Graphite: Iterative Generative Modeling of Graphs

Appendices
A. Proof of Theorem 2

Proof. For simplicity, we state the proof for a single vari-
ational marginal embedding ,ugl)

all [€ N U 0 are unidimensional.

and consider that uz(-l) for

Let us denote N,El) € R" to be the vector of neighboring
kernel embeddings at iteration [such that the j-th entry of
Ngl) corresponds to ugl) if j € N (i) and zero otherwise.

Hence, we can rewrite Eq. (17) as:
i = Opg (NI) (18)

where we have overloaded O~¢,”g to now denote a function
that takes as argument an n-dimensional vector of marginal
embeddings.

Assuming that the function Oy ¢ is differentiable, a first-
order Taylor expansion of Eq. (18) around the origin O is
given by:

i~ 0y (0)+ NV V0,6 (0). (19

Since every marginal density is unidimensional, we now
consider a GNN with a single activation per node in every
layer, i.e., H® € R” forall] € NUO. This also implies that
the bias can be expressed as an n-dimensional vector, i.e.,
B; € R™ and we have a single weight parameter W; € R.
For a single entry of H(), we can specify Eq. (2) component-
wise as:

HY = | B+ Y f(A)HIW, (20)
feF

where A; denotes the i-th row of A and is non-zero only
for entries corresponding to the neighbors of node .

Now, consider the following instantiation of Eq. (20):

e 17 < 7 (identity function)
o By + Oyg(0)

e A family of n transformations F; = {f1 ;}}_; where

90y,
fui(Ai) = 505 (0) Ay

. Hi(l—l) <_u§l—1)
° Wl +— 1.

With the above substitutions, we can equate the first order
approximation in Eq. (18) to the GNN message passing rule
in Eq. (20), thus completing the proof. With vectorized
notation and use of matrix calculus in Egs. (18-20), the
derivation above also applies to entire vectors of variational
marginal embeddings with arbitrary dimensions. O

B. Experiment Specifications
B.1. Link prediction

We used the SC implementation from (Pedregosa et al.,
2011) and public implementations for others made available
by the authors. For SC, we used a dimension size of 128.
For DeepWalk and node2vec which uses a skipgram like
objective on random walks from the graph, we used the
same dimension size and default settings used in (Perozzi
et al., 2014) and (Grover & Leskovec, 2016) respectively of
10 random walks of length 80 per node and a context size
of 10. For node2vec, we searched over the random walk
bias parameters using a grid search in {0.25,0.5,1,2,4} as
prescribed in the original work. For GAE and VGAE, we
used the same architecture as VGAE and Adam optimizer
with learning rate of 0.01.

For Graphite-AE and Graphite-VAE, we used an architec-
ture of 32-32 units for the encoder and 16-32-16 units for
the decoder (two rounds of iterative decoding before a fi-
nal inner product). The model is trained using the Adam
optimizer (Kingma & Welling, 2014) with a learning rate
of 0.01. All activations were RELUs.The dropout rate (for
edges) and A\ were tuned as hyperparameters on the valida-
tion set to optimize the AUC, whereas traditional dropout
was set to O for all datasets. Additionally, we trained every
model for 500 iterations and used the model checkpoint with
the best validation loss for testing. Scores are reported as an
average of 50 runs with different train/validation/test splits
(with the requirement that the training graph necessarily be
connected).

For Graphite, we observed that using a form of skip connec-
tions to define a linear combination of the initial embedding
Z and the final embedding Z* is particularly useful. The
skip connection consists of a tunable hyperparameter A con-
trolling the relative weights of the embeddings. The final
embedding of Graphite is a function of the initial embedding
Z and the last induced embedding Z*. We consider two
functions to aggregate them into a final embedding. That is,
(1=XNZ+ XZ* and Z + AZ*/ || Z*||, which correspond
to a convex combination of two embeddings, and an incre-
mental update to the initial embedding in a given direction,
respectively. Note that in either case, GAE and VGAE
reduce to a special case of Graphite, using only a single
inner-product decoder (i.e., A = 0). On Cora and Pubmed
final embeddings were derived through convex combination,
on Citeseer through incremental update.

Scalability. We experimented with learning VGAE and
Graphite models by subsampling |E| random entries for
Monte Carlo evaluation of the objective at each iteration.
The corresponding AUC scores are shown in Table 6. The
results suggest that Graphite can effectively scale to large
graphs without significant loss in accuracy. The AUC results

Graphite: Iterative Generative Modeling of Graphs

Table 6. AUC scores for link prediction with Monte Carlo subsam-
pling during training. Higher is better.

| | Cora | Citeseer | Pubmed |

VGAE | 89.6 92.2 92.3
Graphite | 90.5 92.5 93.1
—o— VGAE
9157 —— Graphite

91.0

90.5 A

AUC Score

90.0 -

89.5 -

1 2 3 4 5
Subsampling Coefficient

Figure 4. AUC score of VGAE and Graphite with subsampled
edges on the Cora dataset.

trained with edge subsampling as we vary the subsampling
coefficient c are shown in Figure 4.

B.2. Semi-supervised node classification

We report the baseline results for SemiEmb (Weston et al.,
2008), DeepWalk (Perozzi et al., 2014), ICA (Lu & Getoor,
2003) and Planetoid (Yang et al., 2016) as specified in (Kipf
& Welling, 2017). GCN uses a 32-16 architecture with
ReLu activations and early stopping after 10 epochs with-
out increasing validation accuracy. The Graphite model
uses the same architecture as in link prediction (with no
edge dropout). The parameters of the posterior distribu-
tions are concatenated with node features to predict the final
output. The parameters are learned using the Adam opti-
mizer (Kingma & Welling, 2014) with a learning rate of
0.01. All accuracies are taken as an average of 100 runs.

B.3. Density estimation

To accommodate for input graphs of different sizes, we learn
a model architecture specified for the maximum possible
nodes (i.e., 20 in this case). While feeding in smaller graphs,
we simply add dummy nodes disconnected from the rest
of the graph. The dummy nodes have no influence on the
gradient updates for the parameters affecting the latent or
observed variables involving nodes in the true graph. For the

experiments on density estimation, we pick a graph family,
then train and validate on graphs sampled exclusively from
that family. We consider graphs with nodes ranging between
10 and 20 nodes belonging to the following graph families :

e Erdos-Renyi (Erdos & Rényi, 1959): each edge inde-
pendently sampled with probability p = 0.5

e Ego Network: a random Erdos-Renyi graph with all
nodes neighbors of one randomly chosen node

e Random Regular: uniformly random regular graph
with degree d = 4

e Random Geometric: graph induced by uniformly ran-
dom points in unit square with edges between points at
euclidean distance less than r = 0.5

e Random Power Tree: Tree generated by randomly
swapping elements from a degree distribution to satisfy
a power law distribution for v = 3

e Barabasi-Albert (Barabasi & Albert, 1999): Preferen-
tial attachment graph generation with attachment edge
count m =4

We use convex combinations over three successively in-
duced embeddings. Scores are reported over an average of
50 runs. Additionally, a two-layer neural net is applied to
the initially sampled embedding Z before being fed to the
inner product decoder for GAE and VGAE, or being fed to
the iterations of Egs. (8) and (9) for both Graphite-AE and
Graphite-VAE.

C. Additional Related Work

Factorization based approaches, such as Laplacian Eigen-
maps (Belkin & Niyogi, 2002) and IsoMaps (Saxena et al.,
2004), operate on a matrix representation of the graph, such
as the adjacency matrix or the graph Laplacian. These ap-
proaches are closely related to dimensionality reduction and
can be computationally expensive for large graphs.

Random-walk methods are based on variations of the skip-
gram objective (Mikolov et al., 2013) and learn representa-
tions by linearizing the graph through random walks. These
methods, in particular DeepWalk (Perozzi et al., 2014),
LINE (Tang et al., 2015), and node2vec (Grover & Leskovec,
2016), learn general-purpose unsupervised representations
that have been shown to give excellent performance for semi-
supervised node classification and link prediction. Plane-
toid (Yang et al., 2016) learn representations based on a
similar objective specifically for semi-supervised node clas-
sification by explicitly accounting for the available label
information during learning.

