
Adversarial Examples Are a Natural Consequence of Test Error in Noise

A. Training Details
Models trained on CIFAR-10. We trained the Wide-ResNet-28-10 model (Zagoruyko & Komodakis, 2016) using standard
data augmentation of flips, horizontal shifts and crops in addition to Gaussian noise independently sampled for each image
in every minibatch. The models were trained with the open-source code by Cubuk et al. (2018) for 200 epochs, using the
same hyperparameters which we summarize here: a weight decay of 5e-4, learning rate of 0.1, batch size of 128. The
learning rate was decayed by a factor of 0.2 at epochs 60, 120, 160.

Models trained on ImageNet. The Inception v3 model (Szegedy et al., 2016) was trained with a learning rate of 1.6, batch
size of 4096, and weight decay of 8e-5. During training, Gaussian noise was independently sampled for each image in every
minibatch. The models were trained for 130 epochs, where the learning rate was decayed by a factor of 0.975 every epoch.
Learning rate was linearly increased from 0 to the value of 1.6 over the first 10 epochs.

B. Full Corruption Robustness Results
In this section we examine the corruption robustness of both adversarially trained models and models trained with Gaussian
data augmentation. Full results are shown in Tables 1, 2. We highlight several interesting findings from these experiments.

• On CIFAR-10-C, Gaussian data augmentation outperforms adversarial training on the overall benchmark. However,
adversarial training is better on all of the blurring corruptions.

• The publicly released ImageNet-C dataset as .jpeg files is significantly harder than the same dataset when the corruptions
are applied in memory. It appears that this is due to additional artifacts added to the image from the JPEG compression
algorithm (see Figures 7 and 8). Future work should make care of this distinction when comparing the performance of
their methods, in particular we note that the results in (Geirhos et al., 2018; Hendrycks & Dietterich, 2019) were both
evaluated on the jpeg files.

• Both adversarial training and Gaussian data augmenation significantly degrade performance on the severe fog and
constrast corruptions (Tables 3, 4). This highlights the importance of evaluating on a broad suite of corruptions as
simply evaluating on worst-case lp perturbations or random noise will not expose all failings of a model. This also
highlights the need for developing methods that improve robustness to all corruptions. Towards this end the exciting
new “Stylized ImageNet”(Geirhos et al., 2018) data augmentation process achieves moderate improvements on all
corruptions, at least on the publicly released .jpeg files.

Figure 7. Visualizing the effects of jpeg compression on white noise. The subtle difference between the compressed and uncompressed
images is enough to degrade model performance on several of the Imagenet-C corruptions.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Table 1. Measuring the improvements of Gaussian data augmentation on corruption robustness for ImageNet-C. For this ta-
ble we evaluate both on corruptions in memory to the existing ImageNet validation set using the code at https://github.
com/hendrycks/robustness and on the compressed version of the dataset from https://drive.google.com/drive/
folders/1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing. We found that model performance when the corruption
was applied in memory is higher than performance on the publicly released .jpeg files that already have the corruptions applied to them.
Unfortunately, we were unable to evaluate all corruptions due to issues installing some of the dependencies, these are marked with a ?. All
numbers are model accuracies averaged over the 5 corruption severities.

Noise Blur
Training All Gaussian Shot Impulse Defocus Glass Motion Zoom
Vanilla InceptionV3 45.0 40.3 38.7 38.0 40.3 26.4 ? 31.6
Gaussian (σ = 0.4) 52.6 67.5 67.5 66.4 43.4 39.4 ? 33.0

Weather Digital
Training Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
Vanilla InceptionV3 ? ? 60.0 68.6 45.2 46.8 42.8 56.2
Gaussian (σ = 0.4) ? ? 54.0 68.8 39.0 51.6 51.8 63.6

Noise (Compressed) Blur (Compressed)
Training All Gaussian Shot Impulse Defocus Glass Motion Zoom
Vanilla InceptionV3 38.8 36.6 34.3 34.7 31.1 19.3 35.3 30.1
Gaussian (σ = 0.4) 42.7 40.3 38.8 37.7 32.9 29.8 35.3 33.1

Weather (Compressed) Digital (Compressed)
Training Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
Vanilla InceptionV3 33.1 34.0 52.4 66.0 35.9 47.8 38.2 50.9
Gaussian (σ = 0.4) 36.6 43.5 52.3 67.1 35.8 52.2 47.0 55.5

Table 2. Comparing the corruption robustness of adversarial training and Gaussian data augmentation on the CIFAR-10-C dataset.
For this table we evaluate on the publicly release .npy files found at https://drive.google.com/drive/folders/
1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing. Unlike the ImageNet-C dataset which was released as .jpeg files,
there was no additional noise applied when saving the images as .npy files. All numbers are model accuracies averaged over the 5
corruption severities.

Noise Digital
Training All Speckle Shot Impulse Contrast Elastic Pixelate JPEG
Vanilla Wide-ResNet-28-10 76.3 62.8 59.3 53.3 92.2 84.8 74.0 77.2
Adversarialy Trained 80.9 81.8 82.8 68.8 77.0 81.8 85.3 85.4
Gaussian (σ = 0.1) 81.2 91.1 91.8 81.5 58.9 82.2 89.0 90.0
Gaussian (σ = 0.4) 74.7 84.6 84.6 84.5 41.5 75.4 81.2 82.9

Weather Blur
Training Snow Fog Brightness Defocus Glass Motion Zoom Gaussian
Vanilla Wide-ResNet-28-10 83.3 90.4 94.0 85.5 51.1 81.2 79.9 75.3
Adversarialy Trained 82.6 72.7 87.1 83.5 80.2 80.5 82.8 82.1
Gaussian (σ = 0.1) 87.3 71.5 91.8 80.0 79.6 71.6 77.2 74.2
Gaussian (σ = 0.4) 78.0 51.8 80.1 77.0 77.9 72.0 74.8 74.4

https://github.com/hendrycks/robustness
https://github.com/hendrycks/robustness
https://drive.google.com/drive/folders/1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing
https://drive.google.com/drive/folders/1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing
https://drive.google.com/drive/folders/1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing
https://drive.google.com/drive/folders/1HDVw6CmX3HiG0ODFtI75iIfBDxSiSz2K?usp=sharing

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Table 3. Detailed results for the fog and contrast corruptions on ImageNet-C highlighting the effect of the severity on both the compressed
and uncompressed versions of the data. When the corruption is applied in memory, Gaussian data augmentation degrades performance in
comparison to a clean model. However, when evaluating on the compressed version of this dataset this degradation in comparison to the
clean model is minimized.

corruption clean trained on noise clean (compressed) trained on noise (compressed)

contrast-1 68.198 66.528 62.502 63.876
contrast-2 63.392 60.634 55.626 57.308
contrast-3 53.878 47.57 42.024 42.434
contrast-4 30.698 17.34 16.172 13.122
contrast-5 9.746 2.798 3.362 2.07
fog-1 67.274 65.148 61.334 62.91
fog-2 63.77 60.398 56.51 57.746
fog-3 59.51 53.752 51.188 51.292
fog-4 58.098 51.34 50.064 49.324
fog-5 50.996 39.586 42.874 40.34

Table 4. Detailed results for the fog and contrast corruptions on CIFAR-10-C. Both adversarial training and Gaussian data augmenation
significantly degrade performance on these corruptions.

corruption clean adv Gaussian (0.1) Gaussian (0.4)

contrast-0 94.73 86.65 90.51 76.45
contrast-1 94.22 84.59 77.12 50.71
contrast-2 93.67 82.09 63.71 36.49
contrast-3 92.51 76.40 43.74 25.96
contrast-4 85.66 55.29 19.36 17.98
fog-0 94.90 86.75 91.53 78.87
fog-1 94.75 84.65 86.05 65.50
fog-2 93.98 79.16 77.93 51.99
fog-3 91.69 68.41 64.11 38.62
fog-4 76.58 44.17 38.01 24.04

C. Training and Testing on Gaussian Noise
In Section 6, we mentioned that it is not trivial to learn the distribution of noisy images simply by augmenting the training
data distribution. In Tables 5 and 6 we present more information about the performance of the models we trained and tested
on various scales of Gaussian noise.

D. Results on MNIST
MNIST is a special case when it comes to the relationship between small adversarial perturbations and generalization in
noise. Indeed prior has already observed that an MNIST model can trivially become robust to small l∞ perturbations by
learning to threshold the input (Schmidt et al., 2018), and observed that the model from Madry et al. (2017) indeed seems to
do this. When we investigated this model in different noise distributions we found it generalizes worse than a naturally
trained model, results are shown in Table 7. Given that it is possible for a defense to overfit to a particular lp metric, future
work would be strengthened by demonstrating improved generalization outside the natural data distribution.

Table 5. Wide ResNet-28-10 (Zagoruyko & Komodakis, 2016) trained and tested on CIFAR-10 with Gaussian noise with standard
deviation σ.

σ 0.00625 0.0125 0.025 0.075 0.15 0.25
Training Accuracy 100% 100% 100% 100% 99.9% 99.4%
Test Accuracy 96.0% 95.5% 94.8% 90.4% 77.5% 62.2%

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 8. Performance on the ImageNet-C corruptions may vary dramatically depending on whether or not the model is evaluated on the
publicly released compressed images vs applying the corruptions directly in memory. For example, an InceptionV3 model trained with
Gaussian data augmentation was 57% accurate on the Gaussian-5 corruption when evaluated in memory (example image left). This same
model was only 10% accurate on the publicly released compressed images (example image right). The model prediction and confidence
on each image is also shown. Note the image on the right was not modified adversarially, instead the drop in model performance is
due entirely to subtle compression artifacts. This severe degradation in model performance is particularly surprising because differences
between the compressed and uncompressed images are difficult to spot for a human. This demonstrates the extreme brittleness of neural
networks to distributional shift.

Table 6. The models from Section 6 trained and tested on ImageNet with Gaussian noise with standard deviation σ; the column labeled 0
refers to a model trained only on clean images.

σ 0 0.1 0.2 0.4 0.6 0.8
Clean Training Accuracy 91.5% 90.8% 89.9% 87.7% 86.1% 84.6%
Clean Test Accuracy 75.9% 75.5% 75.2% 74.2% 73.3% 72.4%
Noisy Training Accuracy − 89.0% 85.7% 78.3% 71.7% 65.2%
Noisy Test Accuracy − 73.9% 70.9% 65.2% 59.7% 54.0%

Here we provide more detail for the noise distributions we used to evaluate the MNIST model. The stAdv attack defines a
flow field over the pixels of the image and shifts the pixels according to this flow. The field is parameterized by a latent
Z. When we measure accuracy against our randomized variant of this attack, we randomly sample Z from a multivariate
Gaussian distribution with standard deviation σ. To implement this attack we used the open sourced code from Xiao et al.
(2018). PCA-100 noise first samples noise from a Gaussian distribution N (0, σ), and then projects this noise onto the first
100 PCA components of the data.

E. The Gaussian Isoperimetric Inequality
Here we will discuss the Gaussian isoperimetric inequality more thoroughly than we did in the text. We will present some of
the geometric intuition behind the theorem, and in the end we will show how the version quoted in the text follows from the
form in which the inequality is usually stated.

The historically earliest version of the isoperimetric inequality, and probably the easiest to understand, is about areas of
subsets of the plane and has nothing to do with Gaussians at all. It is concerned with the following problem: among all
measurable subsets of the plane with area A, which ones have the smallest possible perimeter?2 One picture to keep in mind

2The name “isoperimetric” comes from a different, but completely equivalent, way of stating the question: among all sets with the

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Table 7. The performance of ordinarily and adversarially trained MNIST models on various noise distributions.
Pepper Gaussian stAdv PCA-100

Clean p = 0.2 σ = 0.3 σ = 1.0 σ = 0.3
Model Accuracy Accuracy Accuracy Accuracy Accuracy
Clean 99.2% 81.4% 96.9% 89.5% 63.3%

Adv 98.4% 27.5% 78.2% 93.2% 47.1%

is to imagine that you are required to fence off some region of the plane with area A and you would like to use as little fence
as possible. The isoperimetric inequality says that the sets which are most “efficient” in this sense are balls.

Some care needs to be taken with the definition of the word “perimeter” here — what do we mean by the perimeter of some
arbitrary subset of R2? The definition that we will use involves the concept of the ε-boundary measure we discussed in the
text. For any set E and any ε > 0, recall that we defined the ε-extension of E, written Eε, to be the set of all points which
are within ε of a point in E; writing A(E) for the area of E, we then define the perimeter of E to be

surf(E) := lim inf
ε→0

1

ε
(A(Eε)−A(E)) .

A good way to convince yourself that this is reasonable is to notice that, for small ε, Eε −E looks like a small band around
the perimeter of E with width ε. The isoperimetric inequality can then be formally expressed as giving a bound on the
quantity inside the limit in terms of what it would be for a ball. (This is slightly stronger than just bounding the perimeter,
that is, bounding the limit itself, but this stronger version is still true.) That is, for any measurable set E ⊆ R2,

1

ε
(A(Eε)−A(E)) ≥ 2

√
πA(E) + επ.

It is a good exercise to check that we have equality here when E is a ball.

There are many generalizations of the isoperimetric inequality. For example, balls are also the subsets in Rn which have
minimal surface area for a given fixed volume, and the corresponding set on the surface of a sphere is a “spherical cap,”
the set of points inside a circle drawn on the surface of the sphere. The version we are most concerned with in this paper
is the generalization to a Gaussian distribution. Rather than trying to relate the volume of E to the volume of Eε, the
Gaussian isoperimetric inequality is about the relationship between the probability that a random sample from the Gaussian
distribution lands in E or Eε. Other than this, though, the question we are trying to answer is the same: for a given
probability p, among all sets E for which the probability of landing in E is p, when is the probability of landing in Eε as
small as possible?

The Gaussian isoperimetric inequality says that the sets that do this are half spaces. (See Figure 9.) Just as we did in the
plane, it is convenient to express this as a bound on the probability of landing in Eε for an arbitrary measurable set E. This
can be stated as follows:
Theorem. Consider the standard normal distribution q on Rn, and let E be a measurable subset of Rn. Write

Φ(t) =
1√
2π

∫ t

−∞
exp(x2/2)dx,

the cdf of the one-variable standard normal distribution.

For a measurable subset E ⊆ Rn, write α(E) = Φ−1(Px∼q[x ∈ E]). Then for any ε ≥ 0,

Px∼p[d(x,E) ≤ ε] ≥ Φ(α(E) + ε).

The version we stated in the text involved ε∗q(E), the median distance from a random sample from q to the closest point
in E. This is the same as the smallest ε for which Px∼p[d(x,E) ≤ ε] = 1

2 . So, when ε = ε∗q(E), the left-hand side of the
Gaussian isoperimetric inequality is 1

2 , giving us that Φ(α+ ε∗q(E)) ≤ 1
2 .

Since Φ−1 is a strictly increasing function, applying it to both sides preserves the direction of this inequality. But
Φ−1(1

2) = 0, so we in fact have that ε∗q(E) ≤ −α, which is the statement we wanted.

same fixed perimeter, which ones have the largest possible area?

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 9. The Gaussian isoperimetric inequality relates the amount of probability mass contained in a set E to the amount contained in its
ε-extension Eε. A sample from the Gaussian is equally likely to land in the pink set on the left or the pink set on the right, but the set on
the right has a larger ε-extension. The Gaussian isoperimetric inequality says that the sets with the smallest possible ε-extensions are half
spaces.

F. Visualizing the Optimal Curves
In this section we visualize the predicted relationship between worst-case l2 perturbations and generalization in noise as
described by Equation 1 in Section 4. This also visualizes the optimal bound according to the isoperimetric inequality,
although the l2 perturbations would be applied to the noisy images themselves rather then clean image. In Figure 10 we plot
the optimal curves for various values of σ, visualize images sampled from x+N(0, σ), and visualize images at various
l2 distance from the unperturbed clean image. Even for very large noise (σ = .6), test error needs to be less than 10−15

in order to have worst-case perturbations be larger than 5.0. In order to visualize worst-case perturbations at varying l2
distances, we visualize an image that minimizes similarity according to the SSIM metric (Wang & Bovik, 2009). These
images are found by performing gradient descent to minimize the SSIM metric subject to the containt that ||x− xadv||2 < ε.
This illustrates that achieving significant l2 adversarial robustness on ImageNet will likely require obtaining a model that
is almost perfectly robust to large Gaussian noise (or a model which significantly violates the linearity assumption from
Section 4). To achieve l2 robustness on noisy images, a model must be nearly perfect in large Gaussian noise.

G. Church Window Plots
In figures appearing below, starting at Figure 11, we include many more visualizations of the sorts of church window plots
we discussed briefly in Section 4. We will show an ordinarily trained model’s predictions on several different slices through
the same CIFAR test point which illustrate different aspects of the story told in this paper. These images are best viewed in
color.

H. The Distribution of Error Rates in Noise
Using some of the models that were trained on noise, we computed, for each image in the CIFAR test set, the probably that
a random Gaussian perturbation will be misclassified. A histogram is shown in Figure 20. Note that, even though these
models were trained on noise, there are still many errors around most images in the test set. While it would have been
possible for the reduced performance in noise to be due to only a few test points, we see clearly that this is not the case.

I. A Collection of Model Errors
Finally, in the figures starting at Figure 21 we first show a collection of iid test errors for the ResNet-50 model on the
ImageNet validation set. We also visualize the severity of the different noise distributions considered in this work, along
with model errors found by random sampling in these distributions.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 10. Top: The optimal curves on ImageNet for different values of σ. This is both the optimum established by the Gaussian
isoperimetric inequality and the relationship described in Equation 1. Middle: Visualizing different coordinates of the optimal curves.
First, random samples from x+N(0, σI) for different values of σ. Bottom: Images at different l2 distances from the unperturbed clean
image. Each image visualized is the image at the given l2 distance which minimizes visual similarity according to the SSIM metric. Note
that images at l2 < 5 have almost no perceptible change from the clean image despite the fact that SSIM visual similarity is minimized.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 11. A slice through a clean test point (black, center image), the closest error found using PGD (blue, top image), and a random
error found using Gaussian noise (red, bottom image). For this visualization, and all others in this section involving Gaussian noise, we
used noise with σ = 0.05, at which the error rate was about 1.7%. In all of these images, the black circle indicates the distance at which
the typical such Gaussian sample will lie. The plot on the right shows the probability that the model assigned to its chosen class. Green
indicates a correct prediction, gray or white is an incorrect prediction, and brighter means more confident.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 12. A slice through a clean test point (black, center image), the closest error found using PGD (blue, top image), and the average
of a large number of errors randomly found using Gaussian noise (red, bottom image). The distance from the clean image to the PGD
error was 0.12, and the distance from the clean image to the averaged error was 0.33. The clean image is assigned the correct class with
probability 99.9995% and the average and PGD errors are assigned the incorrect class with probabilities 55.3% and 61.4% respectively.
However, it is clear from this image that moving even a small amount into the orange region will increase these latter numbers significantly.
For example, the probability assigned to the PGD error can be increased to 99% by moving it further from the clean image in the same
direction by a distance of 0.07.

Figure 13. A slice through a clean test point (black, center image), a random error found using Gaussian noise (blue, top image), and the
average of a large number of errors randomly found using Gaussian noise (red, bottom image).

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 14. A slice through a clean test point (black, center image) and two random errors found using Gaussian noise (blue and red, top
and bottom images). Note that both random errors lie very close to the decision boundary, and in this slice the decision boundary does not
appear to come close to the clean image.

Figure 15. A slice through three random errors found using Gaussian noise. (Note, in particular, that the black point in this visualization
does not correspond to the clean image.)

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 16. A completely random slice through the clean image.

Figure 17. Some visualizations of the same phenomenon, but using pepper noise rather than Gaussian noise. In all of these visualizations,
we see the slice through the clean image (black, center image), the same PGD error as above (red, bottom image), and a random error
found using pepper noise (blue, top image). In the visualization on the left, we used an amount of noise that places the noisy image further
from the clean image than in the Gaussian cases we considered above. In the visualization in the center, we selected a noisy image which
was assigned to neither the correct class nor the class of the PGD error. In the visualization on the right, we selected a noisy image which
was assigned to the same class as the PGD error.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 18. Not all slices containing a PGD error and a random error look like Figure 3. This image shows a different PGD error which is
assigned to a different class than the random error.

Figure 19. A slice with the same black point as in Figure 3 from the main text, together with an error from the clean set (blue) and an
adversarially constructed error (red) which are both assigned to the same class (“elephant”). We see a different slice through the same test
point but at a larger scale. This slice includes an ordinary test error along with an adversarial perturbation of the center image constructed
with the goal of maintaining visual similarity while having a large l2 distance. The two errors are both classified (incorrectly) by the
model as “elephant.” This adversarial error is actually farther from the center than the test error, but they still clearly belong to the same
connected component. This suggests that defending against worst-case content-preserving perturbations (Gilmer et al., 2018a) requires
removing all errors at a scale comparable to the distance between unrelated pairs of images.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 20. The cdf of the error rates in noise for images in the test set. The blue curve corresponds to a model trained and tested on
noise with σ = 0.1, and the green curve is for a model trained and tested at σ = 0.3. For example, the left most point on the blue curve
indicates that about 40% of test images had an error rate of at least 10−3.

Figure 21. A collection of adversarially chosen model errors. These errors appeared in the ImageNet validation set. Despite the high
accuracy of the model there remain plenty of errors in the test set that a human would not make.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 22. A collection of adversarially chosen model errors. These errors appeared in the ImageNet validation set. Despite the high
accuracy of the model there remain plenty of errors in the test set that a human would not make.

Figure 23. Visualizing the severity of Gaussian noise, along with model errors found in this noise distribution. Note the model shown here
was trained at noise level σ = .6.

Adversarial Examples Are a Natural Consequence of Test Error in Noise

Figure 24. Visualizing the severity of pepper noise.

