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A. Model Selection Algorithms

Algorithm 2 Greedy model selection

function GreedyMoeModelSelection(st, at)
ε̂t,np ← Eq. 9
ε̂t,p ← Eq. 13
if ε̂np(x

(n)
t , a

(n)
t ) < ε̂p(x

(n)
t , a

(n)
t ) then

// Return nonparametric model
Return (f̂t,np, f̂r,np)

else
// Return parametric model
Return (f̂t,p, f̂r,p)

end if
end function

In this section we provide the two algorithms used to choose
the model in the MoE simulator. The functions GreedyMoe-
ModelSelection in Algorithm 2 and MctsMoeModelSelec-
tion in Algorithm 3 can be substituted with ChooseModel
in Algrorithm 1 in the main text.

Algorithm 2 is straight forward and simply returns the model
with the smaller immediate estimated transition error. This
algorithm could also use a weighted sum of both the transi-
tion and reward error, but that choice would require choosing
a tuning parameter which controls the relative importance
of the transitions and rewards accuracy.

Algorithm 3 is based on the standard upper confidence
bound for trees (UCT) algorithm (Coulom, 2006; Browne
et al., 2012). We note once again that the domain over which
the MCTS algorithm plans is not the same domain as the RL
environment. The states for the MCTS algorithm are state-
action pair in the RL domain, and the actions are choosing
either the parametric or nonparametric model.

The value of a rollout for the planner is minus the return
error bound derived in Theorem 1 in the main text, −δg.
Because of the compounding effect of the state error bound,
δ(t), the value of δ for each node must be rolled forward
for all nodes which results in the main modifications to the
standard UCT algorithm in, mainly in functions Expand and
DefaultPolicy.

A tuning parameter of the UCT algorithm is the exploration
constant, ce, which controls how frequently the algorithm

should explore branches which appear not promising if they
have not been explored enough. When the rewards are
bounded between 0 and 1, a standard choice for ce is 1/

√
2.

Because we don’t know a priori how large the errors might
be, we continuously update the exploration parameter such
that ce = max ε̂t/

√
2.

B. Proof of Lemma 1
We first restate Lemma 1.

Lemma 1 Let εt(t) be the transition estimation error
bound for the chosen model at time-step t,

εt(t) ≥ ∆(x̂t+1, ft(x̂t, at)) (19)

The state error at time-step t is:

δ(t) := ∆(xt, x̂t) ≤
t−1∑
t′=0

(Lt)
t′εt(t− t′ − 1) (20)

where Lt is the Lipschitz constant of the transition function,
ft.

Proof. We prove Lemma 1 by induction. The state prediction
error at time t is bounded by:

δ(t) := ∆(xt, x̂t) (21)
≤ ∆(xt, ft(x̂t−1, at)) + ∆(ft(x̂t−1, at−1), x̂t)

≤ Ltδ(t− 1) + εt(t− 1),

Where the first inequality is a consequence of the triangle
inequality. By definition, δ(1) ≤ ε(0). Therefore

δ(t) := ∆(xt, x̂t) (22)
≤ Ltδ(t− 1) + εt(t− 1)

≤ Lt(Ltδ(t− 2) + εt(t− 2)) + ε(t− 1)

...

≤
t−1∑
t′=0

(Lt)
t′εt(t− t′ − 1),

completing the proof.
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Algorithm 3 MCTS-MoE model selection

function MctsMoeModelSelection(st, at)
create root node νt with state (st, at)
δ(νt)← 0 // State error bound for node
δg(νt)← 0 // Return error bound for node
τ(ν)← 0 // Time-steps from root node
while within computational budget do
νl ← TreePoicy(νt)
V ← DefaultPolicy(νl)
Backup(νl, V )

end while
Return Model( arg max

ν′∈children of νt
Q̃(ν′))

end function

function TreePolicy(ν)
while ν is not terminal do

if ν not fully expanded then
Return Expand(ν)

else
ν ← arg max

ν′∈children of ν

Q(ν)
N(ν) + ce

√
2 lnN(ν)
N(ν′)

end if
Return ν

end while
end function

function Expand(ν)
add a new child ν′ to ν
if ν has no children then

Model(ν′)←GreedyMoeModelSelection(s(ν), a(ν))
else

Model(ν′)← model not yet tried in ν
end if
(s(ν′), a(ν′))← (f̂t,Model(ν′), πe(f̂t,Model(ν′)))
εt(ν

′), εr(ν
′)← ComputeErrors(Model(ν′))

N(ν′)← 0 // Times node was visited
Q(ν′)← 0 // Total reward of all rollouts through node
Q̃(ν′)← 0 // Rollout with highest reward for node
τ(ν′)← τ(ν) + 1
δ(ν′)← Lt · δ(ν) + εt(ν

′)
δg(ν

′)← δg(ν) + γτ(ν
′) (εr(ν

′) + Lt · δ(ν′))

Return ν′
end function

function DefaultPolicy(ν)
(s∗, a∗)← (s(ν), a(ν))
τ∗ ← τ(ν)
δ∗ ← δ(ν)
δ∗g ← δg(ν)
while s in not terminal do

Model← GreedyMoeModelSelection(s, a)

s← f̂t,Model(s, a)
ε∗t , ε

∗
r ← ComputeErrors(Model)

a← πe(s)
τ∗ ← τ∗ + 1
δ∗ ← Lt · δ∗ + ε∗t
δ∗g ← δ∗g + γτ

∗
(ε∗r + Lt · δ∗)

end while
Return −δ∗g

end function

function Backup(ν, V )
while ν is not null do
N(ν)← N(ν) + 1
Q(ν)← Q(ν) + V

Q̃(ν)← max(Q̃(ν), V )
ν ← parent of ν

end while
end function

function ComputeErrors(Model)
if Model = parametric then
εt ← Eq. 13
εr ← Eq. 14

else
// Model = nonparametric
εt ← Eq. 9
εr ← Eq. 10

end if
Return εt, εr

end function
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C. Proof of Consistency
In this section we are going to prove MoE simulator (Al-
gorithm 1) with MCTS model selection is a consistent esti-
mator i.e. the return error goes to zero when the number of
samples collected from behavior policy goes to infinity. We
assume the planning error of MCTS is bounded by εplanning
where the objective of planning is to maximize:

−Lr
T−t0∑
t=0

γt
t−1∑
t′=0

(Lt)
t′ ε̂t(t0 + t− t′ − 1)

−
T−t0∑
t=0

γtε̂r(t0 + t) (23)

for any input state action pair (st0 , at0).

Assumption 1. (Coverage of behavior policy) For a
data set D with n samples collected from behavior pol-
icy and any given state x and action a, let radn be
min

x
(i)
t ∈D,a

(i)
t =a

∆(x, x
(i)
t ). Then limn→∞ radn = 0.

Assumption 2. (Coverage of radius C) There exist an N
such that for any n > N , for any n sample collected from
behavior policy and any state x and action a, the chosen
radius C satisfy that there is at least one sample in data set
is within distance C of x and matches the action a.

Assumption 3. (Lipschitz continuity of parametric model)
Functions f̂t and f̂r in parametric model class are L-
Lipschitz with L <∞.

Lemma 2. Under assumptions 1 and 3, Let n be the number
of samples collected from behavior policy. For any x:

lim
n→∞

εt,np(x) = 0, lim
n→∞

εr,np(x) = 0

lim
n→∞

ε̂t,np(x) = 0, lim
n→∞

ε̂r,np(x) = 0

Proof. Let x(i)t be the state closest to x whose action a(i)t
equals a.

εt,np(x) = ∆(ft(x, a), ft(x
(i)
t , a)) (24)

≤ Lt∆(x, x
(i)
t ) ≤ Ltradn (25)

εr,np(x) = ∆(fr(x, a), fr(x
(i)
t , a)) (26)

≤ Lr∆(x, x
(i)
t ) ≤ Lrradn (27)

Thus 0 ≤ limn→∞ εt,np(x) ≤ Lt limn→∞ radn = 0. So
limn→∞ εt,np(x) = 0, similarly limn→∞ εr,np(x) = 0.
For the estimated error:

ε̂t,np(x) = L̂t∆(x, x
(i)
t ) ≤ L̂tradn (28)

= max
i 6=j

∆(x
(i)
t′+1, x

(j)
t′′+1)

∆(x
(i)
t′ , x

(j)
t′′ )

radn (29)

≤ Ltradn (30)

Similarly, we have limn→∞ ε̂t,np(x) = 0 and
limn→∞ ε̂r,np(x) = 0

A direct conclusion following from this claim and Theorem
1 is that the non-parametric model is a consistent estimator.

Lemma 3. Let Lf̂t be the Lipschitz constant of the para-

metric model f̂t, and Lf̂r be the Lipschitz constant of f̂r.

εt,p(x) ≤ ε̂t,p(x) + Ltradn + Lf̂tradn (31)

εr,p(x) ≤ ε̂r,p(x) + Lrradn + Lf̂r radn (32)

Proof. Let x(i)t be the state closest to x whose action a(i)t
equals a.

εt,p(x) = ∆(ft(x, a), f̂t(x, a)) (33)

≤ ∆(ft(x, a), ft(x
(i)
t , a))

+∆(ft(x
(i)
t , a), f̂t(x

(i)
t , a))

+∆(f̂t(x
(i)
t , a), f̂t(x, a)) (34)

≤ Ltradn + ∆(ft(x
(i)
t , a), f̂t(x

(i)
t , a))

+Lf̂t radn (35)

Since the closest sample x(i)t is within distance C of the
state of interest x by Assumption 2,

∆
(
ft(x

(i)
t , a), f̂t(x

(i)
t , a)

)
= ∆

(
f̂t(x

(i)
t , a), x

(i)
t+1

)
(36)

≤ max ∆
(
f̂t(x

(i)
t′ , a), x

(i)
t′+1

)
= ε̂t,p

(37)

So we finished the proof for εt,p(x). Similarly we can show
εr,p(x) ≤ ε̂r,p(x) + Lrradn + Lf̂r radn

Now we are going to prove Theorem 2:

Theorem 2. (Restated) Under the assumptions 1, 2, 3 in
our appendix, assuming planning error εplanning = o(1), the
MoE simulator with MCTS model selection is a consistent
estimator of policy value of πe.

Proof. By assuming the planning error of MCTS is bounded
by εplanning, we have that the return of chosen node will be no
less than the return of nonparametric model minus εplanning.

max
ν′∈children of ν

Q̃(ν′) (38)

≥ −Lr
T−t0∑
t=0

γt
t−1∑
t′=0

(Lt)
t′ ε̂t,np(t0 + t− t′ − 1)

−
T−t0∑
t=0

γtε̂r,np(t0 + t)− εplanning (39)

≥ −Kradn − εplanning (40)
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where K is some constant independent of sample size n. By
MCTS algorithm, we have that the return of chosen node is:

max
ν′∈children of ν

Q̃(ν′) (41)

= −Lr
T−t0∑
t=0

γt
t−1∑
t′=0

(Lt)
t′ ε̂t,MCTS(t0 + t− t′ − 1)

−
T−t0∑
t=0

γtε̂r,MCTS(t0 + t) (42)

where εt,MCTS(t) and εr,MCTS(t) is the transition and reward
error of the model selected by MCTS MoE model selection
algorithm at each planning step. Thus

Lrγε̂t,MCTS(t0) + ε̂r,MCTS(t0) ≤ −Q̃(ν′)

≤ Kradn + εplanning (43)

Then we can bound the estimated one step transition and
reward error of the chosen model by

ε̂t,MCTS(t0) ≤ K ′(radn + εplanning) (44)
ε̂r,MCTS(t0) ≤ K ′(radn + εplanning) (45)

where K ′ is some other constant independent with sample
size n. Now we need to bound the true one step transi-
tion and reward error of the chosen model εt,MCTS(t0) and
εt,MCTS(t0). By Lemma 2 we know that we can bound it for
non-parametric model for any state:

εt,np(x) ≤ Ltradn, εr,np(x) ≤ Lrradn (46)

and Lemma 3 show that

εt,p(x) ≤ ε̂t,p(x) + Ltradn + Lf̂t radn (47)

εr,p(x) ≤ ε̂r,p(x) + Lrradn + Lf̂r radn (48)

Then for both model we have that

εt(x) ≤ ε̂t(x) +K ′′radn (49)
εr(x) ≤ ε̂r(x) +K ′′radn (50)

for some constant K ′′. Therefore for the chosen model, we
can bound its one step transition error and reward error.

εt,MCTS(x) ≤ ε̂t,MCTS(x) +K ′′radn
= O(radn) +O(εplanning) (51)

εr,MCTS(x) ≤ ε̂r,MCTS(x) +K ′′radn
= O(radn) +O(εplanning) (52)

Combining this with Theorem 1, we have that the total
error of return could be bounded by O(radn) +O(εplanning).
Thus, if O(εplanning) = o(1), the total return error will also
be bounded by o(1) and MoE simulator with MCTSmodel
selection is a consistent estimator.

D. Consistency of MCTS-MoE Under Weaker
Conditions

In our proof of theorem 2, we assume that the planning error
εplanning will converge to zero. If that is not true, we can
still prove the consistency result with a slightly different
variant of Algorithm 2. Consider if the condition in line 4
of Algorithm 2 changes to:

εt,p(x) + αrεr,p(x) ≤ ε̂t,p(x) + αr ε̂r,p(x), (53)

where the coefficient αr is a constant factor just determined
by the scale of reward and transition function. Then we can
show a new theorem about Algorithm 1 with both greedy
and MCTS model selection are consistent estimators i.e.
the return error goes to zero when the number of samples
collected from behavior policy goes to infinity. We keep the
same assumptions (Assumption 1, 2, 3) for other parts of
algorithm as last section.

Lemma 4. MoE simulator with greedy model selection is a
consistent estimator of the policy value of πe.

Theorem 3. MoE simulator with MCTS model selection is
a consistent estimator of the policy value of πe.

Proof sketch: Notice that only when ε̂t,p(x) + αr ε̂r,p(x) ≤
ε̂t,np(x) + αr ε̂r,np(x) we will select parametric model.
Then Lemma 4 can be proved by showing the greedy model
is consistent since the nonparametric model is consistent.
Thus we can further prove Theorem 3 by show that the
MCTS policy will always choose a model better than greedy
selection since greedy selection is the default roll out policy
and the environment is deterministic.

We now show the proofs formally. Proof of Lemma 4:

Proof. We are going to show that the error of the re-
turn goes to zero as the number of samples goes to infin-
ity. According to Theorem 1, we only need to show that
εt,greedy(t) and εr,greedy(t) goes to zero for any time t where
greedy ∈ {p, np} is the model selected by greedy MoE
model selection algorithm at time step t.

We showed in Lemma 2 that the non-parametric model error
εt,np(x) and εr,np(x) goes to zero when n goes to infinity.
Now we are going to show that we will select a parametric
model at a given state x only if εt,p(x) + εr,p(x) will also
go to zero.

According to the greedy model selection algorithm, we will
only select the parametric model when

ε̂t,p(x) + αr ε̂r,p(x) ≤ ε̂t,np(x) + αr ε̂r,np(x)

, where the coefficient αr is a constant factor determined by
the scale of reward and transition function. According to
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Lemma 3,

εt,p(x) + αrεr,p(x) (54)
≤ ε̂t,p(x) + αr ε̂r,p(x) +O(radn) (55)
≤ ε̂t,np(x) + αr ε̂r,np(x) +O(radn)(56)

= O(radn) (57)

Since limn→∞ radn = 0, for any chosen model at time step
t, εt,greedy(t) and εr,greedy(t) is also o(1). The proof follows
from then applying Theorem 1

Proof of Theorem 3

Proof. According to the MCTS MoE model selection al-
gorithm, for any input (st0 , at0) we will at least have one
roll-out trajectory following by the greedy MoE model se-
lection. So the return of the chosen node is at least larger
than this:

max
ν′∈children of ν

Q̃(ν′) (58)

≥ −Lr
T−t0∑
t=0

γt
t−1∑
t′=0

(Lt)
t′ ε̂t,greedy(t0 + t− t′ − 1)

−
T−t0∑
t=0

γtε̂r,greedy(t0 + t) (59)

≥ −Kradn (60)

where K is some constant independent of sample size n.
This follows from the fact that the estimated error of greedy
selected model can be bounded by the estimated error of
non-parametric model, and further bounded byO(radn). By
the MCTS algorithm, we have that the return of chosen node
can be expressed as:

max
ν′∈children of ν

Q̃(ν′) (61)

= −Lr
T−t0∑
t=0

γt
t−1∑
t′=0

(Lt)
t′ ε̂t,MCTS(t0 + t− t′ − 1)

−
T−t0∑
t=0

γtε̂r,MCTS(t0 + t) (62)

where εt,MCTS(t) and εr,MCTS(t) are the transition and re-
ward error of the model selected by MCTS MoE model
selection algorithm. Thus

Lrγε̂t,MCTS(t0) + ε̂r,MCTS(t0) ≤ −Q̃(ν′) ≤ K · radn
(63)

Thus, there exist another constant K ′ such that the one step
transition and reward error of the chosen model satisfy that

ε̂t,MCTS(t0) ≤ K ′radn (64)
ε̂r,MCTS(t0) ≤ K ′radn (65)

Now we need to bound the true one step transition and re-
ward error of the chosen model εt,MCTS(t0) and εt,MCTS(t0).
By Lemma 2 we know that we can bound it for non-
parametric model for any state:

εt,np(x) ≤ Ltradn, εr,np(x) ≤ Lrradn (66)

and Lemma 3 show that

εt,p(x) ≤ ε̂t,p(x) + Ltradn + Lf̂t radn (67)

εr,p(x) ≤ ε̂r,p(x) + Lrradn + Lf̂r radn (68)

Then for both model we have that

εt(x) ≤ ε̂t(x) +K ′′radn (69)
εr(x) ≤ ε̂r(x) +K ′′radn (70)

for some constant K ′′. Therefore for the chosen model, we
can bound its one step transition error and reward error.

εt,MCTS(x) ≤ ε̂t,MCTS(x) +K ′′radn = O(radn) (71)
εr,MCTS(x) ≤ ε̂r,MCTS(x) +K ′′radn = O(radn) (72)

Combining this with Theorem 1, we have that the total error
of return could be bounded by O(radn) and goes to zero as
n goes to infinity.

E. Evaluation of Model Error Estimators
In this section we empirically investigate the quality of the
estimators we use for the error of the transition function, by
analyzing their performance on the example presented in
section 5.1. In Figure 1a we plot the true error of the non-
parametric model as a function of coordinate for the action
”North”, and compare it with the estimate from Equation 9
in the main text, shown in Figure 1b. Figures 1e and 1f are
the equivalent figures for the parametric model. Comparing
the errors shown in Figures 1a and 1e indicates whether the
parametric or nonparametric model should be selected, and
the correct selection based on the true errors is presented in
Figure 1i. Similarly by comparing the errors presented in
Figures 1b and 1f, we present in Figure 1j which model our
MoE model would actually select. Finally, in Figure 1m we
compare Figures 1i and 1j to show if the MoE model would
make the correct choice in which model to use. Similar
analyses is presented on the right half of Figure 1 for the
”East” action.

We see that the nonparametric model has small error for the
areas where trajectories in the data pass through, and the
error increases with distance from clusters of observations.
The simple parametric model, on the other hand, has errors
which are uncorrelated with the density of observations (In
all other domains we will present in this paper this will not
be the case, as we will learn the parametric model from



Combining parametric and nonparametric models for off-policy evaluation — Appendix

the data, and therefore expect the parametric model to be
more accurate in regions where we have observations of
transitions). Our estimates for the error follow this general
trend, and more importantly they properly identify the model
with the smaller error over most of the space (Figures 1m
and 1n).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 1. Empirical evaluation of error estimates for model er-
rors. For the 2D gridworld example described in Section 5.1 the
estimators we use for the model errors resemble the true errors
of both the parametric and non-parametric models (a-h). More
importantly, these estimators allow the MoE model to correctly
select the model with the lower prediction error on the transition
(i-n). (All heatmaps figures are presented in the same color scale)

F. Experimental Details
The dynamics of the cancer domain follow the ODEs pre-
sented in (Ribba et al., 2012) which model the response
of cancer cells to treatment. The state space consists of 4
features representing cell counts and medication concen-
trations, and each time step represent a month in which a
clinician may choose between administering a particular

treatment or avoiding treatment. The reward at each time
step is the total change in diameter of cancerous cells. To
learn the parametric model we fit a linear regression model
to predict the dynamics of the states given each action.

The HIV domain is described in Ernst et al. (2006), and
consists of 6 parameters describing the state of the patient
and 4 possible actions. As the reward function we use the
reward described in Ernst et al. (2006). As the parametric
model we use a feed-forward neural network with two layers,
each consisting of 50 hidden units and a tanh activation
function.

Evaluation and behavior policies. For the cancer do-
main, we test an evaluation policy which treats the patient
every month for 10 months, and then stops treatment. As
behavior policy we use an ε-greedy version of the evaluation
policy. For each value of ε we run 500 experiments in which
we generate 10 trajectories for learning the models.

In the HIV domain, we use fitted Q iterations to learn an
optimal policy. Under this policy — whose trajectory is
shown in Figure 2a as the time evolution of the 6 state
dimensions — patients start in a state with a high viral load,
which decreases over roughly 70 treatment steps. After
the patient is brought to a steady state with low viral load,
the continued treatment keeps the patient stabilized. As a
behavior policy, we use a policy which is identical to the
evaluation policy when the patient is far away from the
stable state, and switch to an ε-greedy policy around the
steady state. This can be thought of as a likely real world
scenario where clinicians know how to treat severely ill
patients, but are less certain about how to keep them stable
in the long run when their condition is not critical. More
explicitly, the behavior policy follows the evaluation policy
for logE < 4, where E is the number of immune effectors,
whose evolution is shown in the bottom right plot in Figure
2a , and switches to ε-greedy when logE > 4. For each
value of ε we run 100 experiments in which 5 trajectories
are generated and used for learning the models.

F.1. Comparison with IS methods

In section 6.2 we compared the parametric and nonpara-
metric models, as well as our greedy MoE model to two
common importance sampling estimators. In Table 1 here
we provide additional results for more importance sam-
pling based estimators - standard importance sampling (IS),
weighted importance sampling (WIS), per-decision impor-
tance sampling (PDIS), consistent weighted per-decision
importance sampling (CWPDIS), doubly robust (DR) and
weighted doubly robust (WDR) (Precup, 2000; Jiang & Li,
2016; Thomas & Brunskill, 2016; Thomas, 2015). The DR
and WDR estimators require independent estimates of state
values, which we obtain using the parametric model. These
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Table 1.
√

E[(vπe − v̂πe)2]/vπe ; (ε = 0.4)

Mp Mnp MMoE MMCTS-MoE IS WIS PDIS CWPDIS DR WDR

Cancer 0.021 0.027 0.020 0.019 1.0 1.0 0.55 0.22 0.87 0.22
HIV 0.65 0.88 0.64 0.63 1.0 1.0 0.66 0.99 89.2 0.99

(a) HIV (b) HIV

Figure 2. Trajectories in the true environment generated by
the evaluation and behavior policies. The behavior policy is
similar to the evaluation policy for the initial part of the trajec-
tory (roughly for the first 70 steps) and becomes ε-greedy near
the steady state, as can be seen by the more erratic nature of the
trajectories for late time steps.

results demonstrate that for regimes with limited amount
of data, even for moderate trajectory lengths (30 steps for
the cancer simulator), all IS based estimators fail due to
extremely small effective sample sizes (Liu et al., 2018;
Gottesman et al., 2018), and therefore we must resort to
model based estimators.

F.2. Empirical test for consistency

In this section we empirically test the consistency of the
MoE simulators and demonstrate in Figure 3 that as the
number of observed trajectories increases, the value estima-
tion error for both domains decreases across all models. In
the cancer domain we see that with access to the true error,
the MCTS-MoE consistently outperforms all other meth-
ods. For the HIV domain we observe that minimizing the
trajectory simulation accuracy does not imply minimizing
the value estimation error due to improper choice of metric,
as discussed in Appendix F.3.

F.3. Effect of the metric on value estimation for HIV

When presenting the results for the HIV simulator, we noted
that for high values of randomness in the behavior policy,
the MCTS-MoE is outperformed by the parametric model
and the greedy MoE, despite performing well in terms of the
trajectory error. We argued this effect can be attributed to the
distance metric used to quantify the transition error, which
does not take into account the fact that some dimensions
are more strongly correlated with the reward than others.
This claim is further supported by the observation that in the
regime where the MCTS-MoE performs poorly in terms of

(a) Cancer (b) HIV

Figure 3. Empirical check of consistency. For both medical sim-
ulators the value estimation error decreases as the number of ob-
served trajectories is increased. For both domains we the behavior
policy is the ε-greed policy with ε = 0.4.

(a) HIV (b) HIV

Figure 4. Effect of the metric. By replacing the Euclidean dis-
tance with a metric that puts more weight on state dimensions
which are strongly correlated with reward, the value estimation
performance of the MCTS-MoE can be improved at the cost of
trajectory error.

value estimation, the nonparametric performs significantly
worse than all other methods, despite performing reasonably
well in terms of trajectory error.

To further investigate the effect of the metric we ran our
experiments again but used a metric which gives 20 times
more weight to the 6th dimension in the state space. This
dimension (bottom right plot in Figures 2a) and 2b) repre-
sents the number of immune effectors in the patient’s body
and is most strongly correlated with the reward. In Figure 4
we present the results for OPE on the HIV simulator with
this new metric and demonstrate that indeed using this new
metric improves the performance of the MCTS-MoE simu-
lator in terms of value estimation, at the cost of degrading
the trajectory error.
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