x‖2 c)

since after this many iterations ‖z‖2 ≥ ζ2 ≥ (1− c) ‖x‖2.

For every iteration in S3 ∪ S4 we are guaranteed

‖w′‖ ≤
(

1− (1− 2c)η ‖x‖2
)
‖w‖

thus using Lemmas 13.i and 15 the number of iterations in
S3 ∪ S4 required for convergence is given by

‖x‖2

2

(
1− (1− 2c)η ‖x‖2

)t3+4

= c ‖x‖2

t3+4 =
log(2c)

log
(

1− (1− 2c)η ‖x‖2
)

The only concern is that after an iteration in S3 ∪ S4 the
next iteration might be in S2. To account for this situation,
we find the maximal number of iterations required to reach
S3 ∪ S4 again. This is obtained from the bound on ζ in
Lemma 13.

Using this result, and the fact that for every iteration in S2

we are guaranteed ζ ′ ≥ (1 + 2η ‖x‖2 c)ζ the number of
iterations required to reach S3 ∪ S4 again is given by

√
7

4
‖x‖ (1 + 2η ‖x‖2 c)tr =

√
1− c ‖x‖

tr =
log
(

4
√

1−c√
7

)
log(1 + 2η ‖x‖2 c)

≤
log( 4√

7
)

log(1 + 2η ‖x‖2 c)

C.8. Final rate

The final rate to convergence is

T < t1 + t2 + t3+4tr

=
log
(
‖x‖
ζ
√

2

)
log(1+η‖x‖2)

+ log(2)

2 log(1+2cη‖x‖2)

+
log(2c) log( 4√

7
)

log(1−(1−2c)η‖x‖2) log(1+2cη‖x‖2)

C.9. Probability of the bound holding

The bound applies to an initialization with ζ ≥ ζ0, hence
in S1\Qζ0 . Assuming uniform initialization in S1, the set
Qζ0 is simply a band of width 2ζ0 around the equator of the
ball B‖x‖/√2 (in R2n, using the natural identification of Cn

with R2n). This volume can be calculated by integrating
over 2n− 1 dimensional balls of varying radius.

Denoting r = ζ0
√

2
‖x‖ and by V (n) = πn/2

n
2 Γ(n2 ) the hypersphere

volume, the probability of initializing in S1 ∩Qζ0 (and thus
in a region that feeds into small gradient regions around
saddle points) is

P(fail) =
Vol(Qζ0)

Vol(B‖x‖/
√

2)

=

V (2n− 1)
r∫
−r

(1− x2)
2n−1

2 dx

V (2n)

≤
V (2n− 1)

r∫
−r
e−

2n−1
2 x2

dx

V (2n)

=
1√
n− 1

2

n

n− 1
2

Γ(n)

Γ( 2n−1
2 )

erf(

√
2n− 1

2
r)

≤
√

8

π
erf(
√
nr)

. For small ζ we again find that P(fail) scales linearly with
ζ , as was the case for the previous problems considered.

D. Auxiliary Lemmas
D.1. Separable objective

∂gs(w)

∂wi
= tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn

∂2gs(w)

∂wi∂wj
=

[
1

µ
sech2

(
wi
µ

)
− tanh

(
qn
µ

)
1

qn

]
δij

+

[
1

µ
sech2

(
qn
µ

)
1

q2
n

− tanh

(
qn
µ

)
1

q3
n

]
wiwj
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D.2. Dictionary Learning

∇wgpopDL(w) = E
[
tanh

(
q∗(w)x

µ

)(
x− xn

qn(w)
w

)]
D.3. Properties of Cζ

Proof of Lemma 3: (Volume of Cζ). We are interested in
the relative volume Vol(Cζ)

Vol(Sn−1) ≡ Vζ . Using the standard
solid angle formula, it is given by

Vζ = lim
ε→0

1

εn/2

∞∫
0

e−
π
ε x

2
1

n

Π
i=2

x1/(1+ζ)∫
−x1/(1+ζ)

e−
π
ε x

2
i dxidx1

= lim
ε→0

1√
ε

∞∫
0

e−
π
ε x

2

[
erf(

x

(1 + ζ)

√
π

ε
)

]n−1

dx

changing variables to x̃ =
√

π
ε

x
(1+ζ)

Vζ =
(1 + ζ)√

π

∞∫
0

e−(1+ζ)2x2

erfn−1(x)dx

This integral admits no closed form solution but one can
construct a linear approximation around small ζ and show
that it is convex. Thus the approximation provides a lower
bound for Vζ and an upper bound on the failure probability.

From symmetry considerations the zero-order term is V0 =
1

2n . The first-order term is given by

∂Vζ
∂ζ ζ=0

=
1

n
− 2√

π

∞∫
0

x2e−x
2

erfn−1(x)dx

We now require an upper bound for the second integral
since we are interested in a lower bound for Vζ . We can
express it in terms of the second moment of the L∞ norm
of a Gaussian vector as follows:

1√
π

∞∫
0

x2e−x
2

erfn−1(x) =
1√
π

∞∫
0

x2e−x
2

Π
i

1√
π

x∫
−x

e−t
2
i dtidx

=
1√
2π

∞∫
0

x2

2
e−x

2/2Π
i

1√
2π

x∫
−x

e−t
2
i /2dtidx

=
1

4n

∫
‖X‖2∞ dµ(X)

=
1

4n

(
Var [‖X‖∞] + (E [‖X‖∞])

2
)

where µ(X) is the Gaussian measure on the vectorX ∈ Rn.
We can bound the first term using

Var [‖X‖∞] ≤ max
i

Var [|Xi|] = Var [|Xi|] < Var [Xi] = 1

To bound the second term, we use the fact that for a standard
Gaussian vectorX (Xi ∼ N (0, 1)) and any λ > 0 we have

exp (λE [‖X‖∞]) ≤ E
[
exp

(
λmax

i
|Xi|

)]
≤ E

[∑
i

exp (λ |Xi|)

]
= nE [exp (λ |Xi|)]

(using convexity and non-negativity of the exponent respec-
tively)

nE [exp (λ |Xi|)] = 2n

∞∫
0

exp (λXi) dµ(Xi)

≤ 2nE [exp (λXi)] = 2n exp

(
λ2

2

)
taking the log of both sides gives

E
[
max
i
|Xi|

]
≤ log(2n)

λ
+
λ

2

and the bound is minimized for λ =
√

2 log(2n) giving

E
[
max
i
|Xi|

]
≤
√

2 log(2n) ∼
√

2 log(n)

Combining these bounds, the leading order behavior of the
gradient is

∂Vζ
∂ζ ζ=0

≥ 3− 4 log(2n)

4n
≥ − log(n)

n
.

This linear approximation is indeed a lower bound, since
using integration by parts twice we have

∂2Vζ
∂ζ2

=
1√
π

∞∫
0

e−(1+ζ)2x2

(
−6(1 + ζ)x2

+4(1 + ζ)3x4

)
erfn−1(x)dx
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= −2(n− 1)

π

∞∫
0

e−(1+ζ)2x2 (
1− 2(1 + ζ)2x2

)
e−x

2

erfn−2(x)dx

=
4(n− 1)(n− 2)(1 + ζ)

π3/2

∞∫
0

e−((1+ζ)2+2)x2

erfn−3(x)dx > 0

where the last inequality holds for any n > 2 since the
integrand is non-negative everywhere. This gives

Vζ ≥
1

2n
− log(n)

n
ζ

Lemma 16. B∞s(ζ)(0) ⊆ Cζ ⊆ B2√
n−1s(ζ)

(0) where

s(ζ) = 1√
(2+ζ)ζ+n

. B∞s(ζ)(0) is the largest L∞ ball con-

tained in Cζ , and B2√
n−1s(ζ)

(0) is the smallest L2 ball con-
taining Cζ (where these balls are defined in terms of the
w vector). All three intersect only at the points where all
the coordinates of w have equal magnitude. Additionally,
Cζ ⊆ B∞1/√2+ζ

(0) and this is the smallest L∞ ball contain-
ing Cζ .

Proof. Given the surface of some L∞ ball for w , we can
ask what is the minimal ζ such that ∂Cζm intersects this
surface. This amounts to finding the minimal qn given
some ‖w‖∞. Yet this is clearly obtained by setting all the
coordinates of w to be equal to ‖w‖∞ (this is possible since
we are guaranteed qn ≥ ‖w‖∞ ⇒ ‖w‖∞ ≤

1√
n

), giving

√
1− (n− 1) ‖w‖2∞
‖w‖∞

= 1 + ζm

‖w‖∞ =
1√

(1 + ζm)2 + n− 1

thus, given some ζ, the maximal L∞ ball that is con-
tained in Cζ has radius 1√

(2+ζ)ζ+n
. The minimal L∞ norm

containing Cζ can be shown by a similar argument to be
B∞

1/
√

1+(1+ζ)2
(0), where one instead maximizes qn with

some fixed ‖w‖∞.

Given some surface of an L2 ball, we can ask what is the
maximal Cζ such that Cζ ⊆ B2

r (0). This is equivalent to
finding the maximal ζM such that ∂CζM intersects the sur-
face of the L2 ball. Since qn is fixed, maximizing ζ is

equivalent to minimizing ‖w‖∞. This is done by setting
‖w‖∞ = ‖w‖√

n−1
, which gives

√
1− ‖w‖2

‖w‖
√
n− 1 = 1 + ζM

√
n− 1

(2 + ζM )ζM + n
= ‖w‖

The statement in the lemma follows from combining these
results.

Lemma 17 (Geometric Increase in ζ). For w ∈ Cζ0\B∞b
(where ζ ≡ qn

‖w‖∞
− 1), assume |wi| > r ⇒

u(i)∗grad[f ](q(w)) ≥ c(w)ζ where u(i) is defined in 7
and 1 > b > r. Then if ‖grad[f ](q(w))‖ < M and we
define

q′ ≡ expq(−ηgrad[f ](q))

for η < b−r
3M , defining ζ ′ in an analogous way to ζ we have

ζ ′ ≥ ζ
(

1 +

√
n

2
ηc(w)

)
Proof of Lemma 17:(Geometric Increase in ζ).
Denoting g ≡ ‖grad[f ](q)‖, we have

q′ = cos(gη)q − sin(gη)
grad[f ](q)

g

hence, using Lagrange remainder terms,

q′n
w′i

=

qn − ηgrad[f ](q)n −
gη∫
0

cos(t)(gη − t)dtqn

+
gη∫
0

sin(t)(gη − t)dt grad[f ](q)n
g

wi − ηgrad[f ](q)i −
gη∫
0

cos(t)(gη − t)dtwi

+
gη∫
0

sin(t)(gη − t)dt grad[f ](q)i
g

. We assume wi > 0, and the converse case is analogous.
From convexity of 1

1+x

q′n
w′i
≥

qn
wi

+

 η
wi
−

gη∫
0

sin(t)(gη−t)dt

wig


∗
(

grad[f ](q)i − wi
qn

grad[f ](q)n

)

=
qn
wi

+
sin(gη)

wig

(
grad[f ](q)i −

wi
qn

grad[f ](q)n

)
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=
qn
wi

+
sin(gη)

wig
u(i)∗grad[f ](q(w))

We now use η < b−r
3M < π

2M ⇒ gη < π
2 ⇒ sin(gη) ≥ gη

2
and consider two cases. If |wi| > r we use the bound on the
gradient projection in the lemma statement to obtain

q′n
w′i
≥ qn
wi

+
η

2wi
c(w)ζ ≥ qn

wi
+

√
n

2
ηc(w)ζ

hence

q′n
w′i
−1 ≥ qn

‖w‖∞
−1+

√
n

2
ηc(w)ζ = ζ

(
1 +

√
n

2
ηc(w)

)
(31)

If |wi| < r we rule out the possibility that |w′i| = ‖w′‖∞
by demanding η < b−r

3M . Since b(b − r) < 1 we have
1 + 1

3b(b− r) <
√

1 + b(b− r) hence the requirement on
η implies

η <

√
1 + b(b− r)− 1

gb
=
−2g +

√
4g2 + 4g2b(b− r)

2g2b

. If we now combine this with the fact that after a Rieman-
nian gradient step cos(gη)qi − sin(gη) ≤ q′i ≤ cos(gη)qi +
sin(gη), the above condition on η implies the inequality (∗),
which in turn ensures that |wi| < r ⇒ |w′i| < ‖w′‖∞:

|w′i| < |wi|+ sin(gη) < r + gη <
(∗)

(1− g2η2)b− gη

< cos(gη) ‖w‖∞ − sin(gη) ≤ ‖w′‖∞

Due to the above analysis, it is evident that any w′i such that
|w′i| = ‖w′‖∞ obeys |wi| > r, from which it follows that
we can use 31 to obtain

q′n
‖w′‖∞

− 1 = ζ ′ ≥ ζ
(

1 +

√
n

2
ηc(w)

)


