Discovering Conditionally Salient Features with Statistical Guarantees

A. Theoretical Analysis of Local Feature FDR

Definition A.1. We call a mapping o : R* — P([d]) a
generic swap or a swap. In addition, we say that a swap is
a local swap if for any x, z € R,

T(d\o(z) = Z[d\o@) = Oo(x)=0(2)

Given a mapping
R? x R? — R? x R?

(g: :i:) o (Fl(a;,i:),...,
’ Fl(l},@),...,pd(.’b,li))

(F,F):

and swap o, define the operation [F, F |swap(o) as the map-
ping [FvF]swap(a') . ( T, ) [( )( j)] swap(o(x))”

It is important to clearly identify the input space of the
swap o. The output of the swap operation on a mapping is
again a mapping with the same input space, so for exam-
ple we can iterate swap operations on a given mapping
(F,F): for 01,0 swaps the following is well defined:
[[F, Flswap(oy)] cwap(ey)- BOh 01, 072 are evaluated on a
same given point  of the space, and the final mapping cor-
responds to a point-wise concatenation of the swaps. As
a consequence, the order of the swap operations does not
matter. In particular, for 0 = 01 = 09, we have

[[F’ F]swap(o’)] swap(o) (F F)
Such mappings from R xR? to R xR? can be concatenated:
for (F, F), and (G, G) we denote (F, F) o (G,G) the
concatenated mapping. Note that concatenation and swap
operations do not behave well. For example, in the general
case,

)]swap(a) # (F’ F) o [Gv G]swap(a)
)]swap(o) 7& [Fv F]swap(a) o (G7 G)

Yo (G, G
F)o (G,G

One particular case is the identity mapping that we denote
(F' F') ie. FlYa,2) = z; and F}'(x,2) = ;.
Whenever we consider random variables X, X we denote
(X, X]qwap(o) [F'd, Fld]swap(a) (X, X) the random
variable resulting from applying the swapped identity map.
In addition, if o is constant equal to S C [d], then we go
back to the previous definition of swap [X, X Jswap(s) in
(Candes et al., 2018). Whenever we consider an identity
mapping and a local swap o, we have the immediate follow-
ing result:

Id Id

~ Id ~ ~
(Fldv F ) = [FldaF ]swap(a) o [Flda F ]swap(a)

Our goal now is to show that the exchangeability condition
that defines a knockoff variable implies a stronger distribu-
tional result.

Proposition A.1. Let o be a local swap. If X is a knockoff
random variable for X (i.e. satisfies exchangeability), then

[X7 X]swap(o‘) i [X7 X] (3

which we refer to as local exchangeability. If ¢ C HY, then

[)(7)(]swap(a)ay’g [XvX]aY )
We prove this result in Section B.1. This result extends
the exchangeability property and the Lemma 3.2 in (Can-
des et al.,, 2018). Instead of swapping a fixed set of
features, we now allow the swapping indices to depend
on the features. Notice that the knockoffs X are con-
structed as in the general case, the local exchangeabil-
ity does not require a different definition for knockoff
variables. We extend the definition of a swap to prob-
ability distributions: for 4 € Pr(R? x R?), we denote
Hswap(o) = L([X, X}swap(a)) whenever = L([X, X]).
Abusing notation, whenever . = L£([ X, X],Y) we will
still denote figuap(o) = L([X, X]Swap((,), Y).

Local Feature Statistics The next step is to extend the
construction of feature statistics to the local setting.

Definition A.2. Define local importance scores as a map-

ping:
| Pr(R? xR x R) — (R? — R? x RY) (10)
e (T T)
where
- R? — R? x R4
T,T,): - 11
(T, Ty) {z (T2, Fo(2) (11)

such that, for any S C [d], we have

(I)(,u'swap(s) ) = [(I)(,U')] swap(S)

For r > 0, we say that such importance scores ® are r-
local if, for any n € Pr(R? x R? x R), we have that
®(u)(2) = (T,(2),T,.(2)) only depends on y through
the restriction of p to B(z,r) x B(z,r) x R. That is,
if u,p' are two probability measures on R* x R* x R
such that they coincide on B(z,r) x B(z,r) X R, then

(Tu(z),Tu(z)) = (Tu’(z)vTu’(z))-

The next goal consists in translating the swap opera-
tion in figypap(o) = L([X, X]Swap( ),Y') into a swap of
T,,T }Swap((,) This step does not require X to be a
knockoff of X: in what follows we do not make any as-
sumption on p. Notice that the swap operation has been
defined (Definition 5.1) as a transformation of a map-
ping R? x R? — R? x RY, but it can be immediately ex-
tended to mappings R — Rd x RZ. We are able to relate
[THSWP(G),T#SWW)] and [T, T p)swap(o) if We assume
locality constraints on the importance scores.
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Definition A.3. For o
r > 0, define

: RY — P([d)) local swap, and

A" ={z€R% o(z) =o(y) Yy € B(z,7)}

RN o(z) ifzeA
0 else

Proposition A.2. Assume there exists v > 0 such that the
importance scores are r-local. Then, assuming A" is non-
empty, for z € A", we have:

[(Tu (2), TH (2))] swap(o @) = [Tusum,p(ﬁ)(z) ) Tusum,p(ﬂ)(z)]

We prove this result in Section B.2. Whenever p =
L([X,X],Y) where X is a knockoff of X, consider a
local swap o such that o C HJ. By proposition 5.1,
we get that 4 = fgyap(s), and therefore (T;mTu) =
(Tuswap<g>aTuswap<g))~ In practice, we can imagine that
instead of using x4 as an input when constructing importance
scores, we use [i,, an empirical measure defined by the
dataset of n i.i.d. samples from p that we feed as input to
the algorithm. Therefore a consequence of proposition 5.1
will be that, taking also into account the eventual random-
ness when generating importance scores, we have for any
z € RY,

d
(Tﬂn (Z), Tﬂn (Z)) = (Tﬂn,swap(a) (Z), Tﬂmsu,apw) (Z))

‘We now combine this equality with that of Proposition 5.2.
Fix r > 0 such that we have r-local importance scores.
Consider a set of L points z1, ... zy € R? that are pairwise
2r far apart, that is, forany 1 <[,I' <N, ||z; — 2y ||c > 2.

Proposition A.3. ¢" is a local swap and if o C HY, then
o C Hy. Furthermore,

(T;. (z1), Ty, (21)] 1<I<L

d
= [T, (20 T (20 swap(or s ) <1< 1

We prove this proposition in Section B.3. This allows us
to conclude. Fix a target FDR level ¢ € (0,1). Indeed,
Proposition B.3 directly implies the flip-sign condition of
Lemma 3.3 in (Candes et al., 2018). Independently for
each z;, consider an independent random variable ¢; =
(e11,---,€,a4), where foreach 1 <! < L,and1 < j <d
we have eé = 1if j ¢ 0"(z;), and a Rademacher random
variable if j € 0" (z;). Then denoting o7 (z;) = o,-(2;) N
{j &, = —1}, we have:

(Ts, (1) Ts,(20)

d
= [Tﬂn (Zl)7 Tﬂn (Zl)]swap(a;'(zl )

As a consequence, denoting

Wi (z1) = T, (21) = T, (21)
we get that

d
a©OWg (z1) =Wy, (z1)

where the symbol © indicates component-wise multiplica-
tion. Now, given that ||z; — 2/ ||oc > 2, this equality holds
uniformly for 1 <! < L. The random choice of the swap
ol (z;) is done independently of a random swap o (zy/)
at another point z;. We conclude that the knockoff selec-
tion procedure now applies to each of these vectors in an
independent way: that is, for each 1 <[ < L, setting

L+#{j: Wi, (21)]; < —t}
#{j: Wi, (205} = q}

allows to construct selection sets S; = {j : [W 4, (21)]; >
7}, that control FDR" given that initially 0" (z) C H}(2).

ﬁ:min{t>0:

That is, according to Theorem 3.4 in (Candes et al., 2018),
the set S; is such that
SN H ()|

E| )
1Vv|S|

] <

hence the result.

B. Proofs
B.1. Proof of Proposition 5.1
Proof. We begin the proof with two lemmas:
Lemma B.1. We can decompose a local swap o : R —
P([d]) into o; : R* — P([d]) such that for every i € [d]:
Im(oi) ={0,{i}}
o(z) =], oi(z), Va € R
o; isalocal swap

We will denote by o = [_];i:1 o; the property o(x) =
LIZ, oi(x), Vo € R™

Proof. Define, for every i € [d],

o
7= {{z’}

We need to show that o; is a local swap. Let &, z € R? such
that T(d\oi(x) = Z[d]\o; ()" If Ui(CC) = () then ¢ = z and
therefore o;(x) = 0;(2). If 0;(x) = {i}, theni € o(x), so
T(d)\oi(x) = Z[d)\oi(x) IMPlieS T(4]\o(x) = Z[d)\o(=) and
therefore o(x) = o(z) given that o is a local swap. But
then we have o;(x) = 0;(2) by definition of o;. O

ifi ¢ o(x)
ifi € o(x)
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Lemma B.2. Assume that we have a partition of a local

swap o into two local swaps o®,0%: 0 = 0| |aP. Then
we have :

~Id ~Id ~Id
[F1d7 F ]swap(o’) = [F1d7 F ]swap(a”) © [FIdv F }swap(a“)

Proof. It is crucial to notice that, given our previous swap
definition for an identity mapping, the swap(o®) operator
applies to the output of the swapped vector by ¢®. In order to
prove the result we need to show that o (x) = o®(2) where
z is the vector of the first d coordinates of [x, Z]syap (o (a))-
Given that, for any 2 € R? we have T(g\oa(z) = Z[d]\oo(x)
and 0%(x) C o(xz), we get o(x) = o(z) and same equal-
ity with ¢?, as both o,0® are local swaps. That implies
ob(x) = ob(2) as 0 = 0| |o”. Notice that the order
does not matter when composing the two swapped identity
mappings. O

In order to prove equation 4, we write it in terms of map-
pings: we want to show that if (X, X') satisfy exchange-
ability, then
~ ~Id ~
[X7 X]swap(o’) = [Fldv F ]swap(o’) (X7 X)

LF P (X, X) =

With Lemma B.1 we decompose 0 = |_|§l:1 o;, and by
recursively using Lemma B.2 we get that

Id Id

Oo...
Id

[Fld,p :[F1d713‘

]swap(dl)

o [FIHZJZ—1

]swap(o)
Jswap(oa)

It then suffices to show the equality in distribution for just
one swap operation, so that we can recursively apply the
swapped identity mappings while keeping the equality in
distribution. We then need to prove that :

~Id

[FId,F ]swap(o’l)(Xax) i [FId,FId](X7X)

Equivalently, if we condition on X _, X _1 we need to
show that

Id

[Fldv-F ]swap(al)(va)‘Xflefl

~Id ~ ~
LIF (X X)X, X

Here crucially we use the fact that o4 is a local swap. Indeed,

whenever we condition on X _;, X _1, the input values to
Id

the mapping [F'?, F Jswap(oy) can be seen as constant

with respect to X _;, X _;. Given that o; can only be equal
to () or {1}, and that therefore its value is determined by

X _1, hence constant when we condition on X _;, we get
that either

Id

[Fldv-F ]swap(al)(XaX)‘thj(fl

~Id ~ ~
= [F" F )X, X)|X_1,X_,

which therefore holds also in distribution or

1d

[FId,F ]swap(al)(X’X”X X

~ Id ~
= [F" F | swap(ip (X, X)X 4

;X1

In that case, it simplifies into
~ ~ d ~ ~
X, X1| X 1, X0 =X, X4 | X, X

which is a consequence of the fact that X, X satisfy ex-
changeability, hence the result.

To prove [ X, X]swap(g), y £ [X, X],Y, we assume that
for every ¢ € R, o(x) C H)(x). Jointly taking ¥ with
(X, X), the proof is the same up to proving that the follow-
ing holds whenever 1 € HJ(X):

X1, X1, Y| X1, Xy Z X, X1, Y| X, X

By the properties of 7, 1 € HJ(X) holds regardless of the
value of X; when conditioning on X _;. Now if we write
down the densities (as we assumed that the joint distribution
has a positive density with respect to a product measure):

p(x, x,y) = p(y|le, T)p(z, ®)
=plylx)p(z, &) as X LY|X
=plyle_1)p(x,2) as X3 LY|X_ 1=z,
= p(y|lz—1)p([z, w]swap({l})) by exchangeability
= p([@, &]swap({1}): V)

Hence the result. O

B.2. Proof of Proposition 5.2

Proof. Fix o local swap, r > 0, and z € A". Let S :=
o(z), by definition of local importance scores we have that

[(Tu(')’ Tu('))]swap(s) = [(Tﬂswap(S) ()a Tuswap(S) ())]

By definition of r-local importance scores, the value of

[THSMP(U) (2), T#mp(o) (z)] depends on figqp(s) ONly
through B(z,r) x B(z,r) x R. Therefore if ji5,qp(s) and
Pswap(s) coincide on B(z,r) x B(z,r) x R, then we have

[Tﬂswap(u)( ) T#swap(u) (z)]
= [Tltswap(s) (z)7 Tltswap(s) (z)]
= [(TM(Z)vTM(Z))]swap(a(z))
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Given that z € A", we have that Vu,v € B(z,r), o(u) =
S. We want to show that, for any y € R,

Hswap(o) (uv v, y) = Nswap(S)(uv v, y)
~ P([va]swap(a)a Y =u,v, y)
= P([XaX]swap(S')vy = uavay)
<~ P([Fld7FId]5wap(a)(X7 X)7 Y= u,v, y)
~Id ~
=P([F', F ] pap(s)(X, X),Y = u,v,y)
SP(X.X,Y =[F'" F"
=P(X,X,Y =[F'",F
<~ P(Xa X, Y = [u7 'U}swap(o'(u))a y)
= P(X,X,Y = [uvv]swap(S)vy)

swap(o) (ua ’U), y)
Id
]swap(S) (u7 'U), y)

Hence the result. O

B.3. Extended Flip-Sign Property for Local Swaps and
Local Importance Scores

Proposition B.3. o7 is a local swap and if o C HS, then
o C Hy. Furthermore,

(T;. (z1), Ty, (21)] 1<I<L

d ~
= “Tﬂn (z1), Ty, (zl)]swap(or(Zz))]1§l§L

Proof. Let x, z such that g\ o (2) = Z[d)\o"(z)- WE Want
to show that 0" (x) = 0" (2).
Ifc ¢ A", then 0" (x) = 0,s0 x = z and 6" (x) = 0" (2).
If x € A", let us first show that it implies z € A". Let
y € B(z,r), show that o(y) = o(z). We have that y —
(z — ) € B(x,r), and given that x € A", we get o(x) =
o(y—(z—x)). As o is alocal swap, we have o (x) = o(z),
and we also get o(y — (2 — @)) = o(y) because
v = (2 = o y-—2) = Yiahow—(=—=))
& Y= (2 = D)]a\o@) = Yo
& [(z=2)gpo@ =0
= Zld\or () T F[d)\o"(2)

We can now conclude: o”(x) = o(x) as ¢ € A", and

given that o is a local swap we get that o(x) = o(z).

Finally, as z € A", we have o(z) = ¢"(2) and therefore
o"(x) = o"(2).

Assume 0 C HJ. Fix z € R?, assume that 0" (2) # 0
and take j € ¢"(z). That implies z € A", and therefore
Vy € B(z,r) we have j € 0"(2) = 0(z) = o(y) C
HJ(y). Therefore j € NyepznHo(y) = Hi(z). We
then conclude that o™ C HJ,.

The last statement is a concatenation of Proposition 5.2 and
the fact that ¢t = flswap(or)- O]

C. Semi-synthetic Data Experiments

Our simulations previously described were entirely based on
synthetic data. Alternatively, using real SNPs data and then
fitting a HMM model yields the same experimental results,
which we did for data from the 1000 Genomes Project (Con-
sortium et al., 2015), where we obtained around 2000 indi-
vidual samples for 27 distinct segments of chromosome 19
containing an average of 50 SNPs per segment, and filtered
out SNPs that are extremely correlated (above 0.95). This is
because HMMs can truly capture the covariate distribution
of a SNP dataset and are a good model for a downstream
feature selection with the knockoff procedure. For simplic-
ity, and in order to scale with the number of samples (which
is limited with real data), we described simulations based
on synthetic covariates.

D. Saliency-based Partitioning

Saliency maps (Lipton, 2016) have emerged as a popular
tool for interpretability in Neural Networks. A saliency map
allows to identify, under a trained model that minimizes
some loss L, which input variation has the strongest impact
on the loss at a given training point. Training a neural
network on the concatenated vector X, X to predict Y,
saliency maps can be used as importance scores at any given
training point. That is, denoting g5 : R? x R* — R a
classifier parametrized by 6 (such as a neural network),
consider 0, the output of training such model on the actual
data. We can now compute the saliency scores:

s 5. R? x R? — R? x R4
T Xz‘,XiHVx,XL(gén(XiaXvi)*Yi)

Notice that the saliency scores are only computed for train-
ing points X;, X i, Yi, but our definition of S, S assumes
that we can expand the saliency scores to the whole fea-
ture space (for example, through smoothing). The reason
why these mappings can not be immediately used as local
importance scores is because of the training process: the
output of the training process are the parameter estimates
in 0,, = 6,,(X, X,Y), which are constructed based on the
global training set. Even though the saliency is local at a
point the swap operation can not go through the training
process, i.e. we can not relate gén(x,Xﬁ/)([:c’ &) swap())
and gj (X X1, mapiorsY) ([, &]). This is due to the influence
that a training point lying in one region of the space may
have at another point (during evaluation) at a different region
(Koh & Liang, 2017). Still, we can use these saliency scores
to partition the space based on a subsample of the whole
initial dataset, and then run the Knockoff procedure with
local importance scores at points located in each subregion.
This method has the advantage of being computationally
less expensive than the previous one, especially in high
dimensions.



