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Abstract
We explore models for translating abstract musi-
cal ideas (scores, rhythms) into expressive perfor-
mances using Seq2Seq and recurrent variational
Information Bottleneck (VIB) models. Though
Seq2Seq models usually require painstakingly
aligned corpora, we show that it is possible to
adapt an approach from the Generative Adversar-
ial Network (GAN) literature (e.g., Pix2Pix (Isola
et al., 2017) and Vid2Vid (Wang et al., 2018a)) to
sequences, creating large volumes of paired data
by performing simple transformations and train-
ing generative models to plausibly invert these
transformations. Music, and drumming in partic-
ular, provides a strong test case for this approach
because many common transformations (quantiza-
tion, removing voices) have clear semantics, and
models for learning to invert them have real-world
applications. Focusing on the case of drum set
players, we create and release a new dataset for
this purpose, containing over 13 hours of record-
ings by professional drummers aligned with fine-
grained timing and dynamics information. We
also explore some of the creative potential of these
models, including demonstrating improvements
on state-of-the-art methods for Humanization (in-
stantiating a performance from a musical score).

1. Introduction
A performance can be viewed as a translation of an idea
conceived in the mind to a finished piece on the stage, the
screen, or the speakers. The long-standing goal of many
creative technologies is to enable users to render realistic,
compelling content that brings an idea to life; in so doing,
finding a balance between realism and control is important.
This balance has proved difficult to achieve when work-
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ing with deep generative models, motivating recent work
on conditional generation in several modalities including
images (Yan et al., 2016), speech (Shen et al., 2018), and
music (Simon et al., 2018). In this work, rather than generat-
ing new content conditioned on one of a fixed set of classes
like rock or jazz, we are interested in learning to translate
ideas from representations that are more easily expressed
(musical abstractions such as scores) into instantiations of
those ideas that would otherwise be producible only by those
skilled in a particular instrument (performances).

We use the metaphor of translation from idea to finished
work as a starting point for our modeling choices, adapting
and modifying Seq2Seq models typically used in machine
translation (Sutskever et al., 2014). While musical scores
and performances can be thought of as different expres-
sions of the same idea, our setting differs from translation
in that musical scores are designed to be compressed rep-
resentations; the additional information needed to create a
performance comes from the musician. In this work, we
set up a data collection environment in which a score can
be deterministically extracted from the performance in a
manner consistent with the conventions of western music
notation, effectively yielding a parallel corpus. Further-
more, though western music notation is well established as
one compressed representation for music, our data allows
us to explore other representations that are compressed in
different ways; we propose and explore two such transfor-
mations in this work, which we call Infilling and Tap2Drum.
Learning to map from these reduced versions of musical
sequences to richer ones holds the potential for creative
application in both professional and amateur music compo-
sition, production, and performance environments.

We focus in this work specifically on drums; though drums
and percussion are essential elements in many styles of
modern music, creating expressive, realistic sounding digi-
tal drum performances is challenging and time consuming.
Humanization functions have been embedded in industry
standard music production software for many years, but
despite evidence that the current methods used in profes-
sional toolkits (randomly jittering note timings and dynam-
ics with Gaussian noise) have little effect on listener prefer-
ences (Senn et al., 2018), machine learning based methods
have not yet made their way into many mainstream environ-
ments to replace them. We hope that our data, models, and
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Figure 1. Learning inverse sequence transformations for drumming. Moving from left to right, the representations become progressively
simpler, first removing expressive timing (small shifts off the grid) and dynamics (color, with higher velocities in red), then removing one
of the voices, and then compressing all voices to a single track. We train models to map from each of these deterministically compressed
representations back to complete realizations of drum performances. The inverse transformations correspond to Humanization, Infilling,
and Tap2Drum respectively, and require progressively easier inputs for an untrained user to create.

methods for generating and controlling drum performances
will continue to drive forward the growing body of work on
expressive performance modeling.

In this work we make the following contributions:

• We collect a new dataset an order of magnitude larger
than the largest previously publicly available, with
13.6 hours of recordings of 10 drummers playing elec-
tronic drum kits instrumented with sensors to capture
precise performance characteristics in MIDI format.
We pair this data with associated metadata including
anonymized drummer identifiers, musical style annota-
tions, and tempo, while also capturing and aligning the
synthesized audio outputs.

• We present a data representation and a class of models
that we call GrooVAE. We use our models to explore
the task of Humanization, learning to perform a musi-
cal score for drum set, demonstrating improvements
over previous methods.

• We introduce, implement, and evaluate two new tasks
made possible by our data and model, which we call
Drum Infilling and Tap2drum. We argue that these
models, along with Humanization, may allow for user
control over realistic drum performance generation
without expertise playing the drum set.

Code, data, trained models, and audio examples are avail-
able at https://g.co/magenta/groovae.

2. Related Work
A small number of previous studies explore machine
learning methods for generating expressive drum perfor-
mance timing, employing linear regression and K-Nearest

Neighbors (Wright & Berdahl, 2006), or Echo State Net-
works (Tidemann et al., 2009). These studies use data from
different musical genres and different drummers, so relative
performance between methods is not always clear. In most
cases, however, listening tests suggest that qualitative results
are promising and can produce better outputs than those cre-
ated heuristically through a groove template1 (Wright &
Berdahl, 2006).

Other work on expressive performance modeling focuses
on piano rather than drums, leveraging data from perfor-
mances recorded on electronic keyboards or Disklaviers,
pianos instrumented with MIDI inputs and outputs (Gu &
Raphael, 2012; 2013; Oore et al., 2018; Huang et al., 2018;
Hawthorne et al., 2018). Recent impressive results in gener-
ating both MIDI and audio also suggest that given enough
data, neural sequence models can realistically generate ex-
pressive music. One drawback of the large piano datasets,
however, is that they lack gold standard alignments with cor-
responding musical scores, making tasks like Humanization
more challenging.

There are of course many other settings besides music in
which learning to translate from abstractions to instantia-
tions can be useful. State-of-the-art methods for speech syn-
thesis (Wang et al., 2018b; Stanton et al., 2018), and story
generation (Fan et al., 2018) typically use Seq2Seq frame-
works. Unlike our case, however, these methods do require
paired data, though some recent work attempts to reduce
the amount of paired data needed through self-supervised
learning (Chung et al., 2018).

Perhaps most similar to our setting is recent work in the

1Groove templates, which are used commonly in music pro-
duction practice, copy exact timings and velocities of notes from a
template sequence.

https://g.co/magenta/groovae
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image domain, which has demonstrated the ability of GAN
models to translate from simple, potentially user-provided,
inputs into photo-realistic outputs (Isola et al., 2017; Wang
et al., 2018a). Images and music are similar in that their con-
tents can survive abstraction into simplified versions through
lossy transformations like quantization or edge detection
while still retaining important semantic details. Images,
however, are structured fundamentally differently than mu-
sical sequences and tend to benefit from different modeling
choices – in particular the use of GANs, which have not
been demonstrated to work as well for music as recurrent
neural networks.

3. Data
Existing work on expressive drum modeling focuses only
on small datasets with a limited number of sequences, drum-
mers and genres (Wright & Berdahl, 2006; Tidemann &
Demiris, 2008). Other studies that model expressive perfor-
mance on different instruments (typically piano) use larger
and more diverse datasets (Huang et al., 2018; Simon &
Oore, 2017; Hawthorne et al., 2018), but these data lack
ground truth alignments between scores and performances;
this alignment, which allows use to measure time relative to
a metronome, is key to the applications we explore in this
work. Several companies also sell drum loops played to a
metronome by professional drummers, but these commer-
cially produced loops may be edited in post-production to
remove human error and variation, and they also contain
restrictive licensing agreements that prohibit researchers
from sharing their models.

There is currently no available gold standard dataset that is
of sufficient size to reasonably train modern neural models
and that also contains a precise mapping between notes on
a score and notes played by a performer.

3.1. Groove MIDI Dataset

To enable new experiments and to encourage comparisons
between methods on the same data, we collect a new dataset
of drum performances recorded in MIDI format (the indus-
try standard format for symbolic music data) on a Roland
TD-112 electronic drum kit. MIDI notes (we also refer to
them as hits) are each associated with an instrument, a time,
and a velocity. Microtimings, (we also call them timing off-
sets), describe how note timings stray from a fixed grid, and
velocities (or dynamics) denote how hard notes are struck.
Taken together, we refer to microtiming and velocity as
performance characteristics or groove, and the quantized
times of the notes define a musical score (also called a pat-
tern or sequence). While some nonpercussive instruments

2https://www.roland.com/us/products/
td-11/

like strings or horns, which allow for continuous changes
to a single note, are difficult to represent with MIDI, many
styles of drum set playing can be well specified through
microtiming and velocity.

The dataset, which we refer to as the Groove MIDI Dataset
(GMD), is publicly available for download at https://
magenta.tensorflow.org/datasets/groove.
The GMD contains 13.6 hours, 1,150 MIDI files, and over
22,000 measures of tempo-aligned expressive drumming,
making it an order of magnitude larger than the largest
comparable dataset. Complete details of acquisition and
annotation can be found in Appendix A.

3.2. Preprocessing

Though the Groove Midi Dataset contains all the informa-
tion captured by the electronic drum kit, including multiple
sensors to detect hits on different parts of each drum, we
make several preprocessing choices to simplify our models
for this work. First, we map all drum hits to a smaller set of
9 canonical drum categories, following Roberts et al. (2018).
These categories represent the most common instruments in
standard drum kits: bass drum, snare drum, hi-hats, toms,
and cymbals; we display the full list of drum categories
along with their respective MIDI mappings in Appendix B.

After partitioning recorded sequences into training, devel-
opment, and test sets, we slide fixed size windows across
all full sequences to create drum patterns of fixed length;
though we explored models for sequences of up to 16 mea-
sures, for consistency we use 2 measure (or 2 bar) patterns
for all reported experimental evaluations, sliding the win-
dow with a hop size of 1 measure. We chose 2 measures
for our experiments both because 2 bars is a typical length
for drum loops used in music production practice and be-
cause these sequences are long enough to contain sufficient
variation but short enough to quickly evaluate in listening
tests.

As a final step, motivated by the fact that music production
software interfaces typically operate at 16th note resolu-
tion (Wherry, 2006), we take 16th notes as the fundamental
timestep of our data. Each drum hit is associated with the
closest 16th note metrical position; if multiple hits on the
same drum category map to the same timestep, we keep the
loudest one. Although this preprocessing step forces us to
discard some of the subtle details of drum rolls that can be
played on a single drum faster than 16th notes, we found
that perceptually, much of the expressiveness in drumming
can be conveyed at this resolution. Moreover, after exper-
imenting both with finer resolutions (32nd or 64th notes)
and data representations that count time in absolute time
(milliseconds) rather than relative time (as in Simon & Oore
(2017)), we found that the gains in modeling yielded by this
constraint were more important than the details lost. One

https://www.roland.com/us/products/td-11/
https://www.roland.com/us/products/td-11/
https://magenta.tensorflow.org/datasets/groove
https://magenta.tensorflow.org/datasets/groove
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potential path forward in future work might be to supple-
ment our data representation with an explicit token for a
drum roll.

3.3. Data Represention

After preprocessing, our data points are of fixed length:
each sequence has T timesteps (one per 16th note) and M
instruments per timestep. The full representation consists of
the below three T ×M matrices, with values T = 32 and
M = 9 for all reported experiments.

Hits. To represent the presence or absence of drum onsets,
or hits, in a sequence, we define a binary-valued matrix H ,
which contains all the information in a basic drum score. A
column of H contains the drum score for one of the nine
instruments in the drum set, and a row of H contains the
drum score for all nine instruments at a single timestep.

Offsets. A continuous-valued matrix O stores the timing
offsets, taking values in [-0.5, 0.5) that indicate how far and
in which direction each note’s timing lies relative to the near-
est 16th note. Drum hits may fall at most halfway between
their notated position in time and an adjacent position. We
can examine O to compute statistics on microtiming: posi-
tive values indicate playing behind the beat (late); negative
values demonstrate playing ahead (early).

Modeling continuous as opposed to discrete values for off-
sets allows us to take advantage of the fact that timing ap-
pears to be approximately normally distributed at any given
metrical position (as shown in Figure 2); intuitively, models
should be penalized more for predictions that are further
from the ground truth. We experimented with various con-
tinuous and discrete representations including logistic mix-
tures (Salimans et al., 2017), thermometer encodings (Buck-
man et al., 2018), and label smoothing (Pereyra et al., 2017),
but we found that modeling timing offsets and velocity as
single Gaussian distributions (conditional on the LSTM
state) produced by far the most perceptually realistic results.

Velocities. Another continuous-valued matrix V stores
the velocity information (how hard drums are struck). We
convert velocity values from the MIDI domain (integers
from 0-127) to real numbers in [0,1].

4. Modeling Objectives
We focus our experiments and analysis on three particular
applications of expressive performance modeling. For audio
examples of additional tasks such as unconditional sampling,
interpolation, and style transfer, see the online supplement3.

3http://goo.gl/magenta/groovae-examples

Figure 2. Distribution of timing offsets for notes in the training set.
On-beat notes (landing on an eighth note), shown on the left, are
more often played late, whereas off-beat notes (not landing on an
eighth note), on the right, are more often played early.

Humanization. Our first objective is to generate, given a
16th-note-quantized drum pattern with no microtiming or ve-
locity information (i.e., a drum score), a MIDI performance
of that score that mimics how a professional drummer might
play it. Because this task has an existing body of work, we
focus most of our experiments and evaluations on this task.

Infilling. We introduce a second task of interest within the
same contexts as Humanization that we call Drum Infilling.
The objective here is to complete or modify a drum beat
by generating or replacing the part for a desired instrument.
We define an instrument as any one of the 9 categories of
drums and train models that learn to add this instrument
to a performance that lacks it. For brevity, we choose a
single drum category (hi-hat) as a basis for our evaluations.
Infilling provides a case for examining computer assisted
composition, allowing a composer to sketch parts for some
pieces of the drum kit and then receive suggestions for the
remaining parts. Previous work explores Infilling in the
context of 4-part Bach compositions (Huang et al., 2019)
and in piano performance (Ippolito et al., 2018); we look at
the task for the first time in the context of drums.

Tap2Drum. In this last task, we explore our models’ abil-
ity to generate a performance given an even further com-
pressed musical representation. While western musical
scores usually denote the exact notes to be played but lack
precise timing specifications, we propose a new representa-
tion that captures precise timing but does not specify exactly
which notes to play. In this setting, which we call Tap2Drum,
we give our model note offset information indicating the
microtiming, but we do not specify the drum categories or
velocities as inputs, leaving the decision of which instru-
ment to hit and how hard to the model. Because almost
anyone can tap a rhythm regardless of their level of musical
background or training, this input modality may be more
accessible than musical notation for those who would like
to express their own musical ideas on a drum set but lack
the skills of a drummer.

http://goo.gl/magenta/groovae-examples
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5. Models
We compare several models for Humanization, selecting the
best performing one for our experiments with Infilling and
Tap2Drum.

5.1. Baselines

For our baseline models, we focus on models from the
literature that have been used before for Humanization in
the context of drum performances aligned to a metronome.

5.1.1. QUANTIZED

As a simple baseline, we set all offsets to 0 and velocities to
the mean value in the training set.

5.1.2. LINEAR REGRESSION

For this baseline, we regress H against V and O, predicting
each element of V and O as a linear combination of the
inputs H .

5.1.3. K-NEAREST NEIGHBORS

Wright & Berdahl (2006) report strong results in using K-
Nearest Neighbors to predict microtiming in Brazilian per-
cussion. They define a hand-crafted distance measurement
between notes, retrieve the K notes in the training set near-
est to a given note in a test sequence, and then take the mean
timing offset of those notes. Their definition of nearest
notes, however, requires that the same sequence appear in
both training and test sets. Since our test set emphasizes
unseen sequences, we adapt the method as follows: first
we retrieve the K nearest sequences, measuring distance
Di,j by counting the number of notes in common between a
test sequence xi and each training sequence xj , which can
be computed easily through the Hadamard product of their
respective binary matrices, Hi and Hj :

Di,j =
∑

Hi ◦Hj (1)

Given the closest K sequences [S1, . . . , SK ], we then com-
pute predicted velocities V̂ and offsets Ô by taking the
element-wise means of the corresponding V and O matri-
ces:

V̂ =
1

K

∑
k

Vk (2)

Ô =
1

K

∑
k

Ok (3)

When reconstructing a MIDI sequence, we ignore the entries
of V̂ and Ô for which the corresponding entry of H is 0.

Choosing K = 1 is equivalent to selecting the most similar
sequence as a groove template, and choosing K to be the
cardinality of the training set yields a single groove template

Figure 3. The forward direction of our encoder architecture for the
Seq2Seq Humanization model. Input sequences are visualized as
piano rolls, with drum categories on the vertical axis and time on
the horizontal axis. LSTM inputs are shown for a single timestep
t. Instruments with no drum hits at time t are shown as blank,
although for implementation we fill these blank cells with 0’s.
Note that no velocity or timing offset information is passed to the
encoder.

that summarizes the average performance characteristics of
the entire set. Through a grid search on the development set,
we found that setting K = 20 performed best, close to the
reported K = 26 from Wright & Berdahl (2006).

5.2. Proposed Models

5.2.1. MLP

To train multilayer perceptron (MLP) neural networks for
Humanization, we concatenate the matrices H , V , and O
to form a target matrix y ∈ RT×(M∗3). We pass H into
the model as inputs, training the network to minimize the
squared error between y and predictions ŷ. For the MLP, we
use a single hidden layer of size 256 and ReLU nonlineari-
ties. We train all our neural models with Tensorflow (Abadi
et al., 2016) and the Adam optimizer (Kingma & Ba, 2014).

5.2.2. SEQ2SEQ

Sequence to sequence models (Sutskever et al., 2014) en-
code inputs into a single latent vector, typically with a recur-
rent neural network, before autoregressively decoding into
the output space. For this architecture, we process the drum
patterns over T = 32 timesteps, encoding a drum score to
a vector z with a bidirectional LSTM and decoding into a
performance with a 2-layer LSTM.

Encoder The encoder is based on the bidirectional LSTM
architecture used in Roberts et al. (2018), though we change
the LSTM layer dimensions from 2048 to 512 and the di-
mension of z from 512 to 256. At each timestep t, we pass
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Figure 4. Decoder architecture for Seq2Seq Humanization model.
The decoder generates outputs for drum hits, velocities and timing
offsets. Velocity is visualized in color, and output notes appear
slightly earlier than the grid lines, indicating negative offsets.

a vector ht, which is row t of H , to the encoder, represent-
ing which drums were hit at that timestep; velocities and
timing offsets are not passed in. As shown in Figure 1, we
keep the same architecture for Infilling and Tap2Drum, only
modifying the inputs to switch tasks. Figure 3 demonstrates
one step of the forward direction of the encoder.

Decoder We use a 2-layer LSTM of dimension 256 for
our decoder, which we train to jointly model H , V , and O.
Unlike Roberts et al. (2018), however, we split the decoder
outputs at each timestep t into 3 components, applying
a softmax nonlinearity to the first component to obtain a
vector of predicted hits ĥt, sigmoid to the second component
to get velocities v̂t, and tanh to the third, yielding timing
offsets ôt. These vectors are compared respectively with
ht, vt, and ot, the corresponding rows of H , V , and O,
and finally summed to compute the primary loss for this
timestep Lt:

Lt = CrossEntropy(ht, ĥt)+(vt−v̂t)2+(ot−ôt)2 (4)

We train the model end to end with teacher forcing.

5.2.3. GROOVE TRANSFER

We experiment with one more model that we call Groove
Transfer. This architecture is identical to our Seq2Seq model
except that at each timestep t we concatenate ht, the vector
for the hits at time t, to the decoder LSTM inputs using the
conditioning procedure of Simon et al. (2018). By allowing
the decoder to learn to copy ht directly to its outputs, we
incentivize this encoder to ignore H and only learn a useful
representation for generating V and O. The main benefit
of this architecture over Seq2Seq is that the modification
allows us to disentangle the performance characteristics (the
groove) of a sequence S1 from the score H1, capturing the
performance details in the groove embedding z1. We can

then pass z1 to the decoder along with the content H2 of
another sequence S2 to do style transfer for drum perfor-
mances. Audio examples of Groove Transfer can be found
in the supplementary materials3.

We also apply Groove Transfer to Humanization as follows:
given a score H2, we embed the closest k = 3 sequences in
the training set as defined by the distance metric in Section
5.1.3, store the mean of the k embeddings in a vector zk,
and then transfer the groove vector zk to H2.

5.3. Variational Information Bottleneck

Our test data, while disjoint from the training data, comes
from the same set of drummers, and its distribution is meant
to be similar. In the real world, however, we would like to
be able to trade off between realism and control; when faced
with a very unlikely drum sequence, such as one quickly
sketched in a music production software interface, we may
want to choose a model that constrains its output to be close
to the realistic examples in the training set, potentially at
the cost of changing some of the input notes. To this end,
we add a variational loss term to both Seq2Seq and Groove
Transfer, turning the models into a Variational Information
Bottleneck (VIB) (Alemi et al., 2016) and training the
embeddings z to lie close to a prior (multivariate normal)
distribution. Following Roberts et al. (2018), we train by
maximizing a modified Evidence Lower Bound (ELBO) us-
ing the hyperparameter β = 0.2. We report our quantitative
metrics both with and without the VIB.

6. Results
6.1. Listening Tests

As is the case with many generative models, especially those
designed for creative applications, we are most interested
in the perceptual quality of model outputs; for this reason,
we also highly encourage the reader to listen to the audio
examples in the supplementary materials3. In our setting,
high quality model outputs should sound like real drum
performances. We examine our models through multiple
head-to-head listening tests conducted on the Amazon Me-
chanical Turk platform.

Humanization: Comparison with baseline. For this ex-
periment, we compare the Humanization model that we
judged produced the best subjective outputs (Seq2Seq with
VIB), with the best baseline model (KNN). We randomly
selected 32 2-measure sequences from the test set, removing
all microtiming and velocity information, and then gener-
ated new performances of all 32 sequences using both Hu-
manization models. We presented participants with random
pairs of clips, one of which was generated by each model,
asking them to judge which clip sounds more like a human
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Figure 5. Results of head-to-head listening tests for different tasks
and baselines, with 95% confidence interval bands. The experi-
ments included 56, 188, 189, and 177 comparisons, respectively.

drummer. The Seq2Seq model significantly outperformed
the baseline as can be seen in the first column of Figure 5.

Comparison with real sequences from the test set. Per-
haps a more compelling test of the real-world viability of
our models is to ask listeners to compare generated outputs
with clips of real drum performances; if the model outputs
are competitive, this suggests that the generated drums are
perceptually comparable with real performances. We struc-
tured this test in the same way as the baseline comparison,
asking listeners which sequence sounds more like a human
drummer; in this case each pair contains one real clip from
the test set and one generated clip. As noted in Section 3.2,
because our models do not generate drum rolls faster than
16th notes, we compared against the preprocessed versions
of test set clips (which also do not have faster drum rolls)
to ensure fair comparison. Figure 5 summarizes the results
of this test for each of our tasks (Humanization, Infilling,
and Tap2Drum), showing the generated outputs from our
Seq2Seq models are competitive with real data.

6.2. Quantitative Metrics

Though it is difficult to judge these generative models with
simple quantitative metrics, we report several quantitative
evaluations for comparison, summarizing results in Table 1,
along with 95% bootstrap confidence intervals.

Timing MAE. We report mean absolute error in millisec-
onds, which is useful for interpreting results in the context
of studies on Auditory Temporal Resolution, a measure of
the minimum amount of time required for the human ear
to perceive a change in sound. Studies show that temporal
resolution depends on the frequency, loudness, and enve-
lope of the sound as well as on the listener and type of
recognition test (e.g., noise or pitch recognition) (Muchnik
et al., 1985; Kumar et al., 2016). On tests for which the
ear is more sensitive, such as the Gap-in-Noise test, mean
values can be as low as 2ms, while for pitched tests like Pure

Tone Discrimination, values can be 20ms or more (An et al.,
2014). Most likely, the resolution at which the ear can per-
ceive differences in drum set microtiming lies somewhere
in between.

Timing MSE. Following Wright & Berdahl (2006), for
another perspective on timing offsets, we look at mean
squared error relative to tempo, here using fractions of a
16th note as units. Since beats are further apart at slower
tempos, this metric weights errors equally across all tempos.

Velocity KL / Timing KL. One drawback of the above
metrics, which are aggregated on a per-note basis, is that
they do not account for the possibility of mode collapse or
blurring when comparing methods (Trieu & Keller, 2018).
The effects of blurring seem to be particularly severe for ve-
locity metrics; instead of averaging velocity errors across all
notes, previous work computes similarity between the dis-
tributions of real and generated data (Tidemann & Demiris,
2007; Hellmer & Madison, 2015). We adopt this approach,
first predicting velocities and offsets for the entire test set
and then comparing these with ground truth distributions.
For these metrics, we aggregate all predicted notes into four
groups based on which 16th note position they align with.
We calculate the means and standard deviations for each
group of notes, compute the KL Divergence between pre-
dicted and ground truth distributions based on those means
and standard deviations, and then take the average KL Di-
vergence across the four groups. These distribution based
metrics should not be treated as a gold standard either, but
they do tend to penalize severe instances of blurring or mode
collapse, as can be seen with the Linear and MLP models.

7. Analysis
7.1. Comparisons with KNN baseline

Based on the results of the listening tests shown in Figure 5,
Seq2Seq models clearly offer a powerful method for generat-
ing expressive drum performances. The listener preference
for Humanization using Seq2Seq over KNN is substantial,
and moreover, these survey participants were not specifi-
cally chosen from a pool of expert musicians or drummers;
that this pool of listeners was able to so clearly identify the
Seq2Seq models as more realistic than the baseline seems
to indicate that the model captures important nuances that
make drumming realistic and expressive.

7.2. Comparing Humanization to real data

The survey results indicate that, at least for our population
of listeners, drum performances generated through Seq2Seq
Humanization are difficult to distinguish from real data;
statistically, the results show no significant difference.
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Model MAE (ms) MSE (16th note) Timing KL Velocity KL
Baseline 22.6 [22.45–22.72] 0.041 [0.041–0.042] N/A N/A
Linear 19.77 [19.63–19.88] 0.033 [0.033–0.034] 4.79 [4.68–4.88] 1.70 [1.66–1.74]
KNN 22.34 [22.19–22.45] 0.043 [0.042–0.0438] 1.10 [1.07–1.12] 0.53 [0.51–0.56]
MLP 19.25 [19.13–19.40] 0.032 [0.031–0.032] 7.62 [7.44–7.80] 2.22 [2.16–2.29]
Seq2Seq 18.80 [18.67–18.90] 0.032 [0.031–0.032] 0.31 [0.31–0.33] 0.08 [0.08–0.09]
Seq2Seq + VIB 18.47 [18.37–18.60] 0.028 [0.028–0.029] 2.80 [2.72–2.86] 0.22 [0.21–0.23]
Groove Transfer 25.04 [24.82–25.28] 0.052 [0.051–0.053] 0.24 [0.23–0.25] 0.12 [0.12–0.13]
Groove Transfer + VIB 24.49 [24.25–24.72] 0.051 [0.049–0.052] 0.27 [0.26–0.28] 0.20 [0.19–0.20]

Table 1. Metrics for different Humanization models, with 95% bootstrap confidence intervals.

7.3. Comparing Infilling to real data

Perhaps counter-intuitively, a significant fraction of listen-
ers in this experiment (nearly 60%) identified the generated
outputs as sounding more human than the real data. One
potential explanation for this result is that among our test
data, some sequences sound subjectively better than oth-
ers. A small fraction of the recordings are from amateur
drummers, who sometimes make mistakes or play at a lower
level. In replacing the original hi-hat parts, the Infilling
model in effect resamples from the data distribution and
may generate better sounding, more likely parts. This result
suggests a potential use for the model as a corrective tool
that works by resampling parts of an input that have noise
or imperfections.

7.4. Comparing Tap2Drum to real data

Figure 5 demonstrates the slight preference of listeners for
the real data over performances generated by Tap2Drum
(about 56%). This difference is significant but compara-
tively small relative to the difference between Seq2Seq and
KNN Humanization, indicating that Tap2Drum may be a vi-
able way of controlling expressive performances in practice.
More work is needed to better understand how much control
this model offers and how people interact with the model in
different contexts; qualitative research with musicians and
music producers offers one path forward.

7.5. Groove Transfer

Evaluating Groove Transfer is challenging in the absence of
existing methods for comparison; nonetheless, we believe
that this particular version of style transfer yields subjec-
tively interesting outputs and merits further investigation
both in terms of its architecture and its potential for creative
application in the future.

7.6. Quantitative Results

As might have been expected, the Seq2Seq models achieve
the best results on the timing MAE and MSE metrics, while

also outperforming the baselines on the distribution-based
metrics. The Groove Transfer models, in exchange for
the added control given by the ability to perform a beat in
the style of any other beat, sacrifice some accuracy on the
Humanization task compared to Seq2Seq, as can be seen by
the higher MAE error.

8. Conclusions
In this work, we demonstrate that learning inverse sequence
transformations can be a powerful tool for creative manipu-
lation of sequences. We present the Groove MIDI Dataset
with an order of magnitude more expressive drum perfor-
mances than comparable research datasets, new methods for
generating expressive drum performances, and both quanti-
tative and qualitative results demonstrating state-of-the-art
performance on Humanization.

We also explore new applications, such as Tap2Drum, which
may enable novices to easily generate detailed drum perfor-
mances. Our results raise the possibility of learning other
creative inverse transformations for sequential data such as
text and audio. We hope this line of research will ultimately
lead a variety of interesting creative applications, just as
similar GAN-based techniques have done for images and
video.
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A. GMD: Groove MIDI Dataset
The Groove MIDI Dataset (GMD), has several attributes
that distinguish it from other data:

• The dataset contains about 13.6 hours, 1,150 MIDI
files, and 22,000 measures of drumming.

• Each performance was played along with a metronome
set at a specific tempo by the drummer. Since the
metronome provides a standard measurement of where
the musical beats and subdivisions lie in time, we can
deterministically quantize all notes to the nearest mu-
sical division, yielding a musical score. Recording
to a metronome also allows us to take advantage of
the prior structure of music by modeling relative note

Figure 6. A drummer recording for the Groove MIDI Dataset

times (quarter note, eighth note, etc.) so as to free mod-
els from the burden of learning the concept of tempo
from scratch. The main drawback of the metronome is
that we enforce a consistent tempo within each individ-
ual performance (though not across performances) so
we do not capture the way in which drummers might
naturally change tempo as they play.

• The data includes performances by a total of 10 drum-
mers, 5 professionals and 5 amateurs, with more than
80% coming from hired professionals. The profession-
als were able to improvise in a wide range of styles,
resulting in a diverse dataset.

• The drummers were instructed to play a mix of long
sequences (several minutes of continuous playing) and
short beats and fills.

• Each performance is annotated with a genre (provided
by the drummer), tempo, and anonymized drummer
ID.

• Most of the performances are in 4/4 time, with a few
examples from other time signatures; we use only the
files in 4/4 in this work.

• In addition to the MIDI recordings that are the primary
source of data for the experiments in this work, we cap-
tured the synthesized audio outputs of the drum set and
aligned them to within 2ms of the corresponding MIDI
files. These aligned audio files may serve as a useful
resource for future research in areas like Automatic
Drum Transcription.

• A train/validation/test split configuration is provided
for easier comparison of model accuracy on various
tasks.
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Pitch Roland Mapping GM Mapping Drum Category Count
36 Kick Bass Drum 1 Bass (36) 88067
38 Snare (Head) Acoustic Snare Snare (38) 102787
40 Snare (Rim) Electric Snare Snare (38) 22262
37 Snare X-Stick Side Stick Snare (38) 9696
48 Tom 1 Hi-Mid Tom Mid Tom (48) 13145
50 Tom 1 (Rim) High Tom High Tom (50) 1561
45 Tom 2 Low Tom Low Tom (45) 3935
47 Tom 2 (Rim) Low-Mid Tom Mid Tom (48) 1322
43 Tom 3 (Head) High Floor Tom Low Tom (45) 11260
58 Tom 3 (Rim) Vibraslap Low Tom (45) 1003
46 HH Open (Bow) Open Hi-Hat Open Hi-Hat (46) 3905
26 HH Open (Edge) N/A Open Hi-Hat (46) 10243
42 HH Closed (Bow) Closed Hi-Hat Closed Hi-Hat (42) 31691
22 HH Closed (Edge) N/A Closed Hi-Hat (42) 34764
44 HH Pedal Pedal Hi-Hat Closed Hi-Hat (42) 52343
49 Crash 1 (Bow) Crash Cymbal 1 Crash Cymbal (49) 720
55 Crash 1 (Edge) Splash Cymbal Crash Cymbal (49) 5567
57 Crash 2 (Bow) Crash Cymbal 2 Crash Cymbal (49) 1832
52 Crash 2 (Edge) Chinese Cymbal Crash Cymbal (49) 1046
51 Ride (Bow) Ride Cymbal 1 Ride Cymbal (51) 43847
59 Ride (Edge) Ride Cymbal 2 Ride Cymbal (51) 2220
53 Ride (Bell) Ride Bell Ride Cymbal (51) 5567

Table 2. List of Drum Categories

B. Reduced MIDI Mapping
The Roland TD-11 used to record the performances in MIDI
uses some pitch values that differ from the General MIDI
(GM) Specifications. Table 2 displays the choice of MIDI
notes to represent the nine essential drum voices for this
study, along with the counts of each pitch in the data.


