Efficient Training of BERT by Progressively Stacking

Linyuan Gong' DiHe'! ZhuohanLi' Tao Qin’> Liwei Wang'? Tie-Yan Liu?

Abstract

Unsupervised pre-training is commonly used in
natural language processing: a deep neural net-
work trained with proper unsupervised prediction
tasks are shown to be effective in many down-
stream tasks. Because it is easy to create a large
monolingual dataset by collecting data from the
Web, we can train high-capacity models. There-
fore, training efficiency becomes a critical issue
even when using high-performance hardware. In
this paper, we explore an efficient training method
for the state-of-the-art bidirectional Transformer
(BERT) model. By visualizing the self-attention
distributions of different layers at different po-
sitions in a well-trained BERT model, we find
that in most layers, the self-attention distribution
will concentrate locally around its position and the
start-of-sentence token. Motivated by this, we pro-
pose the stacking algorithm to transfer knowledge
from a shallow model to a deep model; then we
apply stacking progressively to accelerate BERT
training. Experiments showed that the models
trained by our training strategy achieve similar
performance to models trained from scratch, but
our algorithm is much faster.

1. Introduction

In recent years, deep neural networks have pushed the limits
of many applications, including speech recognition (Hinton
et al., 2012), image classification (He et al., 2016), and
machine translation (Vaswani et al., 2017). The keys to the
success are the advanced neural network architectures and
massive databases of labeled instances (Deng et al., 2009).
However, human annotations may be very costly to collect,

The work was done while the first and third author were visit-
ing Microsoft Research Asia. 'Key Laboratory of Machine Per-
ception, MOE, School of EECS, Peking University *Microsoft
Research *Center for Data Science, Peking University, Beijing
Institute of Big Data Research. Correspondence to: Tao Qin <tao-
qin@microsoft.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

especially in domains that require particular expertise.

In natural language processing, using unsupervised pre-
trained models is one of the most effective ways to help
train tasks in which labeled information is not rich enough.
For example, word embedding learned from Wikipedia cor-
pus (Mikolov et al., 2013; Pennington et al., 2014) can
substantially improve the performance of sentence classifi-
cation and textual similarity systems (Socher et al., 2011;
Tai et al., 2015; Kalchbrenner et al., 2014). Recently, pre-
trained contextual representation approaches (Devlin et al.,
2018; Radford et al., 2018; Peters et al., 2018) have been
developed and shown to be more effective than conven-
tional word embedding. Different from word embedding
that only extracts local semantic information of individual
words, pre-trained contextual representations further learn
sentence-level information by sentence-level encoders.

BERT (Devlin et al., 2018) is the current state-of-the-art pre-
trained contextual representations based on a huge multi-
layer Transformer encoder architecture (BERT-Base has
110M parameters and BERT-Large has 330M parameters)
and trained by masked language modeling and next-sentence
prediction tasks. Because these tasks require no human su-
pervision, the size of the available training data easily scales
up to billions of tokens. Therefore, the training efficiency
of such a model becomes the most critical issue, and the
requirement of extremely high-performance hardware be-
comes a barrier to its practical application.

In this paper, we aim to improve the training efficiency of the
BERT model from in an algorithmic sense. Our motivation
is from the observation of self-attention layers, which is the
core component of the BERT model. We visualize a shallow
BERT model and a deep BERT model and then study their
differences and relationships. By carefully investigating
the attention distributions in different layers at different
positions, we find some interesting phenomena: First, the
attention distributions of the shallow model are quite similar
across different position and layers. At any position, the
attention distribution is a mixture of two distributions. One
distribution is local attention that focuses on neighbors. The
other distribution focuses on the start-of-sentence token.
Second, we find the attention distribution in the shallow
model is similar to that of a deep model. This suggests that
such knowledge can be shared from the shallow model to a

Efficient Training of BERT by Progressive Stacking

deep model: Once we have a shallow model, we can stack
the shallow model into a deep model by sharing weight
between the top self-attention layers and the bottom self-
attention layers, and then fine-tune all the parameters. As
we can train the model from a shallow one to a deep one,
training time can be largely reduced as training a shallow
model usually requires less time.

We conduct extensive experiments on our proposed method
to see (1) whether it can improve the training efficiency and
convergence rate at the pre-training step, and (2) whether the
trained model can achieve similar performance compared
to the baseline models. According to our results, we find
first during pre-training, our proposed method is about 25%
faster than several baselines to achieve the same validation
accuracy. Second, our final model is competitive and even
better than the baseline model on several downstream tasks.

2. Related Work

2.1. Unsupervised Pre-training in Natural Language
Processing

Pre-trained word vectors (Mikolov et al., 2013; Pennington
et al., 2014) have been considered a standard component of
most state-of-the-art NLP architectures, especially for those
tasks where the amount of labeled data is not large enough
(Socher et al., 2011; Tai et al., 2015; Kalchbrenner et al.,
2014). However, these learned word vectors only capture
the semantics of a single word independent of its surround-
ing context. The rich syntactic and semantic structures of
sentences are not effectively exploited.

Pre-trained contextual representations overcomes the short-
comings of traditional word vectors by considering its sur-
rounding context. Peters et al. (2018) first train language
models using stacked LSTMs, and then use the hidden
states in the stacked LSTMs as the contextual represen-
tation. Since LSTM processes word sequentially, the hidden
state of LSTM at one position contains the information of
the words in previous positions, and thus the representation
contains not only the word semantics but also the sentence
contexts. Radford et al. (2018) uses advanced self-attention
units instead of LSTM units in language models. Devlin
et al. (2018) further develops a masked language modeling
task and achieves state-of-the-art performance on multiple
natural language understanding tasks. As (masked) lan-
guage modeling requires no human labeling effort, billions
of sentences on the web can be used to train a very deep
network. Therefore, a major challenge in learning such a
model is training efficiency.

2.2. Network Training by Knowledge Transfer

Our iterative training method is also closely related to ef-
ficiently training deep neural networks using knowledge

Output
Probabilities

Classifier
D—)

Feed
Forward

/

Layer Norm

Multi-Head
Attention

Layer Norm
\—_F—/
Positional
Encoding ® - EB‘\

Token Segment
Embedding Embedding

T
Inputs

Figure 1. The model architecture of BERT.

transfer. Chen et al. (2015) tackles the problem about how
to train a deep neural network efficiently when we have a
shallow neural network. In particular, function-preserving
initialization is proposed which first initializes a deep neural
network that represents the same function as the shallow
one, and then continue to train the deep network by standard
optimization methods. However, when dealing with sophis-
ticated structures such as Transformer, function-preserving
initialization is usually not effective. For example, the basic
component in the Transformer is a composition of a self-
attention layer and a feed-forward layer. According to our
empirical study, simply setting the feed-forward layer to be
near zero and randomly initializing the self-attention layer
is a function-preserving initialization, but it is ineffective as
most parameters in the self-attention layer stay untrained. In
our work, we propose a different and more efficient method
to transfer knowledge from shallow models to deep models.

3. Method

The BERT (Bidirectional Encoder Representation from
Transformers) model is developed on a multi-layer bidi-
rectional Transformer (Vaswani et al., 2017) encoder. The
architecture is shown in Figure 1. The encoder consists of
L encoder layers, each of which consists of a multi-head
self-attention sub-layer and a feed forward sub-layer: both
of them have residual connections (He et al., 2015). The

Efficient Training of BERT by Progressive Stacking

feed forward layer (FFN) is point-wise, i.e., it applies inde-
pendently to each position of the input.

The key component of the Transformer encoder is the multi-
head self-attention layer. An attention function can be
formulated as querying a dictionary with key-value pairs
(Vaswani et al., 2017), e.g.,

. QKT
Attention(Q, K, V') = softmax -V,
Vdy (D

where Q € R™% K € RV € R,

dj, is the dimension of each key and each query, n, is the
number of queries, and 7. is the number of key-value entries.
A = softmax(QKT //dy) € R+ defines the attention
distribution. The output of each query is a weighted average
of the rows of V with A as the coefficient. The attention
distribution A helps us understand the attention function:
A;; reflects the importance of the i-th key-value entry with
respect to the j-th query in generating the output (Bahdanau
etal., 2014).

Multi-head self-attention layer is a attention function with
multiple parameterized heads:

MultiHeadAtt(X) = Concat(hy, h, ..., hg) WO,
hi = Attention(XW<, XWK XWY), ()
where W2 WK WY e RGV/H WO e R4,

Here H is the number of heads; X € R™4 a sequence of
n d-dimension hidden states, is the input to this layer, and
We WK WV WO are trainable parameters. WiQ and
WX together define the similarity metric for hidden states
in X to compute the attention distribution of each head, so
there are H attention distributions in each layer.

To investigate the mechanism behind BERT, we visualize
the attention distribution of each layer at each position. Im-
plementation details of our experiments can be found in Sec-
tion 4.1. We trained a model using the BERT-Base setting
which is a 12-layer model with stacked self-attention layers.
We randomly picked one sentence from the validation set of
the corpus, and visualize the attention distributions of heads
from different layers in Figure 2. More visualizations are
included in the supplementary materials. From the figure,
we found that:

1. The attention distribution is quite singular. The atten-
tion distributions of most heads are mixtures of two
distributions: one distribution focuses on local posi-
tions, and one distribution focuses on the first token
(which is the class (CLS) token). This suggests that
neighboring positions and global information are both
important for understanding a single token.

2. The attention distributions of many heads from top
layers (e.g., layer 8, 10, 12) look very similar to the

L8 H1 L10 H12 L12 H10
..I.. l.
n
. . | I "
~ . .
| | |] [
L2 H5 L4 H5 L6 H12
||
Iz n
i - “
|

Figure 2. Visualization of attention distributions of BERT-Base.
For a randomly chosen sample sentence, we visualize the attention
distributions of 6 heads from different layers. For example, “L8
H1” denotes the first head of the eighth layer. In each heatmap, the
color depth of the j-th element in the ¢-th row reflects the attention
weight from position ¢ to position j: the darker the color, the more
attention position ¢ pays to position j.

Copy Train
[Classifier]E>[Classifier]

[Classifier]

:‘ Encoder
a ".__LEYE;_Q‘__ Encoder
Encoder = Encoder Layer x 2L
Layer xL Layer xL

1
(Embe’dding] | Embe’dding] © [Embedding |

Figure 3. The diagram of the stacking algorithm.

attention distributions of heads from bottom layers
(e.g., layer 2, 4, 6).

The attention distributions of bottom layers are similar to
the attention distributions of top layers. This fact suggests
that to a certain extent, their functionalities are similar. In
addition, the success of Universal Transformers (Dehghani
et al., 2018) in sequence-to-sequence modeling tasks also
suggests that it is possible for the Transformer at different
depths to share the same parameters. Therefore, we think
that it is also possible if we copy the parameters of a trained
L-layer BERT, stack it into a 2 L-layer model.

Stacking. As a result, we designed the stacking algorithm.
As is shown in Figure 3, if we have a L-layer trained BERT,
we can construct a 2L-layer BERT by copying its param-
eters: for ¢ < L, the i-th layer and the (i + L)-th layer of
the constructed BERT have the same parameter of the ¢-th
layer of the trained BERT. By warm-starting with knowl-

Efficient Training of BERT by Progressive Stacking

edge transferred from the L-layer trained BERT, we expect
our model to learn faster than by training from scratch.

By stacking, the parameters of a trained L-layer BERT
should be a good warm-start for self-attention layers of
the top L layers. For example, as is mentioned above, an
attention head of each position usually focuses on the CLS
token and its neighbors. If we initialize top L layers with
these parameters, these attention heads will still focus on
the CLS position to extract global information as well as
their neighbors to extract local information.

Progressive stacking. Because shallow models can usu-
ally be trained faster than deep models (for the same number
of steps), the training time will be greatly reduced if we train
deep models by stacking from a shallow one. Again, we
can train this shallow model faster by stacking from a shal-
lower model. By recursion, we design an iterative training
algorithm based on our stacking technique to train a deep
BERT faster. We call this algorithm progressive stacking
(Algorithm 1).

Algorithm 1 Progressive stacking

MY, + InitBERT(L/2%)

My < Train(M{)) {Train from scratch.}

fori < 1tokdo
M/ + Stack(M;) {Doubles the number of layers. }
M < Train(M]) {M; has L/2*~% layers.}

end for

return M},

4. Experiments
4.1. Experimental Design

All of our experiments are mainly based on our own re-
implementation of BERT model (Devlin et al., 2018) using
fairseq (Gehring et al., 2017) in PyTorch toolkit !. We set
most of the hyperparameters to be the same as the original
BERT (Devlin et al., 2018). The detailed hyperparameter
setting is attached in the supplementary material.”

Datasets. We follow Devlin et al. (2018) to use English
Wikipedia corpus® and BookCorpus* for pre-training. By
concatenating the two datasets, we obtain our corpus with

!Since the authors of BERT do not publish their code for data
pre-processing or multi-GPU training, we choose other platforms
for ease of our implementation.

2Codes for the experiments are available at https://
github.com/gonglinyuan/StackingBERT

https://dumps.wikimedia.org/enwiki

*As the dataset BookCorpus (Zhu et al., 2015) is no longer
freely distributed. We follow the suggestions from Devlin et al.
(2018) to crawl smashwords . com and collect BookCorpus on
our own.

roughly 3400M words in total, which is comparable with the
data corpus used in Devlin et al. (2018). We first segment
documents into sentences with Spacys; Then, we normalize,
lower-case, and tokenize texts using Moses decoder (Koehn
et al., 2007); Next, we apply byte pair encoding (BPE) (Sen-
nrich et al., 2015). We randomly split documents into one
training set and one validation set. The training-validation
ratio for pre-training is 199:1.

pWe fine-tune each pre-trained model on 9 down-
stream tasks in GLUE (General Language Understanding
Evaluation), a system for “evaluating and analyzing the per-
formance of models across a diverse set of existing NLU
tasks” (Wang et al., 2018). We briefly describe the tasks in
Table 1. We follow Devlin et al. (2018) to skip WNLI in our
experiments, because few submissions on the leaderboard®
do better than predicting the majority class for this task.

Implementation details. Using our pre-processed data
described previously, we train a 12-layer BERT-base model
as the baseline model. The BERT-base model is trained for
400,000 updates from scratch, and the batch size for each
update is set to be 122,880 tokens.

To show how our progressively stacking algorithm can speed
up training, we first train a 3-layer BERT for 50,000 steps,
stack it twice into a 6-layer BERT and then train this 6-layer
BERT for 70,000 steps. In the final step, we stack the 6-layer
BERT into a 12-layer BERT, and train the 12-layer BERT
for 280,000 steps. Therefore, eventually, we use the same
architecture and number of training steps as the BERT-base
model.

For both models, we use Adam (Kingma & Ba, 2014) as the
optimizer, and for our progressively stacking method, we re-
set the optimizer states (the first/second moment estimation
of Adam) but keep the same learning rate when switching
from the shallow model to the deep model.

We also compare our method with other iterative stacking
methods popularly used for convolutional networks in com-
puter vision tasks:

o Identity. As is shown in Figure 1, each encoder layer
of our BERT implementation consists of two residual
blocks, and the last steps of both residual blocks are
linear transformations (the second linear transforma-
tion of a feed forward layer and W© of a multi-head
self-attention layer). Therefore, if we initialize these
linear transformations to be zero for the top L layers,
these layers add nothing to the hidden states, so the top
L layers are strictly equivalent to an identity mapping.
We initialize the bottom L layers with parameters of

‘https://spacy.io
*https://gluebenchmark.com/leaderboard

https://github.com/gonglinyuan/StackingBERT
https://github.com/gonglinyuan/StackingBERT
https://dumps.wikimedia.org/enwiki
smashwords.com
https://spacy.io
https://gluebenchmark.com/leaderboard

Efficient Training of BERT by Progressive Stacking

Table 1. GLUE task descriptions and statistics. The second column denotes the number of training examples. The fourth column denotes
the number of classes; STS-B is an exception because it is an regression task.

Corpus Size Task |C| Metric(s) Domain
Single-Sentence Classification

CoLA 8.5k acceptibility 2 Matthews correlation misc.

SST-2 67k sentiment 2 accuracy movie reviews
Sentence Similarity/Paraphrase

MRPC 3.7k paraphrase 2 accuracy/F1 news

STS-B 5.7k similarity - Pearson/Spearman corr. misc.

QQP 364k similarity 2 accuracy/F1 social QA questions

Natural Language Inference (NLI)

MNLI 393k NLI 3 matched/mismatched acc. misc.

QNLI 108k QA/NLI 2 accuracy Wikipedia

RTE 2.5 NLI 2 accuracy misc.

WNLI 634 coreference/NLI 2 accuracy fiction books

a trained L layer BERT, initialize the last transforma-
tions of each residual block on the top L layers as zeros,
and initialize all other layers randomly. This construc-
tion is strictly function-preserving, as is required by
Net2Net (Chen et al., 2015).

o Identity with noise. Although it is optional to add
noise when using Net2Net, adding a small amount
of noise usually aids in breaking the symmetry more
rapidly (Chen et al., 2015). In our “identity with noise’
setting, everything else is identical to the “identity”
setting, but we add zero-mean Gaussian noises with
o = 0.03 to the layers that are previously initialized to
be zero.

l

For these methods, we use the same set of hyperparameters
and random seeds as stacking. To fairly compare the speed
of different algorithms, we train all models in the same
computation environment with 4 NVIDIA Tesla P40 GPUs.

When fine-tuning models on downstream tasks, we use the
same hyperparameter search space as BERT for each down-
stream task. We perform a hyperparameter search on the
validation set of each task with our baseline model and ap-
ply the resulting hyperparameter to other models. We use a
new set of random seeds that is different from the seeds for
hyperparameter search to prevent over-fitting.

4.2. Experiment Results

In this subsection, we provide experiment results of the
baseline model and the models trained by our proposed
methods.

By visualizing attention distributions of stacked checkpoints
in Figure 4, we want to justify our assumptions made in
Section 3 that stacking preserves some functionalities of
original attention layers. From the first and the second row

of the figure, we find that the attention distributions after
stacking at top layers are similar to those before stacking
and confirm this assumption. Moreover, the third row of
this figure shows that after we train the stacked model, some
heads (e.g., the rightmost head) regain their original func-
tionalities that are lost during stacking, and some heads
“evolve” new attention patterns (e.g., the leftmost head). As
a result, most heads learn meaningful information in a rela-
tively short period of time. In contrast, as is shown in the
last 2 rows of this figure, the heads in models trained by
identity and identity+noise fail to learn such information.

We then compare progressive stacking with our baseline
on the efficiency in the pre-training step. For each method
at different time steps, we record the validation loss of the
model and plot them in Figure 5. From the figure, we make
the following observations:

e Compared with the 12-layer BERT-base baseline
model (red line), progressive stacking also reaches sim-
ilar pre-training validation loss at the end of training.
However, the training time of our proposed method is
about 25% shorter (338 hours vs. 441 hours). This is
mainly because for the same number of steps, training
a small model needs less computation.

e Compared with other progressively training algorithms
(identity and identity+noise), progressive stacking can
achieve much lower loss which leads to better accuracy.
The algorithms based on function-preserving initializa-
tion do not provide a good initialization for attention
layers on the top, so they converge slowly and fail to
reduce training time.

From the results above, we see that our proposed method
substantially reduces pre-training time. However, one may

Efficient Training of BERT by Progressive Stacking

Original

Stacking
..I
o
o

Stacking
Trained

Identity
Trained

Identity+noise
Trained

Figure 4. The first row shows the attention distributions for a randomly chosen sample sentence on random 6 heads of a trained 6-layer
model. The second row shows the attention distributions of the corresponding heads with the same parameters in the top 6 layers when we
stack the 6-layer model to a 12-layer model. The third row shows the attention distributions of these stacked heads after being trained for
another 70,000 steps. We also show the attention distribution of models trained by identity and identity+noise under the same setting (the

last 2 rows).

—— stacking
26 identity+noise
—— identity
—— baseline
2.4
w
w
o
il
= 2.2
>
2.0
1.8

0 50 100 150 200 250 300 350 400 450
wall time (hours)

Figure 5. The validation loss curve of our baseline and three knowl-
edge transfer methods. The x-axis is the wall time of training
(excluded time for validation). Our stacking method only takes
76.77% training time to reach the same validation loss as our
baseline.

still worry about whether such a model is as effective as
the 12-layer BERT baseline model on downstream tasks. In
the next experiment, we compare the performances of the
model trained with our proposed stacking method and that
of the 12-layer BERT baseline on these downstream tasks.

We dump models from different checkpoints during pre-
training and fine-tune these models on downstream tasks.
In this experiment, we use the validation sets of the down-
stream tasks for evaluation. We find that the validation
scores are highly sensitive to random seeds, especially on
small datasets, and thus we repeat fine-tuning on each down-
stream task for 3 times for larger datasets and 6 times for
smaller datasets, respectively. We assume that the scores
follow normal distribution and compute the 95% confidence
interval of validation scores. Due to space limitations, we
plot the validation curve for six out of the nine downstream
tasks in Figure 6. From the figure, it is easy to see that
our stacking algorithm not only trains BERT faster in terms

Efficient Training of BERT by Progressive Stacking

Table 2. The test results on the GLUE benchmark (except WNLI). The number below each task denotes the number of training examples.
The metrics for these tasks can be found in the GLUE paper (Wang et al., 2018). For tasks with multiple metrics, the metrics are
arithmetically averaged to compute the GLUE score. Our baseline is comparable with the original BERT-Base, and our stacking method is
slightly better than our baseline. We also compare BERT-Base models with state-of-the-art pre-BERT models on the GLUE leaderboard:
OpenAl GPT (Radford et al., 2018) on STILTS and ELMo (Peters et al., 2018) (GLUE Baselines).

CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE | GLUE

8.5k 67k 3.7k 5.7k 364k 393k 108k 2.5k
ELMo-BiLSTM-Attn | 33.6 90.4 84.4/78.0 74.2/72.3 63.1/84.3 74.1/74.5 79.8 589 | 70.0
OpenAl GPT 472 93.1 87.7/83.7 85.3/84.8 70.1/88.1 80.7/80.6 87.2 69.1 | 76.9

BERT-Base (original) | 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 | 78.3
BERT-Base (baseline) | 52.8 92.8 87.3/83.0 81.2/80.0 70.2/88.4 84.4/83.7 90.4 64.9 | 774
BERT-Base (stacking) | 56.2 93.9 88.2/83.9 84.2/82.5 70.4/88.7 84.4/84.2 90.1 67.0 | 78.4

ColLA MRPC RTE
0.65 0.91 0.70
) 0.60 0.90 0.68
t ||
§Os5 | 0.89 0.66
n - J
2 0.50 o !
9 0.88 <064 |
2045 ! T
2 ‘ 0.87 0.62
0.40 —4— baseline —4— baseline —4— baseline
stacking 0.86 stacking 0.60 stacking
0.35
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
wall time (hours) wall time (hours) wall time (hours)
MNLI-m QNLI SST-2
0.93

0.88
0.84 }/_.+\
I | 0.92 i
0.86 ;

0.82 ’/ 0.91

g , Sosas g
< ¥r << ¥ < J
0.90
0.80 0.82 .
—4— baseline —4— baseline 0.89 —4— baseline
0.78 stacking 0.80 stacking stacking
0.88
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
wall time (hours) wall time (hours) wall time (hours)

Figure 6. The validation scores on 6 downstream tasks of fine-tunes checkpoints. The x-axis is the wall time of BERT pre-training, after
which we take these checkpoints. For CoLA, MRPC, RTE, and SST-2, we repeat fine-tuning 6 times; for MNLI and QNLI, we repeat
fine-tuning 3 times. Every error bar reflects the confidence interval of each validation score. For most tasks, our stacking method takes
shorter pre-training time to get a high score after fine-tuning.

of the pre-training validation loss but also preserves the the validity of our proposed algorithm.

speedup with respect to performance on downstream tasks.
e Although our model is trained for a shorter time, it

Lastly, we submit the predictions of the model trained using keeps competitive performance comparing to the base-
our stacking algorithm and 12-layer BERT baseline on the lines on the GLUE test set. Furthermore, it is inter-
online test evaluation system of GLUE. The result is listed esting to see that our model achieves much higher
in Table 2, from which we can see that: performance on the CoLA task (56.2 v.s. 52.1). This
suggests that the model trained by our stacking algo-

e In most tasks, our 12-layer BERT baseline model rithm generalizes slightly better on downstream tasks
achieves comparable performance to the original than our baseline does. It is surprising because they

BERT-Base (Devlin et al., 2018). This fact confirms are trained for the same number of steps, but a large

Efficient Training of BERT by Progressive Stacking

b { —e— 6 layers
stack+train
—eo— 3 layers

2.8

N
o

valid loss

N
»

2.2

5 10 15 20 25 30
wall time (hours)

—e— 12 layers

2.8)
stack+train
—eo— 6 layers
Q
2.6
wn
wn
o
° 2.4
©
>
2.2
2.0

10 20 30 40 50
wall time (hours)

Figure 7. The validation loss curve of ablation experiments. The figure on the left shows the result for 3-to-6 stacking, and the figure on
the right shows the result for 6-to-12 stacking. Each checkpoint of the shallow model is taken at a green dot; after stacking, it is trained for
another 10,000 steps and is evaluated at the orange dot connected by a dashed edge. By comparing the orange line with the blue line, we
can see how much the switching time can affect the speedup of our stacking algorithm.

percent of training steps are performed on a shallower
network in our model.

In summary, according to multiple experiments, our progres-
sive stacking algorithm is faster and achieves competitive
performance comparing to the baseline models on validation
and test sets of various tasks.

4.3. Ablation Study

In the experiments on our progressive stacking algorithm,
we select the switching time (i.e., the time to switch to
the deep model) at 50,000 steps and 120,000 steps. It is
necessary to analyze how sensitive our model is to this
hyperparameter.

Therefore, we conduct the following experiment for ablation
study: We first train a 3-layer BERT for 100,000 steps and
save one checkpoint after every 10,000 steps. Then we
stack every checkpoint and train the resulting 6-layer BERT
models for another 10,000 steps (we observe that after the
stacked model is trained for a small number of steps, the
training curve will be similar to a similar model trained from
scratch, so 10,000 steps is enough to see the trend). Finally,
we compare the results with the 6-layer BERT model trained
from scratch. We also repeated the same experiment for 6-
to-12 stacking. The results of both experiments are shown
in Figure 7, from which we can see that:

e For a BERT model, there exists a threshold 6, such that
if we pick the switching time t < 0, our progressive
stacking algorithm will train this model faster than
training from scratch.

o If we pick ¢t > 6, we will not get a significant speedup.
This is reasonable because if we train long enough
(for example, until both models converge), the loss of
the deeper model will be smaller than the loss of the
shallower model. In this case, we can by no means
speed up training by continuing to train this shallower
model.

e This threshold is usually larger for deeper models.
Hence, deeper models can benefit more from our pro-
gressive stacking algorithm.

5. Conclusion and Future Work

In this paper, we study the efficient training algorithms of the
unsupervised pre-training model BERT for natural language
processing tasks. By visualizing the self-attention distri-
butions of different layers in a well-trained BERT model,
we find that the self-attention distribution usually concen-
trate locally around its position and the start-of-sentence
token. Motivated by this, we propose progressively training
the BERT model from a shallow one to a deep one by our
stacking technique. According to our experiment results,
our training strategy achieves competitive performance to
training a deep model from scratch at a faster rate.

We will explore new directions in the future. First, we will
study other applications that use self-attention layers such
as machine translation and text summarization to test the
effectiveness of our training algorithm. Moreover, we are
also interested in more flexible approaches to reuse trained
parameters that can speed up the training of large models.

Efficient Training of BERT by Progressive Stacking

Acknowledgements

This work is supported by National Basic Research Pro-
gram of China (973 Program) (grant no. 2015CB352502),
NSFC (61573026) and BJNSF (L172037) and a grant from
Microsoft Research Asia. We would like to thank the anony-
mous reviewers for their valuable comments on our paper.

References

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.

CoRR, abs/1409.0473, 2014. URL http://arxiv.

org/abs/1409.0473.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Accel-
erating learning via knowledge transfer. arXiv preprint
arXiv:1511.05641, 2015.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, L. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 248-255. Teee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. N. Convolutional Sequence to Sequence Learning. In
Proc. of ICML, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N, et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82-97,
2012.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A
convolutional neural network for modelling sentences.
arXiv preprint arXiv:1404.2188, 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. URL http:
//arxiv.org/abs/1412.6980.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C.,
Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst,
E. Moses: Open source toolkit for statistical machine
translation. In ACL, 2007.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, pp. 3111-3119, 2013.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural lan-
guage processing (EMNLP), pp. 1532—-1543, 2014.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365,
2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by genera-
tive pre-training. URL https://s3-us-west-2. ama-
zonaws. com/openai-assets/research-covers/language-
unsupervised/language_ understanding_paper. pdf, 2018.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. CoRR,
abs/1508.07909, 2015. URL http://arxiv.org/
abs/1508.079009.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and
Ng, A. Y. Dynamic pooling and unfolding recursive au-
toencoders for paraphrase detection. In Advances in neu-
ral information processing systems, pp. 801-809, 2011.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. arXiv preprint arXiv:1503.00075,
2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N, Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Wang, A., Singh, A., Michael, J., Hill, F, Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/
abs/1804.074061.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

Efficient Training of BERT by Progressive Stacking

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books
and movies: Towards story-like visual explanations by
watching movies and reading books. In arXiv preprint
arXiv:1506.06724, 2015.

