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Abstract
Human perception is structured around objects
which form the basis for our higher-level cogni-
tion and impressive systematic generalization abil-
ities. Yet most work on representation learning
focuses on feature learning without even consider-
ing multiple objects, or treats segmentation as an
(often supervised) preprocessing step. Instead, we
argue for the importance of learning to segment
and represent objects jointly. We demonstrate
that, starting from the simple assumption that a
scene is composed of multiple entities, it is possi-
ble to learn to segment images into interpretable
objects with disentangled representations. Our
method learns – without supervision – to inpaint
occluded parts, and extrapolates to scenes with
more objects and to unseen objects with novel fea-
ture combinations. We also show that, due to the
use of iterative variational inference, our system
is able to learn multi-modal posteriors for ambigu-
ous inputs and extends naturally to sequences.

1. Introduction
Learning good representations of complex visual scenes is
a challenging problem for artificial intelligence that is far
from solved. Recent breakthroughs in unsupervised repre-
sentation learning (Higgins et al., 2017a; Makhzani et al.,
2015; Chen et al., 2016) tend to focus on data where a single
object of interest is placed in front of some background (e.g.
dSprites, 3D Chairs, CelebA). Yet in general, visual scenes
contain a variable number of objects arranged in various spa-
tial configurations, and often with partial occlusions (e.g.,
CLEVR, Johnson et al. 2017; see Figure 1). This motivates
the question: what forms a good representation of a scene
with multiple objects? In line with recent advances (Burgess
et al., 2019; van Steenkiste et al., 2018; Eslami et al., 2016),
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Figure 1. Object decomposition of an image from the CLEVR
dataset by IODINE. The model is able to decompose the image into
separate objects in an unsupervised manner, inpainting occluded
objects in the process (see slots (d), (e) and (h)).

we maintain that discovery of objects in a scene should be
considered a crucial aspect of representation learning, rather
than treated as a separate problem.

We approach the problem from a spatial mixture model
perspective (Greff et al., 2017) and use amortized iterative
refinement (Marino et al., 2018b) of latent object repre-
sentations within a variational framework (Rezende et al.,
2014; Kingma & Welling, 2013). We encode our basic intu-
ition about the existence of objects into the structure of our
model, which simultaneously facilitates their discovery and
efficient representation in a fully data-driven, unsupervised
manner. We name the resulting architecture IODINE (short
for Iterative Object Decomposition Inference NEtwork).

IODINE can segment complex scenes and learn disentan-
gled object features without supervision on datasets like
CLEVR, Objects Room (Burgess et al., 2019), and Tetris
(see Appendix B). We show systematic generalization to
more objects than included in the training regime, as well as
objects formed with unseen feature combinations. This high-
lights the benefits of multi-object representation learning by
comparison to a VAE’s single-slot representations. We also
justify how the sampling used in iterative refinement lends
to resolving multi-modal and multi-stable decomposition.
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(a) VAE (b) Multi-object VAE

m

(c) IODINE

(d) IODINE neural architecture.

Figure 2. Generative model illustrations. (a) A regular VAE de-
coder. (b) A hypothetical multi-object VAE decoder that recom-
poses the scene from three objects. (c) IODINE’s multi-object
decoder showing latent vectors (denoted z) corresponding to K
objects refined over N iterations from images of dimension D.
The deterministic pixel-wise means and masks are denoted µ and
m respectively. (d) The neural architecture of the IODINE’s multi-
object spatial mixture decoder.

2. Method
We first express multi-object representation learning within
the framework of generative modelling (Section 2.1). Then,
building upon the successful Variational AutoEncoder
framework (VAEs; Rezende et al. 2014; Kingma & Welling
2013), we leverage variational inference to jointly learn both
the generative and inference model (Section 2.2). There we
also discuss the particular challenges that arise for inference
in a multi-object context and show how they can be solved
using iterative amortization. Finally, in Section 2.3 we bring
all elements together and show how the complete system
can be trained end-to-end.

2.1. Multi-Object Representations

Flat vector representations as used by standard VAEs are
inadequate for capturing the combinatorial object structure
that many datasets exhibit. To achieve the kind of systematic
generalization that is so natural for humans, we propose
employing a multi-slot representation where each slot shares
the underlying representation format, and each would ideally
describe an independent part of the input. Consider the
example in Figure 1: by construction, the scene consists
of 8 objects, each with its own properties such as shape,
size, position, color and material. To split objects, a flat
representation would have to represent each object using
separate feature dimensions. But this neglects the simple
and (to us) trivial fact that they are interchangeable objects
with common properties.

Generative Model We represent each scene withK latent
object representations zk ∈ RM that collaborate to gener-
ate the input image x ∈ RD (c.f. Figure 2b). The zk are
assumed to be independent and their generative mechanism
is shared such that any ordering of them produces the same
image (i.e. entailing permutation invariance). Objects dis-
tinguished in this way can easily be compared, reused and
recombined, thus facilitating combinatorial generalization.

The image x is modeled with a spatial Gaussian mixture
model where each mixing component (slot) corresponds
to a single object. That means each object vector zk is
decoded into a pixel-wise mean µik (the appearance of the
object) and a pixel-wise assignment mik = p(C = k|zk)
(the segmentation mask; c.f. Figure 2c). Assuming that the
pixels i are independent conditioned on z, the likelihood
thus becomes:

p(x|z) =
D∏
i=1

K∑
k=1

mikN (xi;µik, σ
2), (1)

where we use a global fixed variance σ2 for all pixels.

Decoder Structure Our decoder network structure di-
rectly reflects the structure of the generative model. See
Figure 2d for an illustration. Each object latent zk is de-
coded separately into pixel-wise means µk and mask-logits
m̂k, which we then normalize using a softmax operation ap-
plied across slots such that the masks mk for each pixel sum
to 1. Together, µ and m parameterize the spatial mixture
distribution as defined in Equation (1). For the network ar-
chitecture we use a broadcast decoder (Watters et al., 2019),
which spatially replicates the latent vector zk, appends two
coordinate channels (ranging from −1 to 1 horizontally and
vertically), and applies a series of size-preserving convo-
lutional layers. This structure encourages disentangling
the position across the image from other features such as
color or texture, and generally supports disentangling. All
slots k share weights to ensure a common format, and are
independently decoded, up until the mask normalization.

2.2. Inference

Similar to VAEs, we use amortized variational inference
to get an approximate posterior qλ(z|x) parameterized as
a Gaussian with parameters λ = {µz,σz}. However, our
object-oriented generative model poses a few specific chal-
lenges for the inference process: Firstly, being a (spatial)
mixture model, we need to infer both the components (i.e.
object appearance) and the mixing (i.e. object segmentation).
This type of problem is well known, for example in cluster-
ing and image segmentation, and is traditionally tackled as
an iterative procedure, because there are no efficient direct
solutions. A related second problem is that any slot can,
in principle, explain any pixel. Once a pixel is explained
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Figure 3. Illustration of the iterative inference procedure.

by one of the slots, the others don’t need to account for it
anymore. This explaining-away property complicates the
inference by strongly coupling it across the individual slots.
Finally, slot permutation invariance induces a multimodal
posterior with at least one mode per slot permutation. This
is problematic, since our approximate posterior qλ(z|x) is
parameterized as a unimodal distribution. For all the above
reasons, the standard feed-forward VAE inference model is
inadequate for our case, so we consider a more powerful
method for inference.

Iterative Inference The basic idea of iterative inference
is to start with an arbitrary guess for the posterior param-
eters λ, and then iteratively refine them using the input
and samples from the current posterior estimate. We build
on the framework of iterative amortized inference (Marino
et al., 2018b), which uses a trained refinement network fφ.
Unlike Marino et al., we consider only additive updates to
the posterior and use several salient auxiliary inputs a to
the refinement network (instead of just ∇λL). We update
the posterior of the K slots independently and in parallel
(indicated by k← and k∼), as follows:

z
(t)
k

k∼ qλ(z
(t)
k |x) (2)

λ
(t+1)
k

k← λ
(t)
k + fφ(z

(t)
k ,x,ak) , (3)

Thus the only place where the slots interact are at the input
level. As refinement network fφ we use a convolutional
network followed by an LSTM (see Appendix C for details).
Instead of amortizing the posterior directly (as in a regular
VAE encoder), the refinement network can be thought of
as amortizing the gradient of the posterior (Marino et al.,
2018a). The alternating updates to qλ(z|x) and p(x|z) are
also akin to message passing.

Inputs For each slot k we feed a set of auxiliary inputs
ak to the refinement network fφ which then computes an
update for the posterior λk. Crucially, we include gradi-
ent information about the ELBO in the inputs, as it con-
veys information about what is not yet explained by other
slots. Omitting the superscript (t) for clarity, the auxil-
iary inputs ak are (see Appendix C for details): image

Algorithm 1 IODINE Pseudocode.
Input: image x, hyperparamters K, T , σ2

Input: trainable parameters λ(1), θ, φ
Initialize: h(1)

k

k← 0
for t = 1 to T do
z

(t)
k

k∼ qλ(z
(t)
k |x) // Sample

µ
(t)
k , m̂

(t)
k

k← gθ(z
(t)
k ) // Decode

m(t) ← softmaxk(m̂
(t)
k ) // Masks

p(x|z(t))←
∑
km

(t)
k N (x;µ

(t)
k , σ2) // Likelihood

L(t) ← DKL(qλ(z
(t)|x)||p(z))− log p(x|z(t))

ak
k← inputs(x, z(t)

k ,λ
(t)
k ) // Inputs

λ
(t+1)
k ,h(t+1) k← fφ(ak,h

(t)
k ) // Refinement

end for

x, means µk, masks mk, mask-logits m̂k, mean gradi-
ent∇µk

L, mask gradient∇mk
L, posterior gradient∇λk

L,
posterior mask p(mk|x,µ) = p(x|µk)∑

j p(x|µj) , pixelwise likeli-

hood p(x|z), leave-one-out likelihood p(x|zi 6=k), and two
coordinate channels like in the decoder.

With the exception of∇λk
L, these are all image-sized and

cheap to compute, so we feed them as additional input-
channels into the refinement network. The approximate
gradient ∇λk

L is computed using the reparameterization
trick by a backward pass through the generator network.
This is computationally quite expensive, but we found that
this information helps to significantly improve training of
the refinement network. This input is the same size as the
posterior λk and is fed to the LSTM part of the refinement
network. Like Marino et al. (2018b) we found it beneficial
to normalize the gradient-based inputs with LayerNorm (Ba
et al., 2016). See Section 4.3 for an ablation study.

2.3. Training

We train the parameters of the decoder (θ), of the refinement
network (φ), and of the initial posterior (λ(1)) by gradient
descent through the unrolled iterations. In principle, it is
enough to minimize the final negative ELBO LT , but we
found it beneficial to use a weighted sum which also in-
cludes earlier terms:

Ltotal =

T∑
t=1

t

T
L(t). (4)

Each refinement step of IODINE uses gradient information
to optimize the posterior λ. Unfortunately, backpropagating
through this process leads to numerical instabilities con-
nected to double derivatives like ∇Θ∇zL. We found that
this problem can be mitigated by dropping the double deriva-
tive terms, i.e. stopping the gradients from backpropagating
through the gradient-inputs ∇µk

L, ∇mk
L, and ∇λk

L (see
Appendix C for details).



Variational Iterative Multi-Object Representation Learning

3. Related Work
Representation learning (Bengio et al., 2013) has received
much attention and has seen several recent breakthroughs.
This includes disentangled representations through the use
of β-VAEs (Higgins et al., 2017a), adversarial autoencoders
(Makhzani et al., 2015), Factor VAEs (Kim & Mnih, 2018),
and improved generalization through non-euclidean embed-
dings (Nickel & Kiela, 2017). However, most advances have
focused on the feature-level structure of representations, and
do not address the issue of representing multiple, potentially
repeating objects, which we tackle here.

Another line of work is concerned with obtaining segmenta-
tions of images, usually without considering representation
learning. This has led to impressive results on real-world
images, however, many approaches (such as “semantic seg-
mentation” or object detection) rely on supervised signals
(Girshick, 2015; He et al., 2017; Redmon & Farhadi, 2018),
while others require hand-engineered features (Shi & Malik,
2000; Felzenszwalb & Huttenlocher, 2004). In contrast, as
we learn to both segment and represent, our method can
perform inpainting (Figure 1) and deal with ambiguity (Fig-
ure 10), going beyond what most methods relying on feature
engineering are currently able to do.

Works tackling the full problem of scene representation are
rarer. Probabilistic programming based approaches, like
stroke-based character generation (Lake et al., 2015) or 3D
indoor scene rendering (Pero et al., 2012), have produced
appealing results, but require carefully engineered gener-
ative models, which are typically not fully learned from
data. Work on end-to-end models has shown promise in
using autoregressive inference or generative approaches (Es-
lami et al., 2016; Gregor et al., 2015), including the recent
MONet (Burgess et al., 2019). Few methods can achieve
similar comparable with the complexity of the scenes we
consider here, apart from MONet. Section 4.1 shows a pre-
liminary comparison between MONet and IODINE, and we
discuss their relationship further in Appendix A.3.

Two other methods related to ours are Neural Expectation
Maximization (Greff et al., 2017) (along with its sequential
and relational extensions (van Steenkiste et al., 2018)) and
Tagger (Greff et al., 2016). NEM uses recurrent neural net-
works to amortize expectation maximization for a spatial
mixture model. However, NEM variants fail to cope with
colored scenes, as we note in our comparison in Section 4.1.
Tagger also uses iterative inference to segment and repre-
sent images based on a denoising training objective. We
disregard Tagger for our comparison, because (1) its use of
a Ladder network means that there is no bottleneck and thus
no explicit object representations, and (2) without adapt-
ing it to a convolutional architecture, it does not scale to
larger images (Tagger would require ≈ 600M weights for
CLEVR).

Figure 4. IODINE segmentations and object reconstructions on
CLEVR6 (top), Multi-dSprites (middle), and Tetris (bottom). The
individual masked reconstruction slots represent objects separately
(along with their shadow on CLEVR). Border colours are matched
to the segmentation mask on the left.

Figure 5. Prediction accuracy / R2 score for the factor regression
on CLEVR6. Position is continuous; the rest are categorical with
8 colors, 3 shapes, and 2 sizes. IODINE (deconv) does not use
spatial broadcasting in the decoder (see Section 4.3).

4. Results
We evaluate our model on three main datasets: 1) CLEVR
(Johnson et al., 2017) and a variant CLEVR6 which uses
only scenes with up to 6 objects, 2) a multi-object version of
the dSprites dataset (Matthey et al., 2017), and 3) a dataset
of multiple “Tetris”-like pieces that we created. In all cases
we train the system using the Adam optimizer (Kingma &
Ba, 2015) to minimize the negative ELBO for 106 updates.
We varied several hyperparameters, including: number of
slots, dimensionality of zk, number of inference iterations,
number of convolutional layers and their filter sizes, batch
size, and learning rate. For details of the models and hyper-
parameters refer to Appendix C.

4.1. Decomposition

IODINE can provide a readily interpretable segmentation
of the data, as seen in Figure 4. These examples clearly
demonstrate the models ability to segmenting out the same
objects which were used to generate the dataset, despite
never having received supervision to do so. To quantify
segmentation quality, we measure the similarity between
ground-truth (instance) segmentations and our predicted ob-
ject masks using the Adjusted Rand Index (ARI; Rand 1971;
Hubert & Arabie 1985). ARI is a measure of clustering sim-
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Figure 6. Disentanglement in regular VAEs vs IODINE. Rows indicate traversals of single latents, annotated by our interpretation of their
effects. (Left) When a VAE is trained on single-object scenes it can disentangle meaningful factors of variation. (Center) When the same
VAE is trained on multi-object scenes, the latents entangle across both factors and objects. (Right) In contrast, traversals of individual
latents in IODINE vary individual factors of single objects, here the orange cylinder. Thus, the architectural bias for discovering multiple
entities in a common format enables not only the discovery of objects, but also facilitates disentangling of their features.

ilarity that ranges from 0 (chance) to 1 (perfect clustering)
and can handle arbitrary permutations of the clusters. We
apply it as a measure of instance segmentation quality by
treating each foreground pixel (ignoring the background) as
one point and its segmentation as cluster assignment. As
shown in Table 1, IODINE achieves almost perfect ARI
scores of around 0.99 for CLEVR6, and Tetris as well as a
relatively good score of 0.77 for Multi-dSprites. The lower
scores on Multi-dSprites are largely because IODINE strug-
gles to produce sharp boundaries for the sprites, and we are
uncertain as to the reasons for this behaviour.

We compare with MONet (Burgess et al., 2019), following
the CLEVR model implementation described in the paper
except using fewer (7) slots and different standard deviations
for the decoder distribution (0.06 and 0.1 for σbg and σfg,
respectively), which gave better scores. With this, MONet
obtained a similar ARI score (0.96) as IODINE on CLEVR6,
and on Multi-dSprites it performed significantly better with
a score of 0.90 (using the unmodified model). We also
attempted to compare ARI scores to Neural Expectation
Maximization, but neither Relational-NEM nor the simpler
RNN-NEM variant could cope well with colored images.
As a result, we could only compare with those methods on a
binarized version of Multi-dSprites and the Shapes dataset.
These scores are summarized in Table 1.

4.2. Representation Quality

Information Content The object-reconstructions in Fig-
ure 4 show that their representations contain all the informa-
tion about the object. But in what format, and how usable is
it? To answer this question we associate each ground-truth
object with its corresponding zk based on the segmenta-
tion masks. We then train a single-layer network to predict
ground-truth factors for each object. Note that this predic-
tor is trained after IODINE has finished training (i.e. no
supervised fine-tuning). It tells us if a linear mapping is

IODINE R-NEM MONet

CLEVR6 0.988± 0.000 ∗ 0.962± 0.006
M-dSprites 0.767± 0.056 ∗ 0.904± 0.008
M-dSprites bin. 0.648± 0.172 0.685± 0.017
Shapes 0.910± 0.119 0.776± 0.019
Tetris 0.992± 0.004 ∗

Table 1. Summary of IODINE’s segmentation performance in
terms of ARI (mean ± stddev across five seeds) versus baseline
models. For each independent run, we computed the ARI score
over 320 images, using only foreground pixels. We then picked
the best hyperparameter combination for each model according to
the mean ARI score over five random seeds.

sufficient to extract information like color, position, shape
or size of an object from its latent representation, and gives
an important indication about the usefulness of the repre-
sentation. Results in Figure 5 clearly show that a linear
mapping is sufficient to extract relevant information about
these object attributes from the latent representation to high
accuracy. This result is in contrast with the scene represen-
tations learned by a standard VAE. Here even training the
factor-predictor is difficult, as there is no obvious way to
align objects with features. To make this comparison, we
chose a canonical ordering of the objects based on their size,
material, shape, and position (with decreasing precedence).
The precedence of features was intended as a heuristic to
maximize the predictability of the ordering. We then trained
a linear network to predict the concatenated features of the
canonically ordered objects from the latent scene represen-
tation. As the results in Figure 5 indicate, the information is
present, but in a much less explicit/usable state.

Disentanglement Disentanglement is another important
desirable property of representations (Bengio et al., 2013)
that captures how well learned features separate and corre-
spond to individual, interpretable factors of variation in the
data. While its precise definition is still highly debated (Hig-
gins et al., 2018; Eastwood & Williams, 2018; Ridgeway
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Figure 7. IODINE’s iterative inference process and generalization
capabilities. Rows indicate steps of iterative inference, refining
reconstructions and segmentations when moving down the figure.
Of particular interest is the explaining away effect visible between
slots 2 and 3, where they settle on different objects despite both
starting with the large cylinder. The model was only trained with
K = 7 slots on 3-6 objects (excluding green spheres), and yet is
able to generalize to K = 11 slots (only 4 are shown, see Fig-
ure 19 in the appendix for a full version) on a scene with 9 objects,
including the never seen before green sphere (last column).

& Mozer, 2018; Locatello et al., 2018), the concept of dis-
entanglement has generated a lot of interest recently. Good
disentanglement is believed to lead to both better general-
ization and more interpretable features (Lake et al., 2016;
Higgins et al., 2017b). Interestingly, for these desirable ad-
vantages to bear out, disentangled features seem to be most
useful for properties of single objects, such as color, posi-
tion, shape, etc. It is much less clear how to operationalize
this in order to create disentangled representations of entire
scenes with variable numbers of objects. And indeed, if we
train a VAE that can successfully disentangle features of
a single-object dataset, we find that that its representation
becomes highly entangled on a multi-object dataset, (see
Figure 6 left vs middle). IODINE, on the other hand, suc-
cessfully learns disentangled representations, because it is
able to first decompose the scene and then represent individ-
ual objects (Figure 6 right). In Figure 6 we show traversals
of the most important features (selected by KL) of a standard
VAE vs IODINE. While the standard VAE clearly entangles
many properties even across multiple objects, IODINE is
able to neatly separate them.

Generalization Finally, we can ask directly: Does the
system generalize to novel scenes in a systematic way?
Specifically, does it generalize to scenes with more or fewer
objects than ever encountered during training? Slots are
exchangeable by design, so we can freely vary the num-
ber of slots during test-time (more on this in Section 4.3).
So in Figure 7 we qualitatively show the performance of

(a) ARI (b) MSE (c) KL

Figure 8. The effect of varying the number of iterations, for both
training and at test time. (a) Median ARI score, (b) MSE and (c)
KL over test-iterations, for models trained with different numbers
of iterations on CLEVR6. The region beyond the filled dots thus
shows test-time generalization behavior. Shaded region from 25th
to 75th percentile.

a system that was trained with K = 7 on up to 6 objects,
but evaluated with K = 11 on 9 objects. In Figure 9a the
orange boxes show, that, even quantitatively, the segmenta-
tion performance decreases little when generalizing to more
objects.

A more extreme form of generalization involves handling
unseen feature combinations. To test this we trained our
system on a subset of CLEVR that does not contain green
spheres (though it does contain spheres and other green
objects). And then we tested what the system does when
confronted with a green sphere. In Figure 7 it can be seen
that IODINE is still able to represent green spheres, despite
never having seen this combination during training.

4.3. Robustness & Ablation

Iterations The number of iterations is one of the central
hyperparameters to our approach. To investigate its im-
pact, we trained four models with 1, 2, 4 and 6 iterations
on CLEVR6, and evaluated them all using 15 iterations
(c.f. Figure 8). The first thing to note is that the inference
converges very quickly within the first 3-5 iterations after
which neither the segmentation nor reconstruction change
much. The second important finding is that the system is
very stable for much longer than the number of iterations
it was trained with. The model even further improves the
segmentation and reconstruction when it is run for more
iterations, though it eventually starts to diverge after about
two to three times the number of training iterations as can
be seen with the blue and orange curves in Figure 8.

Slots The other central parameter of IODINE is the num-
ber of slotsK, as it controls the maximum number of objects
the system can separate. It is important to distinguish vary-
ing K for training vs varying it at test-time. As can be
seen in Figure 9, if the model was trained with sufficiently
many slots to fit all objects (K = 7, and K = 9), then test-
time behavior generalizes very well. Typical behavior (not
shown) is to leave excess slots empty, and when confronted



Variational Iterative Multi-Object Representation Learning

(a) ARI (b) MSE (c) KL

Figure 9. IODINE trained on CLEVR6 with varying numbers of
slots (columns). Evaluation of (a) ARI, (b) MSE, and (c) KL with
7 slots on 3-6 Objects (blue) and 11 slots on 3-9 objects (orange).

with too many objects it will often completely ignore some
of them, leaving the other object-representations mostly in-
tact. Given enough slots at test time, such a model can even
segment and represent scenes of higher complexity (more
objects) than any scene encountered during training (see
Figure 7 and the orange boxes in Figure 9). If on the other
hand, the model was trained with too few slots (K = 3 and
K = 5), its performance suffers substantially. This happens
because, here the only way to reconstruct the entire scene
during training is to consistently represent multiple objects
per slot. And that leads to the model learning inefficient and
entangled representations akin to the VAE in Figure 6 (also
apparent from their much higher KL in Figure 9c). Once
learned, this sub-optimal strategy cannot be mitigated by
increasing the number of slots at test-time as can be seen by
their decreased performance in Figure 9a.

Input Ablations We ablated each of the different inputs
to the refinement network described in Section 2.2. Broadly,
we found that individually removing an input did not notice-
ably affect the results (with two exceptions noted below).
See Figures 33-40 in the Appendix demonstrating this lack
of effect on different terms of the model’s loss and the ARI
segmentation score on both CLEVR6 and Tetris. A more
comprehensive analysis could ablate combinations of inputs
and identify synergistic or redundant groups, and thus po-
tentially simplify the model. We didn’t pursue this direction
since none of the inputs incurs any noticeable computational
overhead and at some point during our experimentation each
of them contributed towards stable training behavior.

The main exceptions to the above are∇λL and x. Comput-
ing the former requires an entire backward pass through the
decoder, and contributes about 20% of the computational
cost of the entire model. But we found that it often sub-
stantially improves performance and training convergence,
which justifies its inclusion. A somewhat surprising finding
was that for the Tetris dataset, removing x from the list of in-
puts had a pronounced detrimental effect, while for CLEVR
it was negligible.

Figure 10. Multi-stability of segmentation when presented with an
ambiguous stimulus. left: Depending on the random sampling
during iterative refinement, IODINE can produce different per-
mutations of groups (row 2 vs 3), a different decomposition (row
1) or sometimes an invalid segmentation and reconstruction (row
4). right: PCA of the latent space, coloured by which slot corre-
sponds to the background. Paths show the trajectory of the iterative
refinement for the four examples on the left.

Broadcast Decoder Ablation We use the spatial broad-
cast decoder (Watters et al., 2019) primarily for its sig-
nificant impact on the disentanglement of the representa-
tions, but its continuous spatial representation bias also
seems to help decomposition. When replacing it with a
deconvolution-based decoder the factor regression scores
on CLEVR6 are significantly worse as can be seen in Fig-
ure 5. Especially for shape and size it now performs no
better than the VAE which uses spatial broadcasting. The
foreground-ARI scores also drop significantly (0.67± 0.06
down from 0.99) and the model seems less able to special-
ize slots to single objects (see Figure 23). Note though,
that these discrepancies might easily be reduced, since we
haven’t invested much effort in tuning the architecture of
the deconv-based decoder.

4.4. Multi-Modality and Multi-Stability

Standard VAEs are unable to represent multi-modal poste-
riors, because qλ(z|x) is parameterized using a unimodal
Gaussian distribution. However, as demonstrated in Fig-
ure 10, IODINE can actually handle this problem quite well.
How is that possible? It turns out that this is an important
side-effect of iterative variational inference, that to the best
of our knowledge has not been noticed before: The stochas-
ticity at each iteration, which results from sampling z to
approximate the likelihood, implicitly acts as an auxilliary
(inference) random variable. This effect compounds over
iterations, and is amplified by the slot-structure and the ef-
fective message-passing between slots over the course of
iterations. In effect the model can implicitly represent mul-
tiple modes (if integrated over all ways of sampling z) and
thus converge to different modes (see Figure 10 left) de-
pending on these samples. This does not happen in a regular
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(a) Textured MNIST (b) ImageNet

(c) Grayscale CLEVR

Figure 11. Segmentation challenges a) IODINE did not succeed in
capturing the foreground digits in the Textured MNIST dataset. b)
IODINE groups ImageNet not into meaningful objects but mostly
into regions of similar color. c) On a grayscale version of CLEVR,
IODINE still produces the desired groupings.

VAE, where no stochasticity enters the inference process.
If we had an exact and deterministic way to compute the
likelihood and its gradient, this effect would vanish.

A neat side-effect of this is the ability of IODINE to ele-
gantly capture ambiguous (aka multi-stable) segmentations
such as the ones shown in Figure 10. We presented the
model with an ambiguous arrangement of Tetris blocks,
which has three different yet equally valid "explanations"
(given the data distribution). When we evaluate an IODINE
model on this image, we get different segmentations on dif-
ferent evaluations. Some of these correspond to different
slot-orderings (1st vs 3rd row). But we also find qualitatively
different segmentations (i.e. 3rd vs 4th row) that correspond
to different interpretations of the scene. Multi-stability is a
well-studied and pervasive feature of human perception that
is important for handling ambiguity, and that not modelled
by any of the standard image recognition networks.

5. Discussion and Future Work
We have introduced IODINE, a novel approach for unsuper-
vised representation learning of multi-object scenes, based
on amortized iterative refinement of the inferred latent repre-
sentation. We analyzed IODINE’s performance on various
datasets, including realistic images containing variable num-
bers of partially occluded 3D objects, and demonstrated that
our method can successfully decompose the scenes into ob-
jects and represent each of them in terms of their individual
properties such as color, size, and material. IODINE can
robustly deal with occlusions by inpainting covered sections,
and generalises beyond the training distribution in terms of
numerosity and object-property combinations. Furthermore,
when applied to scenes with ambiguity in terms of their ob-
ject decomposition, IODINE can represent – and converge
to – multiple valid solutions given the same input image.

We also probed the limits of our current setup by applying
IODINE to the Textured MNIST dataset (Greff et al., 2016)
and to ImageNet, testing how it would deal with texture-
segmentation and more complex real-world data (Figure 11).
Trained on ImageNet data, IODINE segmented mostly by
color rather than by objects. This behavior is not unexpected:
ImageNet was never designed as a dataset for unsupervised
learning, and likely lacks the richness in poses, lighting,
sizes, positions and distance variations required to learn
object segmentations from scratch. Trained on Textured
MNIST, IODINE was able to model the background, but
mostly failed to capture the foreground digits. Together
these results point to the importance of color as a strong
cue for segmentation, especially early in the iterative refine-
ment process. As demonstrated by our results on grayscale
CLEVR (Figure 11c) though, color is not a requirement.

Beyond more diverse training data, we want to highlight
three other promising directions to scale IODINE to richer
real-world data. First, an extension to sequential data is at-
tractive, because temporal data naturally contains rich statis-
tics about objectness both in the movement itself, and in the
smooth variations of object factors. IODINE can readily be
applied to sequences feeding a new frame at every iteration,
and we have done some preliminary experiments described
in Appendix A.1. As a nice side-effect, the model automati-
cally maintains the object to slot association, turning it into
an unsupervised object tracker. However, IODINE in its
current form has limited abilities for modelling dynamics.

Physical interaction between objects is another common oc-
currence in sequential data, which can serve as a strong cue
for object decomposition. Similarly even statically placed
objects placed commonly adhere to certain relations among
each other, such as cars on streets. Currently however, IO-
DINE assumes the objects to be placed independently of
each other, and relaxing this assumption will be important
for modelling physical interactions. Yet there is also a need
to balance this with the independence assumption required
to split objects, since the system should still be able to seg-
ment out a car floating in space. Thus we believe integration
with some form of graph network to support relations while
preserving slot symmetry is a promising direction.

Finally, object representations have to be useful, such as
for supervised tasks, or for agents in reinforcement learning
setups. Whatever the task, it should provide important feed-
back about which objects matter and which are irrelevant.
Complex visual scenes can contain an extremely large num-
ber of potential objects (think of sand grains on a beach),
which can make it unfeasible to represent them all simultane-
ously. Thus, allowing task-related signals to bias selection
for what and how to decompose, may enable scaling up
unsupervised scene representation learning approaches like
IODINE to arbitrarily complex scenes.
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