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1 Regret bound proofs

Proof of Lemma 1

Define Amin,t =
⋂
A∈At :A∗⊆AA as the smallest interval (or union of intervals) in At containing the

optimal interval (or union of intervals). It will be easier to bound the regret of Amin,t than A∗t wrt
A∗. We have, for t ∈ N,

δ(A∗t ) = r(A∗)− r(A∗t )
≤ r(A∗)− r(Amin,t)

=

∫
A∗

(λ(x)− C) dx−
∫
Amin,t

(λ(x)− C) dx

= C|Amin,t \ A∗| −
∫
Amin,t\A∗

λ(x)dx

≤ 2CU∆t.

Here, the final inequality holds since 2∆t bounds the difference between the lengths of subintervals
of Amin,t and A∗t , and there are U such subintervals. Since ∆t = K−1

t ≤ K−1T−1/3 the result follows
immediately.
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Proof of Lemma 2

Consider the term inside the expectation

T∑
t=1

Ut,T (At)− Lt,T (At) = 2∆T

T∑
t=1

∑
k:Bk,T⊆At

Dk,T (t− 1)

= 2∆T

T∑
t=1

∑
k:Bk,T⊆At

2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

= 2∆T

T∑
t=1

KT∑
k=1

I{Bk,T ⊆ At}
(

2 log(t)

∆T

∑t−1
s=1 I{Bk,T ⊆ As}

+

√
6λmax log(t)

∆T

∑t−1
s=1I{Bk,T ⊆ As}

)

≤ 2∆T

KT∑
k=1

Nk,T∑
j=1

2 log(T )

j∆T

+

√
6λmax log(T )

j∆T

≤ 2∆TKT

( T∑
j=1

2 log(T )

j∆T

+
T∑
j=1

√
6λmax log(T )

j∆T

)
= 4KT log(T ) log(T + 1) +

√
24λmaxKT log(T )T 1/2

≤ 4K log(T ) log(T + 1)T 1/3 +

√
24Kλmax log(T )T 2/3

where the penultimate line is due to ∆T = K−1
T , and the final inequality is because KT ≤ KT 1/3.

Proof of Lemma 3

We have the following, which holds for any round t

P

(
r(At) /∈ [Lt,T (At), Ut,T (At)]

)
≤ P

(
r(At) ≤ Lt,T (At)

)
+ P

(
r(At) ≥ Ut,T (At)

)
= P

( ∑
k:Bk,T⊆At

ψk,T ≤
∑

k:Bk,T⊆At

[
ψ̂k,T (t− 1)−Dk,T (t− 1)

])

+ P

( ∑
k:Bk,T⊆At

ψk,T ≥
∑

k:Bk,T⊆At

[
ψ̂k,T (t− 1) +Dk,T (t− 1)

])

≤
∑

k:Bk,T⊆At

[
P

(
ψk,T − ψ̂k,T (t− 1) ≤ −Dk,T (t− 1)

)
+ P

(
ψk,T − ψ̂k,T (t− 1) ≥ Dk,T (t− 1)

)]

≤
KT∑
k=1

P

(
|ψk,T − ψ̂k,T (t− 1)| ≥ 2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

)

≤
KT∑
k=1

t−1∑
s=1

P

(
|ψk,T − ψ̂k,T (t− 1)| ≥ 2 log(t)

∆TNk,T (t− 1)
+

√
6λmax log(t)

∆TNk,T (t− 1)

∣∣∣∣ Nk,T (t− 1) = s

)
≤ 2KT t

−2.

The final inequality is a direct application of Lemma 1 of [Grant et al., 2018] which in turn exploits
Bernstein’s Inequality for independent Poisson random variables.
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2 Proof of optimality and efficiency of AS-IM

Proof of Theorem 1

Recall that the reward of an action is the sum of the weights of the intervals that comprise that
action.

We prove the theorem by induction. Assume at least one initial In has a positive weight (otherwise
the optimal action is to do no sensing). For N = 1 initial interval, which therefore has a positive
weight, AS-IM simply returns this interval, which is optimal. For N = 2 initial intervals, with one
positive weight, AS-IM returns the postitively-weighted interval, which is the optimal action. Now,
assuming AS-IM returns the optimal action for N ≥ 1, we prove that AS-IM returns the optimal
action for N + 2 initial intervals. The result follows by induction.

Given I = {In}N+2
n=1 , if the number of intervals in I with positive weight is not bigger than U ,

AS-IM returns all such intervals. This is the optimal action since all bins with positive reward can
be covered without incurring the cost of any bins with negative reward; any other action either omits
a positive-reward bin, or includes a negative-reward bin.

Similarly, consider the situation in which no interval satisfies the merging condition. Suppose
that the optimal action A∗ places a sensor on a sequence of intervals Im ∪ · · · ∪ In with n > m.
Clearly we must have w(Im) > 0 and w(In) > 0 since otherwise the total weight could be increased
by omitting the negatively-weighted end interval. But the fact that no interval can be merged implies
that either |w(Im+1)| > |w(Im)| or |w(In−1)| > |w(In)|. Hence removing either Im∪ Im+1 or In−1∪ In
from the sensor will improve the total weight. It follows that, under A∗, each sensor is allocated to
a single interval, and allocating to the U highest-weight intervals, as specified by AS-IM, maximises
the reward.

Now, assume that at least one interval is merged in AS-IM. Let In be the interval which
minimises |w(In)| and so is the first interval which is merged with its neighbours in AS-IM into
a single interval Ĩn = In−1 ∪ In ∪ In+1. Let Ã∗ be AS-IM’s solution for the set of intervals
Ĩ = {I1, · · · , In−2, Ĩn, In+2, · · · , IN+2}. By induction, Ã∗ is optimal for Ĩ. We prove that A∗, the
optimal solution for I, is equal to Ã∗. To prove this, we consider different cases based on the sign of
w(In).

Case 1: w(In) < 0. First note that the optimal solution cannot include only one neighbour of In.
If In−1 were included but In+1 were not, we could add both In and In+1 and increase the overall
weight (since In has the smallest absolute weight). Similarly, A∗ can not include both In−1 and
In+1 but not In; if so then A∗ could be improved by (i) using a single sensor in place of the two
that cover In−1 and In+1, adding In to A∗, and (ii) redeploying the sensor we have saved to either
split one existing sensor by removing a negative-weight Im with |w(Im)| > |w(In)|, or adding a new
positive-weight Im with |w(Im)| > |w(In)|. The net outcome is an improved total weight. We have
shown that A∗ includes either all or none of In−1 ∪ In ∪ In+1. Since A∗ is optimal for I, and the
restriction to Ĩ does not prevent AS-IM from finding this optimal A∗, it follows that Ã∗ = A∗.

Case 2: w(In) > 0. Under the optimal solution A∗, a sensor cannot have a negative-weighted
interval as an end interval, since dropping the negative-weight interval only increases the total
weight. Furthermore, a sensor cannot include In as an end interval of a series of intervals, since then
the total weight could be improved by stopping sensing both In and its sensed neighbour. Thus
if In is included in A∗ then either a sensor is observing only In, or a single sensor observes all of
In−2 ∪ In−1 ∪ In ∪ In+1 ∪ In+2. As in Case 1, if a sensor is observing only In we can improve on A∗

by redeploying this sensor to either sense a better interval, or stop sensing an interval which has a
higher negative weight than is lost by stopping sensing In. So again, under A∗, In is either sensed
with all its neighbours, or none of them are sensed. The same logic as in Case 1 ensures Ã∗ = A∗.
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Complexity: AS-IM requires sorting the N initial intervals. Noticing that there are at most N
mergings, and assuming constant complexity for each merging, AS-IM offers an O(N logN) sample
complexity. Since N ≤ Kt, AS-IM has a sample complexity not bigger than O(Kt logKt).

3 Discretisation error under linear and cubic root rates

The effect of the different rates on the unavoidable discretisation error is depicted in Figure 1. The
regret for the linear rate is reduced at a faster rate than for the cubic root rate as the number of bins
is increased at a much faster rate. However as we show in the main paper (Section 5.1) the other
part of the regret due to error in action selection from the model forecast is much higher under the
linear regret rate.

Figure 1: Instantaneous regret comparing linear and cube root rebinning rates. The vertical lines
depict the rebinning times for the two different rate schedules. The time step (horizontal axis) and
the regret (vertical axis) are both on a log scale. The number of bins for each rebinning rate are
shown on the top horizontal axis.

4 Baselines used in the empirical study

In the paper we have compared the TS approach other approaches which we now describe in more
details.

1. UCB approach, which is based on the FP-CUCB algorithm of [Grant et al., 2018] and requires
the specification of an upper bound on the rate which we fix to the correct value in our
experiments; in practise a conservative estimate is usually available. This is described in
Algorithm 1.

2. A modified-UCB approach (mUCB) which has the same form as Algorithm 1 except λmax

is replaced with the empirical mean. Note this modification breaks the upper bound regret
guarantee. The indices are :

ψ̄k,t = ψ̂k,t(t− 1) +
2 log(t)

∆tNk,t(t− 1)
+

√
6ψ̂k,t(t− 1) log(t)

∆tNk,t(t− 1)
, k ∈ [Kt]

where ψ̂k,t(t− 1) =
Hk,t(t−1)

∆tNk,t(t−1)
.
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Inputs: Upper bound λmax ≥ maxx∈[0,1] λ(x)
Initialisation Phase: For t = 1

• Select A = [0, 1]

Iterative Phase: For t ≥ 2

• For each k ∈ {1, . . . , Kt}, evaluate Hk,t(t− 1) and Nk,t(t− 1) and calculate an index

ψ̄k,t =
Hk,t(t− 1)

∆tNk,t(t− 1)
+

2 log(t)

∆tNk,t(t− 1)
+

√
6λmax log(t)

∆tNk,t(t− 1)
.

• Choose an action At that maximises r(A) conditional on the true rate being given by the ψ̄k,t
values

• Observe the events in At

Algorithm 1: UCB

3. An ε-Greedy approach where with probability 1 − pε an action At is selected that maximises
r(A) conditional on the rate being given by the empirical mean values ψ̂k,t. With probability
pε, the action is instead chosen by sampling rates ψ̃k,t from independent Gamma(α, β) priors.
In our experiments we fix pε = 0.01.
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