A Statistical Investigation of Long Memory in Language and Music

Alexander Greaves-Tunnell! Zaid Harchaoui

Abstract

Representation and learning of long-range depen-
dencies is a central challenge confronted in mod-
ern applications of machine learning to sequence
data. Yet despite the prominence of this issue,
the basic problem of measuring long-range depen-
dence, either in a given data source or as repre-
sented in a trained deep model, remains largely
limited to heuristic tools. We contribute a statisti-
cal framework for investigating long-range depen-
dence in current applications of deep sequence
modeling, drawing on the well-developed theory
of long memory stochastic processes. This frame-
work yields testable implications concerning the
relationship between long memory in real-world
data and its learned representation in a deep learn-
ing architecture, which are explored through a
semiparametric framework adapted to the high-
dimensional setting.

1. Introduction

Advances in the design and optimization of deep recur-
rent neural networks (RNNs) have lead to significant break-
throughs in the modeling of complex sequence data, includ-
ing natural language and music. An omnipresent challenge
in these sequence modeling tasks is to capture long-range
dependencies between observations, and a great variety of
model architectures have been developed with this objective
explicitly in mind. However, it can be difficult to assess
whether and to what extent a given RNN has learned to
represent such dependencies, that is, whether it has long
memory.

Currently, if a model’s capacity to represent long-range de-
pendence is measured at all, it is typically evaluated heuris-
tically against some task or tasks in which success is taken
an indicator of “memory” in a colloquial sense. Though
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undoubtedly helpful, such heuristics are rarely defined with
respect to an underlying mathematical or statistical property
of interest, nor do they necessarily have any correspondence
to the data on which the models are subsequently trained. In
this paper, we pursue a complementary approach in which
long-range dependence is assessed as a quantitative and
statistically accessible feature of a given data source. Con-
sequently, the problem of evaluating long memory in RNNs
can be re-framed as a comparison between a learned repre-
sentation and an estimated property of the data.

The main contribution is the development and illustration
of a methodology for the estimation, visualization, and hy-
pothesis testing of long memory in RNNs, based on an
approach that mathematically defines and directly estimates
long-range dependence as a property of a multivariate time
series. We offer extensive validation of the proposed ap-
proach and explore strategies to overcome problems with
hypothesis testing for long memory in the high-dimensional
regime. We report experimental results obtained on a wide-
ranging collection of music and language data, confirming
the (often strong) long-range dependencies that are observed
by practitioners. However, we show evidence that this prop-
erty is not adequately captured by a variety of RNNs trained
to benchmark performance on a language dataset.’

Related work. Though a formal connection to long mem-
ory processes has been lacking thus far, machine learning ap-
plications to sequence modeling have long been concerned
with the capture of long-range dependencies. The devel-
opment of RNN models has been strongly influenced by
the identification of the “vanishing gradient problem” in
(Bengio et al., 1994). More complex recurrent architectures,
such as long short-term memory (Hochreiter & Schmidhu-
ber, 1997a), gated recurrent units (Cho et al., 2014), and
structurally constrained recurrent networks (Mikolov et al.,
2015) were designed specifically to alleviate this problem.
Alternative approaches have pursued a more formal under-
standing of RNN computation, for example through kernel
methods (Lei et al., 2017), by means of ablative strategies
clarifying the computation of the RNN hidden state (Levy
et al., 2018), or through a dynamical systems approach

!Code corresponding to these experiments, including an illus-
trative Jupyter notebook, is available for download at https:
//github.com/alecgt/RNN_long_memory.
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(Miller & Hardt, 2019). A modern statistical perspective on

nonlinear time series analysis is provided in (Douc et al.,
2014).

Long-range dependence is most commonly evaluated in
RNN models by test performance on a synthetic classifica-
tion task. For example, the target may be the parity of a
binary sequence (so-called “parity” problems), or it may be
the class of a sequence whose most recent terms are replaced
with white noise (“2-sequence” or “latch” problems) (Ben-
gio et al., 1994; Bengio & Frasconi, 1994; Lin et al., 1996).
A simple demonstration relatively early in RNN history by
Hochreiter & Schmidhuber (1997b) showed that such tasks
can often be solved quickly by random parameter search,
casting doubt on their informativeness. Whereas the authors
proposed a different heuristic, we seek to re-frame the prob-
lem of long memory evaluation so that it is amenable to
statistical analysis.

Classical constructions of long memory processes (Mandel-
brot & Van Ness, 1968; Granger & Joyeux, 1980; Hosking,
1981) laid the foundation for statistical methods to estimate
long memory from time series data. See also (Moulines
et al., 2008; Reisen et al., 2017) for recent works in this
area. The multivariate estimator of Shimotsu (2007) is the
foundation of the methodology we develop here. It is by
now well understood that failure to properly account for
long memory can severely diminish performance in even
basic estimation (Percival & Guttorp, 1994). Furthermore,
failure to model long memory has been shown to harm pre-
dictive performance, particularly in the case of multi-step
forecasting (Brodsky & Hurvich, 1999).

2. Background

Long memory in stochastic processes. Long memory
has a simple and intuitive definition in terms of the autoco-
variance sequence of a real, stationary stochastic process
X: € R,t € Z. The process X, is said to have long memory
if the autocovariance

’Y(k) = COV(Xt7Xt+k), keZ
satisfies
yx (k) ~ Ly (k)[R =72 as k=00, (1)

for some d € (0,1/2), where a(k) ~ b(k) indicates that
a(k)/b(k) = 1 as k — oo, and L, (k) is a slowly vary-
ing function at infinity. See (Greaves-Tunnell & Harchaoui,
2019) for details on the mathematical framework. The term
“long memory” is justified by the slow (hyperbolic) decay
of the autocovariance sequence. As a consequence of this
slow decay, the partial sums of the absolute autocovariance
sequence diverge. This can be directly contrasted with the
“short memory” case, in which the autocovariance sequence

is absolutely summable. Moreover, we note that the param-
eter d allows one to quantify the memory by controlling the
strength of long-range dependencies.

In the time series literature, a spectral definition of “mem-
ory” is preferred, as it unifies the long and short memory
cases. A second-order stationary time series can be rep-
resented in the frequency domain by its spectral density

function
oo

> ylk)e

k=—o00

fx(N) =
If X, has a spectral density function that satisfies

Fx(X) = Le(N)|A[7% )

where L;()) is slowly varying at zero, then X, has long
memory if d € (0,1/2), short memory for d = 0, and “in-
termediate memory” or “antipersistence” if d € (—1/2,0).
The two definitions of long memory are equivalent when
L¢()) is quasimonotone (Beran et al., 2013).

We summarize the complementary time and frequency do-
main views of long memory with a simple illustration in Fig-
ure 1, which contrasts a short memory autoregressive (AR)
process of order 1 with its long memory counterpart, the
fractionally integrated AR process. The autocovariance se-
ries is seen to converge rapidly for the AR process, whereas
it diverges for the fractionally integrated AR process. Mean-
while, Eq. (2) implies that the long memory parameter d
has a geometric interpretation in the frequency domain as
the slope of log fx () versus —2log(\) as A — 0.

In the long memory regime, past observations can retain
significant explanatory power with respect to future predic-
tion targets, and informative forecasts are available over
horizons extending well beyond that of an analogous short
memory process. The contrast between AR and fractionally
integrated AR processes again provides a concrete example:
analyzing the optimal predictor XH n of Xy, for the pre-
diction horizon h > 1 in terms of the proportion of variance
explained R?(h) = 1 — Var(X,;;,) 'MSE(h), it can be
shown that R(h) decays exponentially for the AR process
but only hyperbolically in the fractionally integrated case
(Beran et al., 2013).

Many common models do not have long memory. De-
spite the appeal and practicality of long memory for mod-
eling complex time series, we emphasize that it is absent
from nearly all common statistical models for sequence data.
We offer a short list of examples; see (Greaves-Tunnell &
Harchaoui, 2019) for all proofs.

e Markov models. If X, is a Markov process on a finite
state space X, and Y; = g(X;) for any function g :
X — R, then Y; has short memory. We show that this
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Figure 1. Time and frequency domain views of an AR(1) process (blue, d = 0) and its long memory counterpart obtained by fractional
differencing (orange, d = 0.25). Left: Autocorrelation sequences (solid lines) of the two processes, along with their partial sums (dotted
lines). Right: Plot of log spectral density versus —2 times log frequency.

property holds even in a complex model with Markov
structure, the Markov transition distribution model for
high-order Markov chains (Raftery, 1985).

e Autoregressive moving average (ARMA) models.
ARMA models, a ubiquitous tool in time series mod-
eling, likewise have exponentially decaying autoco-
variances and thus short memory (Brockwell & Davis,
2013).

e Nonlinear autoregressions. Finally, and most impor-
tantly for our present focus, nonlinearity of the state
transition function is no guarantee of long memory. We
show that a class of autoregressive processes in which
the state is subject to iterated nonlinear transformations
still fails to achieve a slowly decaying autocovariance
sequence (Lin et al., 1996; Gourieroux & Jasiak, 2005).

Semiparametric estimation of long memory. Methods
for the estimation of the long memory parameter d have
been developed and analyzed under increasingly broad con-
ditions. Here, we focus on semiparametric methods, which
offer consistent estimation of the long memory without the
need to estimate or even specify a full parametric model.
The term “semiparametric” refers to the fact that the estima-
tion problem involves a finite-dimensional parameter of in-
terest (the long memory vector) and an infinite-dimensional
nuisance parameter (the spectral density).

Semiparametric estimation in the Fourier domain leverages
the implication of Eq. (2) that

Fx(A) ~ cp A2 3)

as A — 0, with ¢y a nonzero constant. Estimators are
constructed directly from the periodogram using only terms
corresponding to frequencies near the origin. The long
memory parameter d is estimated either by log-periodogram
regression, which yields the Geweke-Porter-Hudak (GPH)

estimator (Geweke & Porter-Hudak, 1983), or through a
local Gaussian approximation, which gives the Gaussian
semiparametric estimator (GSE) (Robinson, 1995). The
GSE offers greater efficiency, requires weaker distributional
assumptions, and can be defined for both univariate and
multivariate time series; therefore it will be the main focus.

Multivariate long memory processes. Analysis of long
memory in multivariate stochastic processes is a topic of
more recent investigation in the time series literature. The
common underlying assumption in multivariate semipara-
metric estimation of long memory is that the real, vector-
valued process X; € RP, can be written as

(1-B)% 0

X Un

3 =] @
0 (1 — B )dp ti U, tp

where X,; is the it" component of Xy, Uy € RP is a
second-order stationary process with spectral density func-
tion bounded and bounded away from zero at zero frequency,
B is the backshift in time operator, and |d;| < 1/2 for ev-
ery ¢ = 1, ..., p (Shimotsu, 2007). The backshift operation

BiX, =X, j» J € Zis extended to non-integer orders via

> Hd+kh¥

(1-B)™ = kD)

k=0

and thus X, is referred to as a fractionally integrated pro-
cess when d # 0. Fractionally integrated processes are
the most commonly used models for data with long-range
dependencies, encompassing parametric classes such as the
vector autoregressive fractionally integrated moving average
(VARFIMA), a multivariate and long memory extension of
the popular ARMA family of time series models.

If X, is defined as in Eq. (4), then its spectral density
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function fx () satisfies (Hannan, 2009)
fx(A) =@\, d) fu(N)P* (A, d),

where =* denotes the complex conjugate of z, fiy(\) is the
spectral density function of U, at frequency A, and

(A, d) = diag (1 —e?)™%) | o

Given an observed sequence (1, ...
crete Fourier transform

,{ET) = 1.7 with dis-

Yj = the_’)‘ b\ =2mj/T,

7

2nT

the spectral density matrix is estimated at Fourier frequency
A; by the periodogram

I(N\) = y;9;-

Under the assumption that fi;(\) ~ G as A — 0 for some
real, symmetric, positive definite G € RP*P, the local be-

havior of fx () around the origin is governed only by d
and G:

F(Aj) ~ @A, d)GO™ (A, d). S
The Gaussian semiparametric estimator The Gaussian
semiparametric estimator of d (Shimotsu, 2007) is com-
puted from a local, frequency-domain approximation to
the Gaussian likelihood based on Eq. (5). The approx-
imation is valid under restriction of the likelihood to a
range of frequencies close to the origin. Using the identity
1—e~* = 2sin(\/2)e!("=2)/2, we have the approximation

(N, d) ~ diag(A\~ %! ("N/2) £ A(d),
which is valid up to an error term of order O()\?).

The Gaussian log-likelihood is written in the frequency
domain as (Whittle, 1953)

Lo %Zlog det fx(A;) +Tr [fX(/\j)_lyjy;-‘]

ZZ

; i [1og det A;(d)GA%(d)

j=1
-1

+ T [ (A, (DGA (@) 10y)] |-

Validity of the approximation is ensured by restriction of
the sum to the first m Fourier frequencies, with m = o(T).

Solving the first-order optimality condition

3 (GO

for G yields

m

ZRe

)TN (D)

Substitution back into the objective results in the expression

P m
)=2) di> logh;, (6)
i=1 j=1

and the Gaussian semiparametric estimator is obtained as
the minimizer

L. (d) = log det G(d

CZGSE = argmindee Em(d), (7)
(-1/2,1/2)P

A key re§ult due to Shimotsu (2007) establishes that the es-

timator dgsg is consistent and asymptotically normal under
mild conditions, with

Vm(dgse — do) —a N (0,Q71), ®)

over the feasible set © =

where

2
Q=2 Ip+G®G‘1+%(G®G—1 - 1),
dy is the true long memory, and ® denotes the Hadamard
product.

Optimization. Relatively little discussion of optimization
procedures for problem in Eq. (7) is available in the time
series literature. We are not aware of any proof that the
objective is convex in the multivariate setting for instance.

To compute the estimator dgse, we apply L-BFGS-B, a
quasi-Newton algorithm that handles box constraints (Byrd
et al., 1995). L-BFGS-B is an iterative algorithm requir-
ing the gradient of the objective; see (Greaves-Tunnell &
Harchaoui, 2019) for a detailed derivation of the gradient.

Bandwidth selection The choice of the bandwidth param-
eter m determines the tradeoff between bias and variance
in the estimator: at small m the variance may be high due
to few data points, while setting m too large can introduce
bias by accounting for the behavior of the spectral density
function away from the origin.

When it is possible to simulate from the target process, as
will be the case when evaluating criteria for long memory in
recurrent neural networks, the variance can be controlled by
simulating long sequences and computing a dense estimate
of the periodogram. Without knowledge of the shape of the
spectral density function, however, it is difficult to know
how to set the bandwidth to avoid bias, and thus a relatively
conservative setting of m = /T is preferred; see (Greaves-

_ _ w1 n\T
— (G A (d) T (NN (d) TG }=0 Tunnell & Harchaoui, 2019) for a detailed bias study.
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3. Methods

RNN hidden state as a nonlinear model for a long mem-
ory process. The standard tool for statistical modeling of
multivariate long memory processes is the vector autoregres-
sive fractionally integrated moving average (VARFIMA)
model, which represents the process X; € RP with long
memory parameter d as

®(B)(1 - B)'X, = 6(B)Z,

where Z; is a white noise process and (1 — B)? = diag((1—
B)%),i =1, ..., p (Lobato, 1997; Sowell, 1989). Under the
standard stationarity and invertibility conditions on the ma-
trix polynomials ®(B) and O(B), respectively, the process
can be represented as

X, =(1-B)"%®(B)O(B)Z;,

which shows that the X; has a composite representation
in terms of linear “features” of the input sequence and an
explicit fractional integration step ensuring that it satisfies
the definition of multivariate long memory in Eq. (4).

We extend this view to deep network models for sequences
with long-range dependencies. The key difference is that
RNN models are not constrained to work with a linear rep-
resentation of the data, nor do they explicitly contain a step
that guarantees the long memory of X;. To evaluate long
memory in an RNN model, we study the stochastic process

Xy = ¥(Zy), €))

where Z; is again a white noise, and the nonlinear trans-
formation ¥ describes the RNN transformation of inputs
to the hidden state. In a typical RNN model, a decision
rule is learned by linear modeling of the hidden state; this
framework thus aligns with a broader theoretical charac-
terization of deep learning as approximate linearization of
complex decision boundaries in input space by means of a
learned nonlinear feature representation (Bruna & Mallat,
2013; Mairal et al., 2014; Jones et al., 2019; Bietti & Mairal,
2019).

Testable criteria for RNN capture of long-range depen-
dence. The complexity of ¥(-) corresponding to even the
most basic RNN sequence models precludes a fully theoreti-
cal treatment of long memory in processes described by Eq.
(9). Nonetheless, this characterization suggests an approach
for the statistical evaluation of long memory in RNNs, as
it establishes testable criteria under which a model of the
form Eq. (9) describes a process X; with long memory. In
particular, to satisfy the definition in Eq. (4) we must have

Xy =W(Z) = (1-B)" (%)

for some d # 0 and process ¥(Z;) with bounded and
nonzero spectral density at zero frequency. Semiparametric

estimation of d in the frequency domain provides a means
to evaluate this condition such that the results are agnostic
to the behavior of W(Z,) at higher frequencies. If ¥(Z,)
admits a representation in terms of an explicit fractional
integration step, then this can be investigated in two com-
plementary experiments:

1. Integration of fractionally differenced input. De-
fine B
X, =(1-B)Z,

where Z, is a standard Gaussian white noise and d
is the long memory parameter corresponding to the
source X; on which the model was trained. If the
sequence Zp.7 is drawn from Xt, then we expect to
find that L

dgsg(h1.1) = 0,

where hy.p = U(Z.7) is the RNN hidden representa-
tion of the simulated input. On the other hand, nonzero
long memory in the hidden state indicates a mismatch
between fractional integration learned by the RNN and
long memory of the data X;.

2. Long memory transformation of white noise. Con-
versely, we expect to find that the RNN hidden rep-
resentation of a white noise sequence has a nonzero
long memory parameter. White noise has a constant
spectrum and thus a long memory parameter equal to
zero. If (-) performs both the feature representation
and fractional integration functions that are handled
separately and explicitly in the VARFIMA model, then
a zero-memory input will be transformed to a nonzero-
memory sequence of hidden states.

Total memory. It is common for sequence embeddings
and RNN hidden layers to have hundreds of dimensions, and
thus long memory estimation for these sequences naturally
occurs in a high-dimensional setting. This topic is virtually
unexplored in the time series literature, where multivariate
studies tend to have modest dimension. Practically, this
raises two main issues. First, if p =~ m for dimension p and
bandwidth m, then the approximation of the test statistic
distribution by its asymptotic limit will be of poor quality,
and the resulting test is likely to be miscalibrated. Second,
it becomes difficult to interpret the long memory vector d,
particularly when the coordinates of the corresponding time
series are not meaningful themselves.

We resolve both issues by considering the fotal memory
statistic d, defined as

d =1"dgsg. (10)

Computation of the total memory is no more complex than
that of the GSE, and it has an intuitive interpretation as the
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coordinate-wise aggregate strength of long memory in a
multivariate time series.

Asymptotic normality of the total memory estimator.
The total memory is a simple linear functional of the GSE,
and thus its consistency and asymptotic normality can be
established by a simple argument. In particular, defining

d = g(d) £ 1" dgs,

we see that Vg(d) = 1, so that by Eq. (8) and the delta
method we have

Vvm(d — dy) —a N(0,17Q711), (11)

where dj is the true total memory of the observed process.

Visualizing and testing for long memory in high dimen-
sions. The visual time-domain summary of long memory
in Figure 1 can be extended to the multivariate setting. In
this case, the autocovariance v(k) = Cov (X, Xi¢1y) is
matrix-valued, which for the purpose of evaluating long
memory can be summarized by the scalar Tr(|y(k)|), where
the absolute value is taken element-wise. Recall that a
sufficient condition for short memory is the absolute con-
vergence of the autocovariance series, whereas this series
diverges for long memory processes.

From a testing perspective, a statistical decision rule for the
presence of long memory can be derived from the asymp-
totic distribution of the corresponding estimator. However,
when the dimension p is large and we conservatively set the
bandwidth m = /T, we may have m = p even when the
observed sequence is relatively long.

The classical approach to testing for the multivariate Gaus-
sian mean is based on the Wald statistic

m(d — do)"Q(d — dy),

which has a x?(p) distribution under the null hypothesis
7‘[0 td = do.

Additional simulations in (Greaves-Tunnell & Harchaoui,
2019) demonstrate that the standard Wald test can be miscal-
ibrated when m =~ p, whereas testing for long memory with
the total memory statistic remains well-calibrated in this set-
ting. These results are consistent with previous observations
that the Wald test for long memory can have poor finite-
sample performance even in low dimensions (Shimotsu,
2007; Hurvich & Chen, 2000).

4. Experiments
4.1. Long memory in language and music

Much of the development of deep recurrent neural networks
has been motivated by the goal of finding good representa-
tions and models for text and audio data. The results in this

section confirm that such data can be considered as realiza-
tions of long memory processes.” A full summary of results
is given in Table 1, and autocovariance partial sums are plot-
ted in Figure 2. To facilitate comparison of the estimated
long memory across time series of different dimension, we
report the normalized total memory d/p = (1T dgsg)/p in
all tables.

In this section, we test the null hypothesis

7‘[0 : do =0
against the one-sided alternative of long memory,
Hl : d_o > 0.

We set the level of the test to be « = 0.05 and compute
the corresponding critical value c, from the asymptotic
distribution of the total memory estimator. Given an esti-
mate of the total memory d(z1.7), a p-value is computed
as P(d > d(x1.7)|dyp = 0); note that a p-value less than
a = 0.05 corresponds to rejection of the null hypothesis in
favor of the long memory alternative.

Table 1. Total Memory in Natural Language and Music Data.

Data Norm. total  p-value  Reject H?
memory
Penn 0.163 <1 x107'¢ v
Natural TreeBank
language Facebook 0.0636 <1 x10716 v
CBT
King James 0.192 <1 x10716 v
Bible
1.S. Bach 0.0997 <1 x1071¢ v
. MilesDavis 0322 <1 x107'¢ v
Music 16
Oum 0.343 <1 x10 v
Kalthoum

Natural language data. We evaluate long memory in
three different sources of English language text data: the
Penn TreeBank training corpus (Marcus et al., 1993), the
training set of the Children’s Book Test from Facebook’s
bADI tasks (Weston et al., 2016), and the King James Bible.
The Penn TreeBank corpus and King James Bible are con-
sidered as single sequences, while the Children’s Book Test
data consists of 98 books, which are considered as separate
sequences. We require that each sequence be of length at
least T = 2%, which ensures that the periodogram can
be estimated with reasonable density near the origin. Fi-
nally, we use GloVe embeddings (Pennington et al., 2014)
to convert each sequence of word tokens to sequence of real
vectors of equal length and dimension p = 200.

2Code for all results in this section is available at https:
//github.com/alecgt/RNN_long_memory
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Figure 2. Partial sum of the autocovariance trace for embedded natural language and music data. Left: Natural language data. For clarity
we include only the longest of the 98 books in the Facebook bAbI training set. Right: Music data. Each of the five tracks from both Miles
Davis and Oum Kalthoum is plotted separately, while the Bach cello suite is treated as a single sequence.

The results show significant long memory in each of the
text sources, despite their apparent differences. As might
be expected, the children’s book from the Facebook bAbI
dataset demonstrates the weakest long-range dependencies,
as is evident both from the value of the total memory statistic
and the slope of the autocovariance partial sum.

Music data. Modeling and generation of music has re-
cently gained significant visibility in the deep learning com-
munity as a challenging set of tasks involving sequence data.
As in the natural language experiments, we seek to evaluate
long memory in a broad selection of representative data. To
this end, we select a complete Bach cello suite consisting of
6 pieces from the MusicNet dataset (Thickstun et al., 2017),
the jazz recordings from Miles Davis’ Kind of Blue, and a
collection of the most popular works of famous Egyptian
singer Oum Kalthoum.

For the Bach cello suite, we embed the data from its raw
scalar wav file format using a reduced version of a deep
convolutional model that has recently achieved near state-
of-the-art prediction accuracy on the MusicNet collection
of classical music (Thickstun et al., 2018).

We are not aware of a prominent deep learning model for
either jazz music or vocal performances. Therefore, for the
recordings of Miles Davis and Oum Kalthoum, we revert
to a standard method and extract mel-frequency cepstral
coefficients (MFCC) from the raw wav files at a sample rate
of 32000 Hz (Logan et al., 2000). See (Greaves-Tunnell &
Harchaoui, 2019) for an analysis of the impact of embedding
choice on estimated long memory.

The results show that long memory appears to be even more
strongly represented in music than in text. We find evidence
of particularly strong long-range dependence in the record-
ings of Miles Davis and Oum Kalthoum, consistent with
their reputation for repetition and self-reference.

Overall, while the results of this section are unlikely to sur-
prise practitioners familiar with the modeling of language
and music data, they are scientifically useful for two main
reasons: first, they show that the long memory analysis is
able to identify well-known instances of long-range depen-
dence in real-world data; second, they establish quantitative
criteria for the successful representation of this dependency
structure by RNNSs trained on such data.

4.2. Long memory analysis of language model RNNs

We now turn to the question of whether RNNs trained on
one of the datasets evaluated above are able to represent the
long-range dependencies that we know to be present. We
evaluate the criteria for long memory on three different RNN
architectures: long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997a), memory cells (Levy et al., 2018),
and structurally constrained recurrent networks (SCRN)
(Mikolov et al., 2015). Each network is trained on the Penn
TreeBank corpus as part of a language model that includes
a learned word embedding and linear decoder of the hidden
states; the architecture is identical to the “small” LSTM
model in (Zaremba et al., 2014), which is preferred for
the tractable dimension of the hidden state. Note that the
objective is not to achieve state-of-the-art results, but rather
to reproduce benchmark performance in a well-known deep
learning task. Finally, for comparison, we also include an
untrained LSTM in the experiments; the parameters of this
model are simply set by random initialization.

RNN integration of fractionally differenced input.
Having estimated the long memory parameter d correspond-
ing to the Penn TreeBank training data in the previous sec-
tion, we simulate inputs %, with T = 2! from by frac-
tional differencing of a standard Gaussian white noise and
evaluate the total memory of the corresponding hidden rep-
resentation ¥ (Z1.7) for each RNN. Results from n = 100
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Table 2. Language Model Performance by RNN Type

Model Test Perplexity
Zaremba et al. 114.5
LSTM 114.5
Memory cell 119.0
SCRN 124.3

trials are compiled in Table 3 (standard error of total mem-
ory estimates in parentheses). We test the null hypothesis
Ho : d=0 against the one-sided alternative H; : d < 0,
which corresponds to the model’s failure to represent the
full strength of fractional integration observed in the data.

Table 3. Residual Total Memory in RNN Representations of Frac-
tionally Differenced Input.

Model Norm. total p-value Reject Ho?

memory

LSTM (trained) —8.36 x 1073 4.07 x 1072 v
(0.00475)

LSTM (untrained) —6.20 x 1072 <1 x10716 v
(0.00387)

Memory cell —1.18 x 1072 1.52x 1072 v
(0.00539)

SCRN —2.62x1072 3.32x107° v
(0.00631)

RNN transformation of white noise. For a complemen-
tary analysis, we evaluate whether the RNNs can impart
nontrivial long-range dependency structure to white noise
inputs. In this case, the input sequence z1.r is drawn from
a standard Gaussian white noise process, and we test the
corresponding hidden representation ¥(z;.1) for nonzero
total memory. As in the previous experiment, we select
T = 216, choose the bandwidth parameter m = /T, and
simulate n = 100 trials for each RNN. Results are detailed
in Table 4. We test H : dy = 0 against H; : dy > 0; here,
the alternative corresponds to successful transformation of
white noise input to long memory hidden state.

Discussion. We summarize the main experimental result
as follows: there is a statistically well-defined and prac-
tically identifiable property, relevant for prediction and
broadly represented in language and music data, that is
not present according to two fractional integration criteria
in a collection of RNNs trained to benchmark performance.

Tables 3 and 4 show that each evaluated RNN fails both
criteria for representation of the long-range dependency
structure of the data on which it was trained. The result
holds despite a training protocol that reproduces benchmark

Table 4. Total Memory in RNN Representations of White Noise
Input.

Model Norm. total p-value Reject Ho?

memory

LSTM (trained) —8.59 x 10~* 0.583 X
(0.00405)

LSTM (untrained) —4.17 x 1074 0.572 X
(0.00223)

Memory cell  —5.96 x 1074 0.552 X
(0.00452)

SCRN 2.37 x 1073 0.324 X
(0.00522)

performance, and for RNN architectures specifically engi-
neered to alleviate the gradient issues typically implicated
in the learning of long-range dependencies.

5. Conclusion

We have introduced and demonstrated a framework for the
evaluation of long memory in RNNs that proceeds from
a well-known definition in the time series literature. Un-
der this definition, long memory is the condition enabling
meaningful autocovariance at long lags in a multivariate
time series. Of course, for sufficiently complex processes,
this will not fully characterize the long-range dependence
structure of the data generating process. Nonetheless, it rep-
resents a practical and informative foundation upon which
to develop a statistical toolkit for estimation, inference, and
hypothesis testing, which goes beyond the current paradigm
of heuristic checks.

The experiments investigate long memory in natural lan-
guage and music data, along with the learned representations
of RNNs themselves, using the total memory statistic as an
interpretable quantity that avoids the challenges associated
with high-dimensional testing. The results identify long
memory as a broadly prevalent feature of natural language
and music data, while showing evidence that benchmark
recurrent neural network models designed to capture this
phenomenon may in fact fail to do so. Finally, this work
suggests future topics in both time series, particularly con-
cerning long memory analysis in high dimensions, and in
deep learning, as a challenge to learn long memory repre-
sentations in RNNs.
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