
Supplementary Material for
Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

A. Complementary Details
In this section, we introduce more details of the proposed
framework. We first illustrate the architecture by an entity
alignment example, and then give the algorithm of sampling
relational paths with the biased random walks.

A.1. Architecture

Figure 5 shows the architecture of RSNs for the entity align-
ment task. It accepts two KGs as input and adopts an end-to-
end framework to align the entities between them. Specifi-
cally, it first assembles the two KGs as a joint KG, and then
repeatedly samples relational paths by the biased random
walks on this KG. The generated paths are converted to em-
bedding sequences according to the index of each element
in the paths. It uses RSNs to model them and optimizes this
process with type-based NCE. Finally, new alignment can
be found by comparing the entity embeddings.

A.2. Algorithm of Biased Random Walk Sampling

We depict the algorithm of biased random walk sampling
in Algorithm 1. It first precomputes the depth biases and
the cross-KG biases to avoid repeated computation. Then, it
samples the paths based on each triple instead of each entity,
since using each entity for initialization may cause certain
triples out of paths. It repeats the sampling process in terms
of the sampling times and the maximal path length.

A.3. Implementation Details

We built RSNs based on the multi-layered LSTM (Hochre-
iter & Schmidhuber, 1997) (two layers for both entity align-
ment and KG completion) with Dropout (Srivastava et al.,
2014). We conducted batch normalization (Ioffe & Szegedy,
2015) for both input and output of RSNs. KG embeddings
and parameters of RSNs were initialized with Xavier initial-
izer. We trained RSNs by Adam optimizer (Kingma & Ba,
2015) with mini-batches. Table 6 lists the hyper-parameter
settings used in the experiments.

B. Entity Alignment Datasets
Random PageRank sampling is an efficient algorithm for
large graph sampling (Leskovec & Faloutsos, 2006). It sam-
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Figure 5. Architecture of the proposed method for entity alignment

ples entities according to the PageRank weights and assigns
higher biases to more valuable entities. However, it also fa-
vors high-degree entities. To fulfill our requirements on KG
sampling, we first divided the entities in a KG into several
groups by their degrees. Then, we separately performed ran-
dom PageRank sampling for each group. The group number
and size might be adjusted for several times to make the
sampled datasets satisfying our requirements. To guarantee
the distributions of the sampled datasets following the orig-
inal KGs, we used the Kolmogorov-Smirnov (K-S) test to
measure the difference. We set our expectation to ε = 5%
for all the datasets.

The statistics of four couples of sampled datasets for entity
alignment are shown in Table 7. For the normal datasets,
they follow the degree distributions of the original KGs. For
example, Figure 6 shows the degree distributions of DB-
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Algorithm 1 Biased random walk sampling
1: Input: Triple set T , depth bias α, cross-KG bias β,

sampling times n, max length l
2: Obtain biased transition probability matrices Md,Mc;
3: for i := 1 to n do
4: for each triple (s, r, o) ∈ T do
5: p := s→ r → o
6: repeat
7: Look up Md,Mc and compute normalized tran-

sition probability distribution po of o;
8: Sample next entity e from po;
9: Sample a relation r′ between o and e;

10: p := p→ r′ → e;
11: until length(p) ≥ l;
12: end for
13: end for

Table 6. Experimental settings

Entity alignment KG completion

Embedding sizes 256 256
Batch sizes 512 2,048
Learning rates 0.003 0.0001
Bias hyper-parameters α = 0.9, β = 0.9 α = 0.7
Path lengths 15 7

pedia and Wikidata, as well as the sampled datasets from
different methods. We can see that our normal datasets best
approximate the original KGs. For the dense datasets, we
randomly removed entities with low degrees in the original
KGs to make the average degree doubled, and then con-
ducted the sampling. Therefore, the dense datasets are more
similar to the datasets used by the existing methods (Chen
et al., 2017; Sun et al., 2017; 2018; Wang et al., 2018).

C. More Experimental Analysis
C.1. KG Completion Results on FB15K-237

FB15K-237 (Toutanova & Chen, 2015) removes one side of
symmetric relation pairs (e.g., contains versus containedBy).
However, this may cut down the connectivity and cause
unbalanced data distribution. For example, many methods
achieve about 10% on Hits@1 for subject prediction, which
is much lower than object prediction (about 30%). Thus, we
argue that this dataset is still questionable. Furthermore, the
test examples involving symmetric relations are just easy
to be predicted, and we should not remove them due to the
easiness. This may lean to the methods over-tailored to KG
completion.

The experimental results on FB15K-237 are shown in Ta-
ble 8. RotatE obtained the best results on this dataset, fol-
lowed by ConvE and RSNs. It is worth noting that, while
predicting the entities given two-thirds of one triple is not
our primary goal, RSNs still achieved comparable or better

Table 7. Statistics of the entity alignment datasets

Datasets Source KGs Normal Dense

#Rels. #Triples #Rels. #Triples

DBP-WD DBpedia (English) 253 38,421 220 68,598
Wikidata (English) 144 40,159 135 75,465

DBP-YG DBpedia (English) 219 33,571 206 71,257
YAGO3 (English) 30 34,660 30 97,131

EN-FR DBpedia (English) 221 36,508 217 71,929
DBpedia (French) 177 33,532 174 66,760

EN-DE DBpedia (English) 225 38,281 207 56,983
DBpedia (German) 118 37,069 117 59,848

Each dataset contains about 15,000 entities.
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Figure 6. Comparison of degree distributions of the entity align-
ment datasets extracted by different methods

performance than many methods specifically focusing on
KG completion. This revealed the potential of leveraging
relational paths for learning KG embeddings.

C.2. Sensitivity to Proportion of Seed Alignment

The proportion of seed alignment may significantly influ-
ence the performance of KG embedding methods. However,
we may not obtain a large amount of seed alignment in real
world. We assessed the performance of RSNs and BootEA
(the best published method on the entity alignment task cur-
rently) in terms of the proportion of seed alignment from
50% down to 10% with step 10%.

We depict the results on the DBP-WD dataset in Figure 7.
The performance of the two methods continually dropped
with the decreasing proportion of seed alignment. However,
the curves of RSNs are gentler than BootEA. Specifically, on
the normal dataset, for the four proportion intervals, RSNs

Table 8. KG completion results on FB15K-237

Methods Hits@1 Hits@10 MRR

TransE‡ 13.3 40.9 0.22
TransR‡ 10.9 38.2 0.20
TransD‡ 17.8 44.7 0.27

ComplEx 15.2 41.9 0.24
ConvE 23.9 49.1 0.31
RotatE 24.1 53.3 0.34

RSNs (w/o cross-KG bias) 20.2 45.3 0.28
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lost 7.4%, 8.2%, 16.5% and 30.2% on Hits@1, respectively,
while BootEA lost 11.8%, 12.0%, 22.3% and 49.8%. This
demonstrated that RSNs are more stable. Additionally, when
the proportion was down to 10%, the Hits@1 result of RSNs
on the normal dataset is almost twice higher than that of
BootEA, which indicated that modeling paths helps RSNs
propagate the identity information across KGs more effec-
tively and alleviates the dependence on the proportion of
seed alignment.
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Figure 7. Hits@1 results w.r.t. seed alignment


