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Abstract

In the fair classification setup, we recast the links
between fairness and predictability in terms of
probability metrics. We analyze repair methods
based on mapping conditional distributions to the
Wasserstein barycenter. We propose a Random
Repair which yields a tradeoff between minimal
information loss and a certain amount of fairness.

1. Introduction
Along the last decade, machine learning methods have be-
come more popular to build decision algorithms. Originally
meant for Internet recommendation systems, they are now
widely used in a large number of very sensitive areas such
as medicine, human ressources with hiring policies, banking
and insurance (lending), police and justice with criminal
sentencing, see for instance (Berk et al., 2017), (Pedreschi
et al., 2012) or (Friedler et al., 2018). The decisions made
by what is now referred to as AI have a growing impact on
human life. The whole machinery of these techniques relies
on the fact that a decision rule can be learnt by looking at a
subset of labeled examples, the learning sample, and then is
applied to the whole population which is assumed to follow
the same underlying distribution. So the decision is highly
influenced by the choice of the learning set.

In some cases, this learning sample may present some bias
or discrimination that could possibly be learnt by the algo-
rithm and then propagated to the entire population through
automatic decisions, providing a mathematical legitimacy
for this unfair treatment. When giving algorithms the power
to make automatic decisions, the danger may come that the
reality may be shaped according to their prediction, thus
reinforcing their beliefs in the model which is learnt. Hence,
achieving fair treatment is one of the growing fields of in-
terest in machine learning. For a recent survey on this topic
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we refer to (Zafar et al., 2017) or (Friedler et al., 2018).

Classification algorithms are one particular focus of fair-
ness concerns since classifiers map individuals to outcomes.
Some variables, such as sex, age or ethnic origin, are poten-
tially sources of unfair treatment since they enable to create
information that should not be processed out by the algo-
rithm. Such variables are called in the literature protected
variables. An algorithm is said to be fair with respect to
these attributes when its outcome does not allow to make
inference on the information they convey. Of course, the
naive solution of ignoring these attributes when learning the
classifier does not ensure this, since the protected variables
may be closely correlated with other features enabling a
classifier to reconstruct them.

Two solutions have been considered in the fair learning lit-
erature. The first one consists in changing the classifier in
order to make it not correlated to the protected attribute. We
refer for instance to (Zafar et al., 2017), (Bechavod & Ligett,
2017) or (Donini et al., 2018). Yet, explaining how the
classifier is chosen may be seen too intrusive for many com-
panies, or some of them may not even be able to change the
way they build their models. Hence, a second solution con-
sists in modifying the input data so that predictability of the
protected attribute is impossible, whatever the classifier we
train. The idea consists in blurring the value of the protected
class trying to obtain a fair treatment. This point of view has
been proposed in (Feldman et al., 2015), (Johndrow & Lum,
2017) and (Hacker & Wiedemann, 2017), for instance.

In this paper, we first provide in Section 2 a statistical analy-
sis of the Disparate Impact definition and recast some of the
ideas developed in (Feldman et al., 2015) to stress the links
between fairness, predictability and the distance between the
distributions of the variables given the protected attribute.
Then, in Section 3 we provide first in 3.1 some theoretical
justifications of the methodology proposed by previous au-
thors (for one-dimensional data) to blur the data using the
barycenter of the conditional distribution with respect to the
Wasserstein distance. These methods are called either total
or partial repair. Then in Section 3.2, we propose another
methodology called random repair to transform the data
in order to achieve a tradeoff between a minimal informa-
tion loss of the classification task and still a certain level
of fairness. We extend in Section 4 this procedure to the
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multidimensional case and provide a feasible algorithm to
achieve the repair using the notion of Wasserstein barycenter.
Finally application to simulated data in Section 5 enables to
study the efficiency of the proposed procedures.

2. Framework for the fairness problem
Consider the probability space (Ω,B,P), with B the Borel
σ−algebra of subsets of Rd and d ≥ 1. In this paper, we
tackle the problem of forecasting a binary variable Y : Ω→
{0, 1}, using observed covariates X : Ω→ Rd, d ≥ 1. We
assume moreover that the population can be divided into two
categories that represent a bias, modeled by a variable S :
Ω→ {0, 1}. This variable is called the protected attribute
and takes the values S = 0 for the minority (assumed to be
the unfavored class), and S = 1 for the default (and, usually,
favored class). We also introduce also a notion of positive
prediction: Y = 1 represents a success while Y = 0 is a
failure. Hence, the classification problem aims at predicting
a success from variables X , using a family G of binary
classifiers g : Rd → {0, 1}. For every g ∈ G, the outcome
of the classification will be the prediction Ŷ = g(X). We
refer to (Bousquet et al., 2004) for a complete description
of classification problems in statistical learning.

In this framework, discrimination or unfairness of the clas-
sification procedures, appears as soon as the prediction and
the protected attribute are too closely related, in the sense
that statistical inference on Y may lead to learn the distribu-
tion of the protected attribute S. This issue has received lots
of attention in the last years and several ways to quantify
this discrimination bias have been given. We refer for in-
stance to (Lum & Johndrow, 2016), (Chouldechova, 2017)
or (Bechavod & Ligett, 2017) for the analysis of fairness in
machine learning. Here we focus on the definition given in
(Feldman et al., 2015) or (Berk et al., 2017). A classifier
g : Rd → {0, 1} is said to achieve statistical parity, with
respect to the joint distribution of (X,S), if

P(g(X) = 1 | S = 0) = P(g(X) = 1 | S = 1). (1)

This means that the probability of a successful outcome is
the same across the groups. Yet, the independence described
in (1) is difficult to achieve and may not exist in real data.
An index called disparate impact (DI) of the classifier g
with respect to (X,S) has been introduced in (Feldman
et al., 2015) as

DI(g,X, S) =
P(g(X) = 1 | S = 0)

P(g(X) = 1 | S = 1)
. (2)

The ideal scenario where g achieves statistical parity is
equivalent to DI(g,X, S) = 1. As we have metioned, sta-
tistical parity is often unrealistic and we can consider instead
a certain level of fairness as in the following definition.
Definition 2.1. The classifier g has disparate impact at level
τ ∈ (0, 1], with respect to (X,S), if DI(g,X, S) ≤ τ .

The disparate impact of a classifier measures its level of
fairness: the smaller the value of τ , the less fair it is. In
the following, we denote a(g) := P(g(X) = 1 | S = 0)
and b(g) := P(g(X) = 1 | S = 1). In this paper, we will
consider classifiers g such that a(g) > 0 and b(g) > 0 (the
classifier is not totally unfair, in the sense that it does not
predict the same outcome for a whole level of the protected
attribute). Moreover, we assume b(g) ≥ a(g) (the default
class S = 1 is more likely to have a successful outcome).
Thus, in the definition above 0 < τ ≤ 1. We point out that
the value τ0 = 0.8 = 4/5, also known in the literature as the
80% rule, has been cited as a legal score to decide whether
the discrimination of the algorithm is acceptable or not
(see for instance (Feldman et al., 2015)). This rule ensures
that “for every 5 individuals with successful outcome in the
majority class, 4 in the minority class will have a successful
outcome too”. It will be useful in the sequel to use the
definition in the reverse (positive) sense: a classifier does
not have disparate impact at level τ , with respect to (X,S),
if DI(g,X, S) > τ .

Finally, another definition has been proposed in the statisti-
cal literature on fair learning. Given a classifier g ∈ G, its
balanced error rate (BER) with respect to the joint distribu-
tion of the random vector (X,S) is defined as the average
class-conditional error

BER(g,X, S) =
a(g) + 1− b(g)

2
. (3)

Notice that BER(g,X, S) is the misclassification error of
g ∈ G for predicting S when the protected classes are
equally likely (P(S = 0) = P(S = 1) = 1/2). This allows
to define the notion of ε−predictability of the protected at-
tribute. S is said to be ε−predictable from X if there exists
a classifier g ∈ G such that BER(g,X, S) ≤ ε. Equiva-
lently, S is not ε−predictable from X if BER(g,X, S) >
ε, for all classifiers g chosen in the class G. Thus, if
ming∈G BER(g,X, S) = ε∗ then S is not ε−predictable
from X for all ε < ε∗.

In the following, we recast previous notions of fairness
and provide a probabilistic framework to highlight the re-
lationships between the distribution of the observations
and the fairness of the classification problem. We denote
µs := L (X|S = s) , s = 0, 1. The following theorem gen-
eralizes the result in (Feldman et al., 2015) showing the
relationship between predictability, disparate impact and
total variation distance.
Theorem 2.2. Given r.v.’s X ∈ Rd, S ∈ {0, 1}, the classi-
fier g has disparate impact at level τ ∈ [0, 1], if and only if
BER(g,X, S) ≤ 1

2 −
a(g)

2 ( 1
τ − 1). Moreover

min
g∈G

BER(g,X, S) =
1

2
(1− dTV (µ0, µ1)) .

As noted in the Introduction, to get rid of the possible dis-
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crimination associated to a classifier we could, in principle,
either modify the classifier or the input data. If action on the
algorithm is not possible (for instance, if we have no access
to the values Y of the learning sample) we have to focus
on the second option and change the data X to ensure that
every classifier trained from the modified data would be fair
with respect to S. This transformation aimed at breaking the
dependence on the protected attribute, is called repairing
the data. For this, (Feldman et al., 2015), (Johndrow &
Lum, 2017) or (Hacker & Wiedemann, 2017) propose to
map the conditional distributions to a common distribution
in order to achieve statistical parity. This total repair of the
data amounts to modifying the input variables X building a
repaired version, X̃ , such that any classifier g trained from
X̃ will have disparate impact τ = 1, with respect to (X̃, S)
(equivalently, every classifier g that predicts Y from the new
variable X̃ will achieve statistical parity). As a counterpart,
it is clear that the choice of the target distribution should
convey as much information as possible on the original vari-
ables, otherwise it would hamper the accuracy of the new
classification.

In more detail, total repair amounts to mapping the original
variable X into a new variable X̃ = TS(X) such that condi-
tional distributions with respect to S are the same, namely,

L
(
X̃ | S = 0

)
= L

(
X̃ | S = 1

)
. (4)

In this case, any classifier g built with such information
will be such that L

(
g(X̃) | S = 0

)
= L

(
g(X̃) | S = 1

)
,

guaranteeing full fairness of the classification rule. To ac-
complish this transformation, the solution detailed in many
papers is to map both conditional distributions µ0 and µ1

onto a common distribution ν. Actually, the distribution of
X is modified using a random map TS : Rd → Rd that de-
pends on the value of the protected variable S and such that
L (T0(X) | S = 0) = L (T1(X) | S = 1) . Consequently,
two different problems arise.

• First of all, the choice of the distribution ν should be
as similar as possible to both distributions µ0 and µ1

at the same time, in order to reduce the amount of
information lost with this transformation, and thus still
enabling the prediction task using the modified variable
X̃ ∼ ν instead of the original X .

• Moreover, once the target ν is selected, we have to find
the optimal way of transporting µ0 and µ1 into it.

First, from Theorem 2.2, the total variation distance is the
natural choice to measure the distances between the condi-
tional distributions in the fairness problem. However, this
distance is computationally difficult to handle. Hence, pre-
vious works suggest the use of the Wasserstein metric, W2,
which appears as an appropriate tool for comparing proba-
bility distributions and arises naturally in optimal transport
theory. We refer to (Villani, 2009) for general background

on the topic. In this framework, TS will be a random trans-
port map between the distributions L(X | S) and L(X̃).
Then, when considering an optimal choice for the target
distribution for L(X̃), some authors (see (Feldman et al.,
2015)) propose, in the one-dimensional case, to choose the
distribution whose quantile is the mean of the quantile func-
tions. In general this corresponds actually to the so-called
Wasserstein barycenter of the laws L(X | S = s), as we
describe next.

Given probability measures (µj)1≤j≤J with finite second
moment and weights (ωj)1≤j≤J , the Wasserstein barycenter
is a minimizer of

ν 7→
J∑
j=1

ωjW
2
2 (ν, µj), (5)

see (Agueh & Carlier, 2011). Empirical versions of the
barycenter and their properties are analyzed in (Boissard
et al., 2015) or (Le Gouic & Loubes, 2017). Similar ideas
have also been developed in (Cuturi & Doucet, 2014) or
(Del Barrio & Loubes, 2017). In general, the Wasserstein
barycenter appears to be a meaningful feature to represent
the mean prototype of a set of distributions. Note that in the
one dimensional case, the mean of the quantile functions
corresponds actually to the minimizer of (5).

In the following section, we present some statistical justifica-
tions for this choice. Computation of Wasserstein barycen-
ters may be a difficult issue in the general case. Yet, in this
work we only consider the barycenter between two proba-
bilities µ0, µ1 on Rd, so we provide some details on how to
compute this barycenter in general dimension.

3. Repair with Wasserstein Barycenter
3.1. Learning with Wasserstein Barycenter distribution

In our particular problem, where J = 2 in (5), the condi-
tional distributions µ0 and µ1 are going to be transformed
into the distribution of the Wasserstein barycenter µB be-
tween them, with weights π0 and π1, defined as

µB ∈ argminν∈P2

{
π0W

2
2 (µ0, ν) + π1W

2
2 (µ1, ν)

}
.

Let X̃ be the transformed variable with distribution µB . For
each s ∈ {0, 1}, the deformation will be performed through
the optimal transport map (o.t.m.) Ts : Rd → Rd pushing
each µs towards the weighted barycenter µB . The existence
of µB is guaranteed (see Theorem 2.12 in (Villani, 2003))
as soon as µs are absolutely continuous (a.c.) with respect
to Lebesgue measure. In that case,

E
(
‖X − Ts(X)‖2 | S = s

)
= W 2

2 (µs, µB). (6)

Remark 3.1. Note that computing the barycenter of two
measures is equivalent to the computation of the o.t.m. be-
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tween them. If µ0 is a.c. on Rd and T : Rd → Rd de-
notes the o.t.m. between µ0 and µ1, that is µ1 = µ0]T ,
then µλ = µ0] ((1− λ)Id+ λT ) is the weighted barycen-
ter between µ0 and µ1, with weights 1 − λ and λ, respec-
tively. The map (1 − λ)Id + λT is an optimal transport
plan for all λ ∈ [0, 1]. So, the complexity of computing
µB = µ0] (π0Id+ π1T ) is the same as computing T .

Remark 3.2. Note also that for distributions on the real line,
we can write the explicit expression of the barycenter µB
based on the exact solution to the optimization problem (6).
Given s ∈ {0, 1} and X ∈ R, let Fs : R → [0, 1] denote
the cumulative distribution function of X , given S = s,
and F−1

s : [0, 1] → R its quantile associated function.
The weighted Wasserstein barycenter µB of µ0 and µ1 is
the unique minimizer of the functional (5) and its quantile
function can be computed as

F−1
B (t) =

(
λF−1

0 (t) + (1− λ)F−1
1 (t)

)
, t ∈ [0, 1].

Moreover, note that Fs (X | S = s) ∼ U(0, 1), s = 0, 1,
and the o.t.m. solution to (6) is Ts = F−1

B ◦ Fs.

To understand the use of the Wasserstein barycenter as
the target distribution for µ0 and µ1, we will quantify the
amount of information lost when replacing the distribution
of X by a new and, for the moment, unknown distribution
of X̃ obtained by transporting µ0 and µ1. Set the random
transport plan TS : Rd → Rd, and the modified variable
X̃ = TS(X). We point out that choosing the distribution of
X̃ amounts to choosing the transport plans T0 and T1. We
are facing learning problems in two different settings.

• On the one hand, the full information available are the
input variables X and the protected variable S, which
play an important role in the classification, since the
classifier has a different behavior according to the dif-
ferent classes S = 0 and S = 1. Hence, we let S play
a role in the decision process since it is associated to
Y , and possibly giving rise to a different treatment for
the two different groups. In this case, the classifica-
tion risk when the full data (X,S) is available can be
computed as R(g,X, S), the risk in the prediction of a
classification rule g that depends on both variables X
and S, namely R(g,X, S) := P(g(X,S) 6= Y )

• On the other hand, in the repair data only the modified
version X̃ of the input is at hand. Hence, the risk when
learning a classifier is R(h, X̃) := P(h(X̃) 6= Y ).

Studying the efficiency of the method requires providing a
bound for the difference between the minimal risks obtained
for the best classifier with input data X̃ = TS(X), and for
the best classifier with input data (X,S), called gB . These
risks are respectively denoted RB(X̃) and RB(X,S) =
infg R(g,X, S) = R(gB , X, S), and then its difference is

E(X̃) := RB(X̃)−RB(X,S).

Note first that, given X = x and S = s, infg R(g,X, S)
can be computed by mimicking the usual expression of the
2-class classification error as in (Bousquet et al., 2004), for
instance. Denoting by ηs(x) := P(Y = 1 | X = x, S = s),

P(g(X,S) 6= Y | X = x, S = s)

= 1g(x,s) 6=0(1− ηs(x)) + 1g(x,s)6=1ηs(x).

So we deduce thatR(g,X, S)=E
[
1g(X,S)=0(2ηS(X)− 1)

]
+E [1− ηS(X)]. The minimum risk is thus obtained using
the Bayes’ rule gB(x, s) = 1ηs(x)>1/2, showing that

RB(X,S) := mingR(g,X, S)

= E
[
1{2ηS(X)−1<0}(2ηS(X)− 1)

]
+ E [1− ηS(X)] .

Similarly, the risk related to a classifier h(X̃) is given by

R(h, X̃) = R(h, TS(X))

= E
[
1h◦TS(X)=0(2ηS(X)− 1)

]
+ E [1− ηS(X)] . (7)

Hence, the amount of information lost due to modifying the
data is controlled by the following theorem.

Theorem 3.3. Consider X ∈ Rd and S ∈ {0, 1}. Let TS :
Rd → Rd, d ≥ 1 be a random transformation such that
L(T0(X) | S = 0) = L(T1(X) | S = 1), and consider
X̃ = TS(X). Assume that ηs(X) is Lipschitz with constant
Ks > 0, s = 0, 1. Then, if K = max{K0,K1},

E(X̃) ≤ 2
√

2K

(∑
s=0,1

πsW
2
2 (µs, µs]Ts)

) 1
2

. (8)

Theorem 3.3 provides some justification to the use of the
Wasserstein barycenter as the distribution of the modified
variable. Similar inequalities in the framework of domain
adaptation are given in (Redko et al., 2017). In fact, mini-
mizing the upper bound in (8) with respect to the function
TS : Rd → Rd, d ≥ 1, leads to consider the transport plan
carrying the conditional distributions µ0 and µ1 towards
their Wasserstein barycenter µB with weights π0, π1, that
is, µS]TS = µB . Hence, this provides some understanding
on the choice of the Wasserstein barycenter advocated in
the work (Feldman et al., 2015) and leads to the following
bound

inf
TS
{R(gB ◦ TS , X)−R(gB , X, S)}

≤ 2
√

2K

(∑
s=0,1

πsW
2
2 (µs, µB)

) 1
2

≤ K√
2
W 2

2 (µ0, µ1).

This upper bound only provides some guidelines on the
choice of the target distribution. Nevertheless, choosing
the Wasserstein barycenter provides a reasonable and, more
important, feasible solution to achieve fairness. Recently in



Obtaining Fairness using Optimal Transport Theory

(del Barrio et al., 2018) a CLT for Lp transportation cost in
R is provided, which enables to build two sample tests and
confidence intervals to certify the similarity between two
distributions. We also point out that we only deal with the
case of 2 classes for S, a majority and a minority, which
is one of the main concerns in fair learning. Yet, the result
could be generalized to multiclass where S ∈ S with several
labels since it only relies on the defintion of the Wasserstein
barycenter. In this case, computing the barycenter becomes
a harder issue.

As pointed out previously, the total repair process ensures
full fairness but at the expense of the accuracy of the clas-
sification. A solution for this could be found in (Feldman
et al., 2015), called geometric repair. The authors propose
not to move the conditional distributions to the barycenter
but only partly towards it along the Wasserstein’s geodesic
path between µ0 and µ1. We analyze next this procedure
and propose an alternative method for the partial repair.

3.2. A new algorithm for partial repair

Let λ ∈ [0, 1] be the parameter representing the amount
of repair desired for X . Let Z be a target variable with
distribution µ. Set Rs = T−1

s , s = 0, 1, where Ts is the
o.t.m. pushing each µs towards the target µ. Note that
Rs(Z) follows the original conditional distribution µs.
Definition 3.4 (Random repair). Let B be a Bernoulli vari-
able with parameter λ. With the above notation, we define
for s ∈ {0, 1}, and λ ∈ (0, 1) the repaired distributions

µ̃s,λ = L(BZ + (1−B)Rs(Z))

= L(BTs(X) + (1−B)X | S = s). (9)

This repair procedure consists in randomly changing the
distribution of the original X by either selecting the target
µ or the original conditional distributions. The degree of
repair is governed by the Bernoulli parameter λ: note that
for λ = 0 µ̃s,0 = L(X | S = s) and for λ = 1 µ̃s,1 =
L(Z) = µ. The value of λ should come from a trade-off
between (i) the accuracy of the new classification result,
that leads to little changes in the initial distributions; and
(ii) the non-predictability of the protected variable, which
implies that the two conditional distribution should stay
close with respect to the total variation distance. In fact,
(see e.g. (Massart, 2007)), the distance in total variation
between two probabilities P and Q can be computed as

dTV (P,Q) = min
π∈Π(P,Q)

π(x 6= y). (10)

This leads to

dTV (µ̃0,λ, µ̃1,λ) ≤ P(BZ + (1−B)R0(Z)

6= BZ + (1−B)R1(Z)) = 1− P(BZ + (1−B)R0(Z)

= BZ + (1−B)R1(Z)) ≤ 1− P(B = 1) = 1− λ.

This bound suggests that λ should be close to 1 to ensure
non-predictability of S. Finally, observe that the misclassifi-
cation error using the randomly repaired data is a mixture
of the two errors with the totally repaired variable TS(X)
and the original X since R(g, X̃λ) = (1 − λ)P(g(X) 6=
Y ) + λP(g(TS(X)) 6= Y ). Hence, from Theorem 3.3 the
use of the Wasserstein barycenter Z ∼ µB is justified.

In the literature (for instance (Zafar et al., 2017)), another
partial repair procedure is used, called geometric repair. As
before, µ is chosen as the barycenter µB and the partially
repaired conditional distributions are defined as

µs,λ = L(λZ + (1− λ)Rs(Z))

= L(λTs(X) + (1− λ)X | S = s), s ∈ {0, 1}.

Observe that λ = 1 yields the fully repaired variable, and
λ = 0 leaves the conditional distributions unchanged. So
the parameter λ governs how close the distributions are to
the barycenter. Such procedure sounds appealing since the
conditional distributions are moved on the geodesic path
between the original distributions which warrants an opti-
mal prediction and the barycenter which warrants fairness.
Controling this distance is the key of the geometric repair.
Yet, reasoning among the lines of previous argument to
obtain an upper bound for the classification risk using the
partially repaired distributions µ0,λ and µ1,λ does not lead
to a satisfying result. This comes from the fact that the geo-
metric repair moves the original distributions according to
the Wasserstein distance, while fairness is measured through
the total variation distance, and they are of different nature.
So if λ ∈ (0, 1), using (10) implies that

dTV (µ0,λ, µ1,λ) ≤ P(λZ + (1− λ)R0(Z) (11)
6= λZ + (1− λ)R1(Z)) = P(R0(Z) 6= R1(Z)).

The previous bound means that the amount of repair quanti-
fied by λ does not affect the TV distance between the modi-
fied conditional distributions. Moreover, in some situations,
(11) turns out to be an equality. Consider, for instance,

µ0,0 = U(K,K + 1) µ1,0 = U(−K − 1,−K) (12)

as the distributions of X in each class. Then, the
barycenter is µ0,1 = µ1,1 = U(−1/2, 1/2) and µ0,λ =
U
(
−λ2 + (1− λ)K,−λ2 + (1− λ)K + 1

)
, µ1,λ =

U
(
−λ2 − (1− λ)(K + 1),−λ2 − (1− λ)(K + 1) + 1

)
.

In this case, the TV distance can be easily computed as

dTV (µ0,λ, µ1,λ) = min(1, (1− λ)(2K + 1)). (13)

We see from equation (13) that dTV (µ0,λ, µ1,λ) = 1, if
λ ≤ 2K/(2K+1), which means that the protected attribute
could be perfectly predicted from the partially repaired data
set for values of λ arbitrarily close to 1. Thus, the bound
(11) provides some argument against the geometric method
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since the repair should favour small distances between the
original distributions to ensure a certain desired level of
fairness. Hence, rather than using a displacement along the
Wasserstein geodesic between the distributions, we propose
the random repair which enables a better control of their to-
tal variation distance, enhancing the disparate impact while
not hampering too much the efficiency of the classification.

In the next section, we propose a new algorithm for the
total repair which in practice attains full fairness in contrast
with the existing in the literature. Based on it, we design a
scheme to perform the random repair.

4. Computational aspects for Repairing
Datasets in General Dimension

Let {(Xi, Si, Yi) , i = 1, . . . , N} be an observed sample of
(X,S, Y ), and denote by n0 and n1 the number of instances
in each protected class. Without loss of generality, we
assume that the observations are ordered by the value of S,

x0,i := Xi, if si = 0, i = 1, . . . , n0,

x1,j−n0
:= Xj , if sj = 1, j = n0 + 1, . . . , N = n0 + n1.

Generally, the sizes of the samples X0 = {x0,1, . . . , x0,n0
}

and X1 = {x1,1, . . . , x1,n1
} are different and Monge maps

may not even exist between an empirical measure to an-
other. This happens when their weight vectors are not
compatible, which is always the case when the target mea-
sure has more points than the source measure. Hence, the
solution to the optimal transport problem does not cor-
respond to finding an optimal transport map, but an op-
timal transport distribution. The cuadratic cost function
becomes discrete as it can be written as a matrix C = (cij),
with cij = ‖x0,i − x1,j‖2 , 1 ≤ i ≤ n0, 1 ≤ j ≤ n1.
When µ0,n =

∑n0

i=1
1
n0
δx0,i and µ1,n =

∑n1

j=1
1
n1
δx1,j , the

Wasserstein distance W2(µ0,n, µ1,n) between them is the
squared root of the optimum of a net-work flow problem
known as the transportation problem. It consists in finding
a matrix γ ∈Mn0×n1

(R) which minimizes the transporta-
tion cost between the two distributions as follows

minγ
∑

1≤i≤n0
1≤j≤n1

cijγij , subject to:

γij ≥ 0,∑n0

i=1 γij = 1
n1
, for all j,∑n1

j=1 γij = 1
n0
, for all i.

(14)

If γ̂ is a solution to the linear program (14) then, the mea-
sure µB,n =

∑
1≤i≤n0
1≤j≤n1

γ̂ijδ{π0x0,i+π1x1,j} is a barycenter

of µ0,n and µ1,n, with weights π0 and π1, according to Re-
mark 3.1. See (Cuturi & Doucet, 2014) for details on the
discrete Wasserstein and Optimal Transport computation.

4.1. Total repair

In practice, the implementation of the repair scheme in
Section 3 is based on the transport matrix γ̂ from X0 to X1.
As we have pointed out, in this transport scheme the major
difficulty comes from the fact that the sizes of these sets
are different and the transport is not a one-by-one mapping.
Each point in the source set could be transported (with
weights) into several points of the target, or various points
in the source could be moved into the same point of the
target. As a consequence, we must adapt the algorithm that
produces the repaired data set, denoted by X̃ .

We detail next two different methods. The first one is similar
to some existing in the literature and does not achieve total
fairness in practice, while the second one is a novelty and
does guarantee this property for the new data X̃ .

(A) As depicted in Figure 1(A), each original point in
X0,X1 is changed by a unique point given by

x̃0,i = π0x0,i + n0π1

n1∑
j=1

γijx1,j , 1 ≤ i ≤ n0,

x̃1,j = n1π0

n0∑
i=1

γijx0,i + π1x1,j , 1 ≤ j ≤ n1.

The set X̃ will be a collection of exactly n0 + n1

points. This approach generalizes to higher dimen-
sions the idea in (Feldman et al., 2015) and (Johndrow
& Lum, 2017), which only considered the unidimen-
sional case, where the transport is written in terms
of the distribution funtions. Yet, in practice it builds
two different sets X̃0 = {x0,i, 1 ≤ i ≤ n0} and
X̃1 = {x1,j , 1 ≤ j ≤ n1} that do not ensure (4).

(B) To ensure total fairness, each point will split its mass
to be transported into several modified versions. This
generates an extended set X̃ = X̃0 ∪ X̃1, which is
formed by the complete distribution µB,n. As shown
in Figure 1(B), if γ̂ij > 0, 1 ≤ i ≤ n0, 1 ≤ j ≤ n1,
we define two points

x̃0,i,j := x̃1,j,i = π0x0,i + π1x1,j , (15)

and sets X̃0 :=
n0⋃
i=1

{x̃0,i,j/ γ̂ij > 0, 1 ≤ j ≤ n1},

and X̃1 :=
n1⋃
j=1

{x̃1,j,i / γ̂ij > 0, 1 ≤ i ≤ n0}. The

rebuilt distributions have sizes equal to the number of
non zero elements in γ̂, and each point has weight γ̂ij .
Unlike the previous, this approach does achieve total
impredictability, as it manages to produce repaired
conditional distributions equally distributed.

Example 4.1. We have simulated two samples X0 and X1

of points in R of sizes n0 = 4 and n1 = 7. The optimal
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matrix solution to the problem (14) is

γ̂ =


1
7

1
4 −

1
7 0 0 0 0 0

0 2
7 −

1
4

1
7

1
14 0 0 0

0 0 0 1
14

1
7

2
7 −

1
4 0

0 0 0 0 0 1
4 −

1
7

1
7


If X0 and X1 are realizations of µ0 and µ1, respectively,
then the left part of Figure 1 represents procedure (A) that
produces the repaired sets X̃0 = {x̃0,1, . . . , x̃0,4} (rounded
green points) and X̃1 = {x̃1,1, . . . , x̃1,7} (squared green
points). As we can observe, the two sets are clearly different
and the statistical parity can not be reached. Otherwise,
procedure (B) on the right yields to X̃0 = X̃1.

(A)

S = 0
S = 1

x0,1

x0,2

x0,3

x0,4

x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

x1,7

x̃0,1

x̃0,2

x̃0,3

x̃0,4

x̃1,1

x̃1,2

x̃1,3

x̃1,4

x̃1,5

x̃1,6

x̃1,7

(B)

S = 0
S = 1

x0,1

x0,2

x0,3

x0,4

x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

x1,7

x̃0,1,1

x̃0,1,2

x̃0,2,2

x̃0,2,3

x̃0,2,4
x̃0,3,4

x̃0,3,5

x̃0,3,6

x̃0,4,6

x̃0,4,7

x̃1,1,1

x̃1,2,1

x̃1,2,2

x̃1,3,2

x̃1,4,2

x̃1,4,3

x̃1,5,3

x̃1,6,3

x̃1,6,4

x̃1,7,4

Figure 1. Example of the performance of procedures (A) and (B)

Remark 4.2. When the two samples X0 and X1 have equal
size n and the weights γij = 1

n , 1 ≤ i, j ≤ n, are uniform,
the mass conservation constraint implies that γ is a bijec-
tion and the Monge problem is equivalent to the optimal
matching problem minσ∈Perm(n)

1
n

∑n
i=1 ci,σ(i). Both re-

pairing procedures (A) and (B) perfom the same generating
x̃0,i = x̃1,i = 1

2 (x0,i + x1,i) , 1 ≤ i ≤ n, as depicted in
Figure 2. Then, total fairness is always achieved.

4.2. Random repair

As previously noted, trying to build the set X̃ satisfying
the goal (4) may compromise too much the accuracy of
the classification with these new data. In this sense, the
random repair procedure proposed in this paper aims at
setting a tradeoff between fairness and accuracy through
the parameter λ, that models the amount of repair desired.
We detail next how to compute the randomly repaired set
denoted by X̃λ, with λ ∈ [0, 1]. According to (9), we will
randomly select either the points in the original sets X0 and
X1 or their repaired sequels with procedure (B). For this,
consider a sample b1, . . . , bn0+n1 ∼ B(λ), and define

X̃0,λ :=

n0⋃
i=1

R0,i,λ X̃1,λ :=

n1⋃
j=1

R1,j,λ, (16)

x0,1

x0,2

x0,3

x0,4

x1,1

x1,2

x1,3

x1,4

x̃0,1

x̃0,2

x̃0,3

x̃0,4

x̃1,1

x̃1,2

x̃1,3

x̃1,4

Figure 2. Repairing process
when n0 = n1

S = 0
S = 1

x0,1

x0,2

x0,3

x0,4

b1 = 0

b2 = 1

b3 = 0

b4 = 1

x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

x1,7

b5 = 1

b6 = 0

b7 = 1

b8 = 1

b9 = 1

b10 = 0

b11 = 1

x̃0,2,2

x̃0,2,3

x̃0,2,4

x̃0,4,6

x̃0,4,7

x̃1,1,1

x̃1,3,2

x̃1,4,2

x̃1,4,3

x̃1,5,3

x̃1,7,4

Figure 3. Example of the ran-
dom repair with λ = 1

2
.

where R0,i,λ and R1,j,λ are the repaired sets of the points
x0,i and x1,j , respectively:

R0,i,λ :=

{
{x0,i} if bi = 0
{x̃0,i,j / γ̂ij > 0, 1 ≤ j ≤ n1} if bi = 1

R1,j,λ :=

{
{x1,j} if bn0+j = 0
{x̃1,j,i / γ̂ij > 0, 1 ≤ i ≤ n0} if bn0+j = 1

with x̃0,i,j and x̃1,j,i given in (15), with weights γ̂i,j .

Example 4.3. Consider the situation in Example 4.1. Fig-
ure 3 represents the random repair procedure for λ = 1

2 .
For l = 1, . . . , n0 + n1 = 11, we have simulated values
bl ∼ B( 1

2 ). From (16) we have the randomly repaired sets

X̃0,λ = {x0,1, x̃0,2,2, x̃0,2,3, x̃0,2,4, x0,3, x̃0,4,6, x̃0,4,7}
X̃1,λ = {x̃1,1,1, x1,2, x̃1,3,2, x̃1,4,2, x̃1,4,3, x̃1,5,3, x1,6, x̃1,7,4}.

5. Application with simulated data
In this section, we present an application of the repairing
procedures in Section 3 to some simulated data to illustrate
their performance. We also provide an example in which
the geometric repair fails to remove the bias in the data.

To introduce some bias in the simulated dataset X we have
taken n0 = 600 and n1 = 400 examples from two multi-
variate normal distributions on R5 with vector of means
µ0 = (3, 3, 2, 2.5, 3.5) and µ1 = (4, 4, 3, 3.5, 4.5) and
equal covariance matrices Σ = diag(1, 1, 0.5, 0.5, 1). Then,
in order to simulate the classification Y , we have cho-
sen parameters β0 = (1,−1,−0.5, 1,−1, 1) and β1 =
(1,−0.4, 1,−1, 1,−0.5) to build a logit model for each
group with different probability of success for s = 0, 1,

πs(x) = eXβs

1+eXβs
, higher for the class S = 1.

Then, a new logit classifier has been trained from this sim-
ulated data, splitting the set into the learning and the test
sample using the ratio 300 / 700. In the first row of Table 1
we can see a summary of the performance of the logit with
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the original data. We have estimated the disparate impact
using its empirical counterpart and provided a confidence
interval which was established in (Besse et al., 2018). Be-
fore the repair, we can say with a confidence of 95% that the
logit rule has DI at level 0.53 with respect to S. Then, we
have made the repair in R5 in the testing sample using the
different procedures studied in this paper. We have used the
previous logit model, which was trained from biased data, to
classify such repaired observations. In the remaining rows
of Table 1 a summary of the performance of the logit with
the repaired data using procedures (A) and (B) is presented.
We note that in the experiments with procedure (A) the es-
timated value for DI is not exactly 1, as we have already
anticipated. On the other hand, procedure (B) manages to
change the data to attain statistical parity. The error in the
logit classification done with the repaired data sets is a bit
higher for the second procedure.

Finally, we present some results of the performance of the
Geometric and random repair. Figure 4 represents the evo-
lution of the confidence interval for the disparate impact
with the amount of repair 0 ≤ λ ≤ 1. Figure 5 shows the
evolution with λ of the error in the classification done from
the modified data set. For the experiments concerning the
random repair procedure, we have repeated it 100 times
and then we have computed the mean of the simulations.
Clearly, the reached level of DI of the logit rule is higher
with the random repair. We note that the amount of repair
necessary to achieve an estimated DI at level 0.8 for the
logit rule is 0.475 with the random repair, which entails an
error of 0.1537; and 0.7 with the geometric repair, which
entails an error of 0.1371.

Table 1. Disparate impact of the logit with the original and the
repaired datasets

Repair Error Difference D̂I CI 95%

- 0.0943 - 0.5309 (0.4230, 0.6389)
(A) 0.1629 0.0686 0.9588 (0.7641, 1.1535)
(B) 0.1874 0.0931 1 (0.8536, 1.1464)

Procedure
Geometric

Random

Amount of repair λ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
I

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4. CI at level 95% for DI of the logit

Procedure
Geometric
Random

Amount of repair λ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r

0.1874

0.1629

0.0943

0.100

0.125

0.150

0.175

Figure 5. Error of the logit

In order to see the failure of the geometric repair, we have
simulated n0 = n1 = 500 observations from uniform distri-
butions as in (12) with K = 10. We have trained a random
forest classifier with the same ratio 300/700 for the learning
and test sample. In Figure 6 we can see that the evolution
of the disparate impact is controlled by the amount of repair
only if we use the random repair. As pointed out from in-
equality (13), we observe that for values of λ ≤ 20

21 ≈ 0.95,
the DI does not increase with λ for the partially modified
distributions with the geometric repair. This means that for
values of the degree of repair close to 1, this procedure does
not manage to remove the bias in the data and consequently,
it does not ensure the fairness of every classifier.

Procedure
Geometric
Random

Amount of repair λ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
I

0

0.2

0.4

0.6

0.8

1

Figure 6. CI at level 95% for DI of the random forest classifier

6. Conclusions
We have provided a multidimensional expansion and a fea-
sible algorithm to repair a learning sample and incorporate
fairness to prevent unfair algorithms to be learnt. Moreover
this way of correction can be improved using a random repa-
ration as shown in the paper. Yet this way of reparation only
deals with disparate impact assessment and other criterion
such as conditional accuracy equality for instance will be
further incorporated using the same ideas of Wasserstein
barycenter of conditional distributions.
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