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A. Supplementary material
A.1. Derivation of MoG proposals for APT with MDNs

When qF (x,φ) is anM -component mixture of Gaussians, p̃(θ) is an L-component mixture of Gaussians and p(θ) is Gaussian,
we have

qF (x,φ)(θ) =

M∑
i=1

αiNθ (µi,Σi) (7)

p̃(θ) =

L∑
k=1

βkNθ
(
µ̃k, Σ̃k

)
(8)

p(θ|x) = Nθ (µ0,Σ0) (9)

q̃x,φ(θ) =
1

Zx,φ

∑
i,k

αiβk
Nθ (µi,Σi)Nθ

(
µ̃k, Σ̃k

)
Nθ (µ0,Σ0)

(10)

=
∑
i,k

ζikNθ (µ∗ik,Σ
∗
ik) (11)

where

Σ∗ik =
(

Σ−1
i + Σ̃−1

k − Σ−1
0

)−1

(12)

µ∗ik = Σ∗ik

(
Σ−1
i µi + Σ̃−1

k µ̃k − Σ−1
0 µ0

)
(13)

ζik ∝ αiβk

√
det(Σ∗ik)

det(Σi) det(Σ̃k)
e−

1
2 (µ>i Σ−1

i µi+µ̃
>
k Σ̃−1

k µ̃k−µ∗ik
>Σ∗ik

−1µ∗ik) (14)

and the proportionality symbol indicates that the weights ζik should be normalized so that
∑
ik ζik = 1.
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A.2. Algorithm and computational complexity for atomic APT

Algorithm 2 APT with atomic proposals
Input: simulator with (implicit) density p(x|θ), data xo, prior p(θ), density family qψ, neural network F (x, φ), simula-
tions per round N , number of rounds R, number of atoms M .

p̃1(θ) := p(θ)
c← 0 total simulation count
for r = 1 to R do

for j = 1 to N do
c← c+ 1
Sample θc ∼ p̃r(θ)
Simulate xc ∼ p(x|θc)

end for

Vr(Θ) :=

{(
c
M

)−1
, if Θ = {θb1 , θb2 , . . . , θbM } and 1 ≤ b1 < b2 < . . . < bM ≤ c

0, otherwise
sampling without replacement

φ← argminφ EΘ∼Vr(Θ)

[ ∑
θj∈Θ

− log q̃xj ,φ(θj)

]
p̃r+1(θ) := qF (xo,φ)(θ)

end for
return qF (xo,φ)(θ)

To minimize EΘ∼Vi(Θ)

[ ∑
θj∈Θ

− log q̃xj ,φ(θj)

]
, we must calculate its gradient with respect to φ, for which we use mini-

batches of size M . Specifically, for each minibatch we first sample B = {b1, . . . , bM} ⊂ {1, . . . , c} without replacement.
We then calculate the gradient d

dφ

∑
b∈B
− log q̃xb,φ(θb) using (6). Note that each minibatch involves M loss evaluations—that

is, M multiple-choice questions with M possible answers each.

To calculate q̃xj ,φ and its gradients for a single minibatch using (6), we must evaluate qF (x,φ)(θ) on every possible pair
(θb, xb′) for b, b′ ∈ B. Therefore atomic APT’s computational complexity is quadratic in the minibatch size M . However,
we observed no difference in wallclock time per minibatch for M = 10 vs. M = 100 on an nVidia GeForce RTX 2080.
Furthermore, for the Lokta-Volterra and RPS models, simulations took longer than all other calculations, for all methods.

When using an MDN as the density estimator, the MoG estimate of the posterior can be calculated once for each xb′ ,
and then each MoG evaluated on each θb. For a network with nlayers fully connected hidden layers of nhidden units each,
d = dim(x) and an nMoG-component Gaussian mixture, the computational complexity of an atomic APT minibatch is

Catomic MDN-APT = O
(
M
[
dnhidden + nlayersn

2
hidden + nhiddennMoG dim(θ)2

]
+M2nMoG dim(θ)2

)
(15)

Note that only the final term is quadratic in M , and this term does not involve the network structure or input dimensionality.
For comparison, SNPE-A/B or non-atomic MDN-based APT has the same complexity, except for being linear in M :

CSNPE-A/B/non-atomic MDN-APT = O
(
M
[
dnhidden + nlayersn

2
hidden + nhiddennMoG dim(θ)2

])
(16)

In a MAF data and parameters are coupled, so for atomic APT every (θb, xb′) pair requires a separate feedforward pass. For
nMADEs conditional MADEs consisting of nlayers fully connected hidden layers of nhidden units, the minibatch complexity is

Catomic MAF-APT = O
(
nMADEs

[
Mdnhidden +M2 dim(θ)nlayersn

2
hidden +M2 dim(θ)2nhidden

])
(17)

The first term is exempted from quadratic dependence on M since the inputs x can be multiplied by the appropriate weight
matrices independently of θ. Thus, any computational tasks that scale with the input dimension d scale only linearly with M .

For MAF-based SNL the roles of the data and parameters are reversed, so the complexity (not including MCMC sampling) is

CMAF-SNL = O
(
MnMADEs

[
dim(θ)nhidden + dnlayersn

2
hidden + d2nhidden

])
(18)

For very large d, we hypothesize that atomic MAF-APT could benefit from specialized network architectures that pass x
through a learned, feed-forward dimensionality reduction before supplying the result as input to all MADEs.
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A.3. Conditional flow normalization and truncated priors

Conditional density estimators trained to target the posterior density should respect constraints imposed on them by the prior.
For uniform priors, the posterior density outside the prior support should be zero. The proposal correction for SNPE-A
(Papamakarios & Murray, 2016) does not hold for tight priors that clearly truncate the posterior estimate. Also for SNPE-B,
posterior leakage leads to hard-to-interpret results unless the MDNs are re-normalized.

The normalization of the conditional density model qF (x,φ)(θ) cancels out in the computation of the probabilities q̃x,φ(θ)
(see eq. 6). Hence conditional density models optimized via APT with atomic proposals are automatically normalized during
training. After training, the Gaussian (mixture) qF (xo,φ)(θ) returned from MDNs can be truncated to return a valid truncated
Normal posterior estimate. For MAFs we can effectively obtain such post-hoc truncation through rejection sampling, and
estimate the normalization factor from the rejection rates.

We noticed that across many rounds, conditional MAFs trained with APT can leak increasingly large amounts of mass
outside the prior support. We did not find this leakage to negatively influence the quality of the estimated posterior shape
(evaluated over the prior support). If needed, there would be several options to reduce leakage across rounds and keep
rejection rates low: We can periodically reinitialize the conditional density estimator across rounds. Alternatively, one
could also train a new flow which is optimized to have the same shape on the prior’s support, but minimal mass elsewhere.
This normalized flow could then be used to directly evaluate posterior densities. For simple box-shaped prior supports,
one can also apply a pointwise (scaled) logistic transformation to the MAF outputs to enforce prior bounds, i.e. train
qF (x,φ)(σ

−1(θ)).

A.4. Proof of proposition 1

Here we prove Prop. 1. Note that whenever we refer to p̃(θ), p̃(θ|x) or p̃(x) these distributions are always defined based on
some specific choice of Θ.

Proof of proposition 1

EΘ∼V,θ∼UΘ,x∼p(x|θ)[L̃(φ)− L̃(φ∗)] =

∫
Θ

V (Θ)
∑
θ∈Θ

p̃(θ)

∫
x

p(x|θ)[log p̃(θ|x)− log q̃x,φ(θ)] (19)

By Bayes’ rule and (1), for θ ∈ Θ we have p(x|θ) = p̃(θ|x)p̃(x)
p̃(θ) so

EΘ∼V,θ∼UΘ,x∼p(x|θ)[L̃(φ)− L̃(φ∗)] =

∫
Θ

V (Θ)

∫
x

p̃(x)
∑
θ∈Θ

p̃(θ|x) log
p̃(θ|x)

q̃x,φ(θ)
(20)

=

∫
Θ

V (Θ)

∫
x

p̃(x)DKL(p̃(θ|x)||q̃x,φ(θ)) (21)

= EΘ∼V,θ∼UΘ,x∼p(x|θ)[DKL(p̃(θ|x)||q̃x,φ(θ))] (22)

By Gibbs’ inequality, the KL divergence is zero only when q̃x,φ(θ) = p̃(θ|x) for all θ ∈ Θ, in which case by (5-6) qF (x,φ) ∝
p(θ|x) for θ ∈ Θ as well. Thus DKL(p̃(θ|x)||q̃x,φ(θ)) > 0 whenever ρ(x,Θ, φ) 6= 1, so if EΘ∼V,θ∼UΘ,x∼p(x|θ)[ρ(x,Θ, φ)]

were less than one, EΘ∼V,θ∼UΘ,x∼p(x|θ)[L̃(φ)− L̃(φ∗)] would be greater than zero.

A.5. Experimental details

We use the same basic network architectures for all of our experiments. For mixture-density networks (SNPE-A, SNPE-B,
APT), we use two fully-connected tanh layers with with 50 units each. Unless otherwise stated, we use MDNs with 8
Gaussian mixture components. In our experiments with MDNs MoG proposals were used for APT. For conditional masked
autoregressive flows (SNL, APT), we use stacks of 5 MADEs each constructed using two fully-connected tanh layers with
50 units each. We train the APT MAFs with atomic proposals using M = 100 atoms.

For the SLCP, Lotka-Volterra and M/G/1 model, we follow the experimental setup of (Papamakarios et al., 2018), including
uniform priors, summary statistics, ground-truth parameters θ∗ and observed data xo.
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A.5.1. TWO MOONS MODEL

For given parameter θ ∈ R2, the ‘two moons’ simulator generates x ∈ R2 according to

a ∼ U(−π
2
,
π

2
) (23)

r ∼ N (0.1, 0.012) (24)
p = (r cos(a) + 0.25, r sin(a)) (25)

x> = p+

(
−|θ1 + θ2|√

2
,
−θ1 + θ2√

2

)
(26)

The intermediate variables p follow a single crescent-shaped distribution, which is subsequently shifted and rotated around
the origin depending on θ. Consequently, p(x|θ) shows a single shifted crescent for fixed θ. The absolute value |θ1 + θ2|
gives rise to the second crescent in the posterior. We choose a uniform prior over [−1, 1]2 to illustrate inference on this
model. As observed data we use xo = (0, 0)>.

On this example we fit mixture-density networks with 20 mixture components to allow expressive conditional densities.
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Figure 7. Two moons model. Comparison of average maximum
mean discrepancies between final posterior estimate and ground-
truth posteriors for different algorithms across 10 different random
initializations and x = (0, 0). Dots show individual runs. The
MCMC chains used by SNL to obtain posterior estimates failed to
sample both posterior modes in the majority of cases (cf. Fig 1 for
such an example case), leading to high discrepancies.

A.5.2. SLCP MODEL

The SLCP model has a simple simulator density p(x|θ) =
∏4
i=1N (x(2i−1,2i)|µ(θ),Σ(θ)), i.e. x ∈ R8 consists of four

independent samples from a bivariate Gaussian parameterized by θ ∈ R5. The conditional mean is given by µ(θ) = (θ1, θ2)>.
The parameterization of the covariance

Σ(θ) =

[
θ2

3 θ3θ4 tanh(θ5)
θ3θ4 tanh(θ5) θ2

4

]
(27)

leads to in total four modes in p(θ|x) visible in the pairwise marginal over (θ3, θ4) (Fig. 2a). To calculate MMD’s, We
sampled from the ground-truth posterior using MCMC. For the experiment with added uninformative simulator outputs,
we generate noise outputs xi>8 ∈ Rm,m ∈ {12, 32, 52, 92} from m-dimensional mixtures of t-distributions and append
them to the 8-dimensional simulator output. We use mixtures of 20 multivariate t-distributions with randomized means and
covariance matrices and degree of freedom 2 to create non-trivial densities p(x|θ). We note that the actual posterior density
p(θ|x) (for any noise outputs xi>8) retains the shape of the original SLCP model due to

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(xi>8|xi≤8, θ)p(xi≤8|θ)p(θ)

p(xi>8|xi≤8)p(xi≤8)
=
p(xi>8)p(xi≤8|θ)p(θ)
p(xi>8)p(xi≤8)

=
p(xi≤8|θ)p(θ)
p(xi≤8)

(28)

To avoid effects of the autoregressive nature of MAF density estimators, we re-order the dimensions i of the original eight
output dimensions xi≤8 and our added simulator outputs xi>8 with a fixed random permutation.
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Note that in Fig. 3 the MMD for the true posterior (lower gray lines) is nonzero due to a finite number of samples being
used.

A.5.3. LOTKA-VOLTERRA MODEL

For the comparisons against previous neural conditional density models, we apply APT to infer the posterior of the
Lotka-Volterra model as described in (Papamakarios et al., 2018).
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Figure 8. Lotka-Volterra model. Close-up comparison between a
APT and b SNL posterior estimates.

We also infer posteriors for a Lotka-Volterra model with added observation noise. We add independent Gaussian noise
εit ∼ N (0, σ2) to both populations i = 1, 2 and every time point t = 0, . . . , 150 of the raw simulated time-series. For
RNN-APT, we added an initial layer of 100 GRU units (Cho et al., 2014) to a MDN with a single Gaussian component.

A.5.4. ROCK-PAPER-SCISSORS MODEL

We approximated the SPDE using a system of coupled stochastic differential equations as described in eq. (29-30) of
(Reichenbach et al., 2008), and integrated this system using the Euler-Murayama method with a step size of 1 on a 100x100
grid. We calculated second spatial derivatives using simple finite differences-of-differences. We initialized the system at the
unstable uniform steady state, and integrated from t = 0 to t = 100. With µ, σ and D denoting the growth rate, predation
rate and diffusion constant as defined in (Reichenbach et al., 2007; 2008), θ1, θ2 and θ3 were defined as their respective base
10 logarithms. We used uniform priors on each θj , from −1 to 1 for 1 ≤ j ≤ 2 and from −6 to −5 for j = 3.

We used a CNN consisting of 6 convolutional layers with ReLu units, with each convolutional layer followed by a max
pooling layer. The number of channels after each layer was: 8, 8, 8, 16, 32 and 32. The convolutional filter sizes were: 3, 3,
3, 3, 2 and 2. The max pooling sizes were: 1, 3, 2, 2, 2 and 1. The image sizes were 100x100, 32x32, 15x15, 6x6, 2x2 and
1x1. The 32-dimensional output of the CNN was then passed through two fully-connected tanh layers with with 50 units
each. We used a single-component MDN for this problem. Overall, for this architecture the elements of φ (weights and
biases) numbered 8768 for the CNN layers, 4200 for the fully connected layers and 612 for the final mapping onto ψ.

A.5.5. M/G/1 MODEL

We compared MAF-APT to previous approaches on the M/G/1 queue model (as described in Papamakarios & Murray,
2016). The results (mean ± SEM) for 10 different random initializations with the identical xo are shown in figure 9.
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Figure 9. M/G/1 model. Averages ±1 SEM over 10 different ran-
dom intializations with identical xo (≤ 10 for SNPE-A in later
rounds).
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A.5.6. GENERALIZED LINEAR MODEL

We also compare MAF-APT against previous neural conditional density approaches on a Generalized Linear model model
with a length-9 temporal input filter and a bias weight (i.e. θj , j = 1, . . . , d with d = 10 parameters in total). We simulate
100 time bins of activity in response to white noise and summarize the output with 10 sufficient statistics x as in (Lueckmann
et al., 2017). We also train the algorithms with 5 rounds of N = 5000 each. We note that the posteriors for this simulator
are well approximated as Gaussian, and use a single Gaussian component for the MDNs for SNPE-A and -B, and MAFs
consisting of two MADES for SNL and APT. We use networks with two layers of 10 tanh units for MDNs and MADES.

The results (mean ± SEM) for 10 different random initializations and xo are shown in figure 10.
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Figure 10. Generalized lin-
ear model. Averages ±1
SEM over 10 different ran-
dom intializations.


