Memory-Optimal Direct Convolutions

A. Optimality of Connected Orthogonally
Convex Pixel Dependents

Lemma 3.1 in the main paper assumes that there exists a
set of n? + 1 pixels S* = argming|B(S9)| that is connected
and orthogonally convex. Here we provide a proof of a
generalization of that claim.

Lemma A.1. Forall N, there exists a selection S* of output
pixels such that S* = argming|B(S)|, |S*| = N, and S*
is connected and orthogonally convex.

’

Proof. Suppose S satisfies optimality condition S =
argming |B(S')| and cardinality |[S| = N. We assume
such an optimal S will be connected. We will then show
that there is a series of pixel swaps that can be performed
which will preserve connectivity, optimality, and cardinality,
and will eventually lead to an orthogonally convex S.

Define an “elbow” pixel to be p ¢ .S such that it is bordered
by at least two pixels in S on adjacent edges of p. It is easy
to see that if p is added to S, B(S + p) < B(S) + 1, since
the bordering pixels capture most of p’s input dependencies.
Define the “top-left” pixel to be the unique pixel p € S
whose x value is minimal among all pixels whose y value
is maximal in S. Similar to the analysis of corner pixels,
B(S—p) < B(S) -1

There are 16 possible configurations for cells neighboring
the top-left pixel, as shown in Figure 11. Of these 16, only
3 have the potential to disconnect .S if the top-left pixel is
removed. However, these disconnections can be avoided by
swapping pixels according to the arrows in the figure and
selecting the next top-left pixel. One can easily check that
shifting according to those arrows also preserves cardinality
and optimality (B(S — py + p;;) < B(S)). Therefore,
we can always eventually remove a top-left pixel without
disconnecting S and still achieve B(S — py) < B(S) — 1.

From these observations, we arrive at the following proce-
dure. Repeatedly select an elbow pixel that is not in the top
row of pixels in S, then fill it with the top-left pixel in the
manner suggested earlier. Each step preserves optimality
since B(S — psi + Petbow) < B(S) —1+1 < B(S). Since
there always exists a top-left pixel, this algorithm must ter-
minate due to lacking elbow pixels, which happens when .S
is a rectangle, except for possibly the top row. For such a
shape, it is always more optimal to have the top row pixels
connected to each other rather than spread apart. The re-
sultant shape is orthogonally convex. Therefore, through a
series of connectivity, optimality, and cardinality preserving
operations, we transformed S into a connected orthogonally
convex S*. O

Figure 11. Possible configurations of neighboring pixels to a top-
left pixel. The top-left pixel is shown in gold. Other pixels in
S are shown in gray with a potential boundary of .S indicated by
the dotted black line. S may become disconnected in the three
highlighted cases.

Memory-Optimal Direct Convolutions

B. Single Transpose Debt Analysis

Let r be the number of rows remaining after hy,; — r
rows have already been processed (each processed row
adding wout(fout — fin) — (k — 1) fin debt, as analyzed
in Section 3.4.1). Two cases need to be analyzed sepa-
rately: either the remaining columns do not add debt, if
r(fout — fin) — (kK — 1) fin, < 0, or they do.

Case 1: If the remaining columns do not add debt, the
worst case debt happens immediately before completing the
processing of h,,; — 7 rows of output pixels. Therefore, the
total maximum debt is:

Dstl(r) = (hout - T)D(wout) +kfin
= (hout - T) (wout(fout - fzn) - (k - 1)fzn)
+kfin (7

Equation (7) is minimized when r is maximized while
satisfying 7(fout — fin) — (K — 1) fin < 0. Therefore,
Tik = L(k - 1)f7,n/(fout - fzn)J and:

Dstl == Dstl(rr)

= houtwout(fout - fin) - 7"Twout(fout - fm)
- (hO’U«t - TT)U{: - 1>f'bn + kfzn (8)

Case 2: If the remaining columns add debt, the worst case
debt happens after processing all output pixels. Therefore,
the total maximum debt is:

Dyi2(r) = (hout — 7)D(Wout) + Wout D(1) + k fin
= (hout - 7’) (wout(fout - fm) - (k - 1)fm)
+ Wout ((fout — fin) — (K = 1) fin)
+ kfin
= hautwout(fout - fm)
— (hout + Wour = 7)(k = 1) fin + kfin (9)

Equation (9) is minimized when r is minimized while
satisfying r(fout — fin) — (k — 1) fin > 0. Therefore,
ry = [(k = 1) fin/(four — fin)] =77 + 1 and:

Do = Dspa(r] + 1)
- houtwout(fout - fzn)

- (hout + Wout — TT -]-)(k - 1)fzn + kfzn
(10)

Overall, Dy; = min(Dg;1, Dgi2). More interesting than
this result, however, is a comparison to the optimal her-
ringbone method. To do this, we consider the margin non-
optimality of the single transpose method to the herringbone
method.

Darr = Dgt — Dpp
= min(Dst1 — Dhy, Dst2 — Dpp) - (11)

Again, we analyze the two cases separately. As a reminder,
Dhb - (houtwout - Lx*Jz)fout - (hznwzn - (Lx*J + k—
1)2 - k)fzn where z* = _(k - 1)fzn/(fout - f2n>—| = TT~
Therefore, Dhb - houtwout(fout - fzn) - (TT)Z(fout -
fin) - (hout + Wout — ZTI)(k - 1)fzn + kfzn

Case 1:

Darar = Dst1 — D
= houtwout(fout - fm) - waout(fout - fm)
= (hout — 1) (k = 1) fin + kfin
- houtwout(fout - fin)
+ (r1)*(fout — fin)
+ (hout +Wour — 2r7)(k = 1) fin — kfin

= TT(’/’T - wout)(fOUt - fm)

+ (wout - TI)(k - 1)fzn
= (wout - TT) [(k - 1)f7,n - rik(fout - fzn)]
= (Wour — 17)x (12)
Where:
Q= [(k - 1)fzn - rr(fout - fz’ﬂ)]
= (k -]-)fzn mOd (fout - fzn) (13)
Case 2:

Dara2 = Dst2 — D
= houtwout(fout - fm)
— (hout + wout — 77 — 1)(k = 1) fin + kfin
- houtwout(fout - fzn)
+ (r1)* (fout — fin)
+ (hout + Wout — 2r7)(k — 1) fin, —
=—(f =Dk -1)fin
+ (r1)?(fout = fin)
= (k=1 fin =71 [(k = 1) fin — 71 (fout — fin)]
= (k—=1)fin — i (14)

Overall,

Memory-Optimal Direct Convolutions

Darg = Dst — Dpy
=min(Darw1, Darm2)
= min(weyer, (k — 1) fin) — i (15)

From (15), it can be seen that the single transpose method is
optimal when we,; = 77, (k—1) fin, = ria, or @ = 0. This
last condition holds when (k — 1) f;,, divides fou: — fin-

Memory-Optimal Direct Convolutions

C. Extensions to Memory-Optimal
Convolutions

Section 3 detailed memory optimality in the most common
use cases for convolutional layers. This section covers minor
extensions beyond the restrictions of that section, including
the effect of non-square convolution kernels C.1, padding
C.2, stride C.3, and the popular residual connection layer
C.4 and depthwise separable convolution layer C.5. Combi-
nations of these extensions are generally not considered. For
example, the valid padding restrictions are assumed when
analyzing different strides.

C.1. Non-square Kernels

For non-square kernels, the decreasing channel depth case
is still easy to deal with, since output pixels can be stored
directly in the input pixels that become stale — at least one is
guaranteed per output pixel that is processed. However, the
corresponding herringbone and single-transpose methods
change slightly.

C.1.1. NON-SQUARE KERNEL HERRINGBONE

The general principle of the herringbone method is to
greedily choose the row or column that will result in the
smallest debt accrual. With square kernels, the debt func-
tion D(z) = «(fout — fin) — (kK — 1) fi, is the same
for rows and columns and only depends on the length
z. With a non-square kernel, there are two debt func-
tions: D,.(x.) = 2 (four — fin) — (kw — 1)fin and
D.(x.) = zc(fout — fin) — (kn — 1) fin, for rows and
columns, respectively. We can equate these two to find
when to switch from rows to columns and vice versa:

0=D,(z,) — D.(z.)
= xr(fout - fz'n) - (kw 1)fm
- xc(fout - fzn) + (kh - 1)fzn
B ki — ks
Te=ar fout fznf (16)

Letting ©o = (kn — kw)fin/(fout — fin), the result of
(16) implies that we should start by processing |z | rows
(or [—xzo] columns), then process the remainder with the
standard herringbone sequence of alternating row-column-
row-column.

C.1.2. NON-SQUARE KERNEL SINGLE TRANSPOSE

As in Section 3.4.3, let r be the number of rows remain-
ing after h,,; — r rows have already been processed. Two
cases need to be analyzed separately: either the remain-
ing columns do not add debt (when r(fout — fin) —
(kn, — 1)fin < 0) or else they do. Letting r{ =
L(kn — 1) fin/(fout — fin)]. 73 =7 + 1, and a = (kp, —
1)fzn mod (fout - fln)s

Dy = (hout - TT)Dr(wout) + ku fin
- (hout - T)I) (wout(fout - fzn) - (kw - 1)fzn)
Do = (out — T;) (wout)
+ Wout C(T) + khfzn
= (out —) (wout(fout fzn) - (kw -]-)fzn)
+ Wout (T2 (fout - fin) - (kh - 1)fzn) + khfzn
= D1 — Wourx + (kh - 1)fm (18)
As before,
Dst = min(Dsﬂy Dst2)
= (hout - TT) (wout(fout - fzn) - (kw 1)f2n)
+ kwfin + min(O, (kh - 1).fzn - wouta) (19)
Therefore, we take the single transpose when
r = TT Wout® = < ()fln (20)
ri+1 else

C.2. Effect of Padding

Section 3 analyzed memory-optimal convolutions with valid
padding. One other popular padding style is “same” padding,
in which the output feature map has the same height and
width as the input feature map. This is equivalent to valid
padding applied to an input feature map that has been
padded with (kK — 1)/2 zeros on all sides’. Therefore, we
can immediately see that an upper bound on the debt ac-
crued can be found by applying the analysis of Section 3 to
an input image of size (h;, + k) X (w;, + k) and adding
the zero-pad debt: (hiy, + k)(win + k) — hinwiy,. It is pos-
sible to do better than this bound (see Section C.4, which
uses same-padded convolutions). We omit a more detailed
analysis.

"For even k, two of the sides will have one fewer padding than
the other two sides.

Memory-Optimal Direct Convolutions

C.3. Effect of Stride

With stride (rs, cs), every output pixel that is processed
makes 75 X ¢, input pixels stale. Mathematically, this
looks a lot like having fi/n = rscsfin for the purposes
of deciding whether channel depth is increasing or not. If
fout < TsCsfin, then we can use the methods of Section 3.3
and we are done. Otherwise, we can compute the row-wise
and column-wise debt functions:

Dr(zr) = xr(fout - Tscsfin) + Tskwfin (21)
Dc(xc) - xc(fout - rscsfin) + cskhfin (22)

Equating these two to find when to switch between rows
and columns for the herringbone method.

O - Dr(xr) - DC(‘TC)
= xr(fout - ’rscsfin) + rskwfin
- mc(fout - Tscsfin) - Cskhfin

skw* sk
Tefw ZCPh 23)

Te=Tp + 77—
¢ " fout - Tscsfin

This is the same form as (16) and so the methods of Sec-
tion C.1.1 can be used with xg = (rsky —cskp) fin/ (fout —
rsCs fin). Equations (21) and (22) can also be used to ana-
lyze the single transpose method as in Section C.1.2.

C.4. Residual Connections

Residual connections (He et al., 2015) comprise a range
of different building blocks. A popular block is the two-
layer block defined as yo = Ws * o(y1) + b2 + x, where
y1 = Wi *x x + by, o is the ReLU function, and W; and
W4 are convolution kernels with kernel dimensions 3 x 3.
We focus our attention on this particular two-layer residual
connection building block, but similar techniques could be
used for other building blocks.

Memory-efficient residual connection convolutions can be
performed using 3w, + 2 additional memory. First note
that in residual connections, channel size stays the same,
meaning we can use the techniques of Section 3.3, except
here we need “same” padding. For convolutions that com-
pute edge pixels, zero pads are not explicitly added in mem-
ory. Instead, we need to keep track of when to multiply the
kernel with zeros versus input features.

We will proceed by computing rows of the intermediate
pixels y1 and the final output pixels y2 noting that input
pixels only go stale after their dependency to s is complete.
To simplify the description of the algorithm, we need only
describe the sequence of rows of pixels to compute (and
which of y;/y, are being computed).

Number the rows from 1 to h,,,;:+3. We begin by computing
y1 in rows 2 and 3. Then we compute y5 in row 1 using the
y1 dependencies in rows 2 and 3 and the input 2 dependency
in row 4. To avoid collisions with y1, o must be offset by
two additional pixels. Now row 4 is stale and the next row
of y1 can be computed, which means row 2 of y, can be
computed, again with an offset of two pixels. The process
repeats until completion —y; in row 5, ys in row 3 (with
two pixel offset), y; in row 6, and so on.

C.5. Depthwise Separable Convolutions

A traditional convolution takes an h;, X w;, X fi, fea-
ture map to an hgyp X Wour X four feature map with a
kp, X ky X fin X four kernel. Depthwise separable con-
volutions (Howard et al., 2017) save weight memory and
compute by splitting the standard convolution into two sep-
arate convolutions. First, it applies a set of f;,, distinct
kp, X ky x 1 x m kernels to the input feature map, one per
channel, to get an intermediate hyy ¢ X Wyt X M fiy, feature
map. Then it appliesa 1 X 1 x m f;, X fous kernel to get
the final hoyr X Wout X four feature map. Herringbone can
be applied to the first of these two convolutions if m > 1
relatively straightforwardly. In fact, because the f;,, kernels
apply distinctly to separate input channels, input memory be-
comes stale after every m output pixels is computed (rather
than after every m f;,), potentially allowing for lower peak
memory debt.

Memory-Optimal Direct Convolutions

D. Memory Efficient Spectrograms

While the focus of this paper is memory-optimal 2D con-
volutions for embedded systems, we note that embedded
systems more often deal with one-dimensional time-series
data. For example, a common application is to recognize
patterns in accelerometer data or classify acoustic signals
from a microphone. 2D convolutions can still be relevant,
however, because time series data can be converted to a
meaningful 2D representation using a spectrogram, with
Mel-spectrograms being especially popular in acoustic clas-
sification tasks (Hasan et al., 2004b; Hershey et al., 2016).

In this section, we present a memory-efficient spectrogram
implementation amenable to hardware in order to establish
the feasibility of fitting the entire classification pipeline on
one embedded device.

D.1. Spectrograms

A spectrogram is generated by splitting time series data into
overlapping frames and finding the spectrum of each frame
using a Fourier transform, generating a matrix X whose
elements are

S

-1
w(nD — k)x(k)e?™km/T 24)
k=0

X nm

where z is the input, w is a windowing function (usually the
Hamming window), and n € [0, N — 1] gives the time index
and m € [0, M — 1] gives the frequency index of X . Frames
are 7" samples long and are offset by D samples (Allen,
1977). As a minor detail, we are often more interested in
the power of the signal P,,,,, = | X, |?.

One way to compute X is by running one FFT per frame,
a computational cost of O(T logT') per frame (Cooley &
Tukey, 1965) and a maximum memory cost of O(NM +T),
representing the storage costs for X and the FFT algorithm.
However, in many applications, only a few frequency com-
ponents are required. For example, speech applications may
use anywhere from 64 bins (Hershey et al., 2016) to 32 bins
(Kusupati et al., 2018) to 16 bins or even lower (Hasan et al.,
2004a). Additionally, the bins are often logarithmically
spaced (Hasan et al., 2004b), necessitating a much larger
FFT to resolve frequencies at the bottom of the spectrum.
This means T' >> M and we should prefer algorithms that
do not have a factor of T in their memory complexity.

D.2. Proposed Algorithm

Our proposal is the computation of an approximate spectro-
gram by keeping running sums of D-length chunks of the
input signal dotted with a periodic signal at each of the M
frequency bins of interest. Because running sums are used,
T input data points can be stored using a constant number of
accumulators per frequency bin rather than having to store
all 7" samples for use in an FFT. For hardware efficiency,
we propose using a square wave as the periodic signal and
analyze the implications for the resulting power spectrum
in Appendix D.3.

The proposed algorithm works by first maintaining two inter-
mediate arrays Ag") € REXM and Agl) € REXM wwhich
at the n'" chunk, represent the quadrature components of the
signal for the past H ~ 5 chunks at each of M frequencies

(n)

of interest. The first column of A /0

are computed as:

D-1
A(Inrzzl = z(nD + k) fsq <2171T(7”LD +k)m — 72r>
k=0
(25)
D-1 o
Agi)m,l = z(nD + k) fsq (T(nD + k)m> (26)
k=0

where f,, is a square wave with period 27 and amplitude 1.

Note that Ag”) and Ag) can be computed in real time as
samples are streamed in and therefore do not require any

raw sample storage. Every D samples, the contents of Ag’;)Q

can be shifted right one column to get AYLH) so that partial
accumulations as in (25) and (26) can be stored in the first
column.

Every new chunk, the spectrogram power components P, ;
at time j can be computed as:

H-1 2 H-1 2
P = (Z w(z’)ALmi) + (Z w(i)AQ,mi) 27)

=0 =0

where w is a windowing function that operates on chunks
rather than individual time samples and is a down-sampled
version of popular windows such as the Hamming window.
After N chunks have been processed, P is complete and
can be used as input features for classification®.

81n practice, we would store log-components of P rather than
P itself and use those for classification.

Memory-Optimal Direct Convolutions

The computational complexity is O(DM + H M), which is

the sum of the accumulations required to compute Ag?g and
the number of accumulations required to compute P. ;. The
maximum memory cost is O(NM + H M), representing
the storage costs for P and A.

D.3. Square Wave Analysis

A square wave can be decomposed into its Fourier compo-
nents as:

fu@=2 3 sl 28)

(=1,3,5,...

If welet X, ,(773) represent the m™ frequency bin of the DFT of

{z(nD),x(nD+1),...,2(nD+ D —1)}, and let x& =

X 4 ix™ where XU and jX ™) are both real. Then,
R,m I, Rm

m I,m

D-1
n 271' e
AE',,),lyl = Z z(nD + k) fsq <?(nD +k)m — 5)

4 1o

=7 2 Xim @9
0=1,3,5,...

AGoma =~ X o (30)
0=1,3,5,...

Let Pé’? represent the covariance of signals X" and X™.

In the case when a = b, Péf;) = P"™ s the power of xm,

We find:

4\? 1) (n)
—(2) T g (X x0,X00)
k,=1,3,5,...
4\? 1 (n)
= <;> Z H km,tm
k,=1,3,5,...
4\? 2 2 1
- (5) [p,g;w P2+ P SR

3D

Equation (31) shows that a significant proportion of power
in bin m using the square wave can come from cross-terms
between the signal in the m™ frequency bin and its odd har-
monics. We hypothesize that this level of signal corruption
is still acceptable for neural network classification.

D.4. Comparison of Techniques

The proposed spectrogram method is qualitatively compared
to a standard Log-Mel spectrogram method (Fayek, 2016),
as seen in Figure 12. Compared to the standard method, the
memory-efficient version is much noisier. This is expected,
since the standard method has the benefit of multi-FFT-bin
averaging and no harmonic leakage. In Section F, we see
that despite the lower fidelity, networks are still able to
perform audio classification.

Figure 12. Comparison between standard Log Mel spectrogram
features (top) and memory-efficient spectrogram features (bottom)
for the word “yes” from the Google-12 dataset (Warden, 2018).

Memory-Optimal Direct Convolutions

E. Tricks for Small Networks

We found the following techniques helpful for maximizing
MNIST accuracy.

E.1. Herringbone

Using the herringbone method for convolutions allowed us
to select a larger and more accurate model. Compared to
the best model that would have fit with the replace method,
herringbone improved accuracy by ~ 0.2% over the replace
method or =~ 0.5 — 1% better than a naive method, after
utilizing all of the other tricks. Note that this improve-
ment would be much more pronounced in a scenario where
only activation memory is constrained, as opposed to both
weights and activations.

E.2. Multi-Train Selection

In contrast to larger networks, we hypothesize that smaller
networks are more susceptible to bad initializations and
training steps. Therefore, we run training multiple times
and evaluate performance on the validation set every epoch
to decide on the best model parameters. Specifically, we run
50 epochs floating point + 200 epochs quantized training
a total of 10 times and select the best quantized network
by validation loss. On average, this results in =~ 0.2%
improvement.

E.3. Data Augmentation

Elastic distortions (Simard et al., 2003) are a powerful aug-
mentation technique for MNIST. We found that just apply-
ing them directly actually reduced accuracy and hypothesize
that this is because the small network gets confused by bad
training examples. To fix this, we train a more powerful net-
work and use that to decide on “hard” versus “easy” training
examples. We discard any training example it misclassified.
This results in & 0.2% improvement.

E.4. Orthogonal Initialization

We hypothesize that one of the potential failure modes for
bad initialization is when weights between different chan-
nels are too highly correlated, significantly limiting the a
priori span of the weights. To fix this, we apply orthogonal
initialization (Saxe et al., 2013) and see ~ 0.1% improve-
ment on average (just above the noise floor of test accuracy).

E.5. Other Layers

There are no major tricks required to get the non-
convolutional layers working, as they are much simpler
to implement and are not the memory bottlenecks of our
network. Figure 13 briefly illustrates how these other layers
are implemented.

Load Image + Average Pool
Stream in 28 x 28 x 1 x 8b pixels
Compress image every odd row
« Convertto 4b

FeEer Ay e
cezzifiilineeo ol feceeles:

Dense Layer
* Weight matrix stored as d;, x d

out

Can cumulatively add W; - a;p,; to

Ma>L<JPool . d wri aqye (accesses each a;,; once)
« Use two pointers: read, write
i w
iy Ly in
=] [1T

Qout

X +
X

Figure 13. Overview of other layers implemented in the Arduino.

Memory-Optimal Direct Convolutions

F. Other Experiments

The goal of our case study was to establish the feasibility
of implementation of our proposed convolution methods.
Accordingly, we focused attention on just the single MNIST
experiment. However, the approach should be extensible to
any small-scale 2D classification task. Here we look at a few
more experiments, with quantized performance validated in
software.

The first two examples fit all weights and activations in
SRAM, while the other examples use SRAM only for acti-
vation memory, writing the network weights to 32KB Flash.
Data augmentation as described in Section E is used in all
experiments. Google-12 uses preprocessing as described
in Section D.1 based off of the preprocessing described
by Kusupati et al. (2018) of the Google keyword spotting
dataset (Warden, 2018).

Table 2. Simulated Results on Other Datasets.

DATASET ARCHITECTURE ACCURACY

AVG POOL 2 x 2
CONVEk:3x3,8:1x1,f,:5
MNIST-10 CoNVEk:3x3,s:1x1,f,:8
2KBW+A CONVEk:3x3,s:1x1,f,:1
MAX POOL 2 x 2
DENSE 10
AVG POOL 2 x 2
CONVEk:3x3,8:1x1,fo:7
CONVk:3x3,s:1x1,f,:12 55.78%
MAX PooL 2 x 2
DENSE 10
CONVE:2X2,5:2X2,f,:12
RESUNIT &k : 3 X 3, fo : 12
MAX PoOL 2 X 2 71.07%
D-SCONV Kk :3x3,m:5,f,:80
DENSE 10
INPUT 24 x 96
CONVEk:1x4,s:1x4,f,:6
CONVEk:3x3,s:2x2,f,:24
CONVEk:3x3,8:1x1,f,:28 85.29%
RESUNIT &k : 3 X 3, fo : 28
RESUNIT & : 3 X 3, fo : 40
DENSE 12

99.15%

CIFAR-10
2KB W+A

CIFAR-10
2KB A

GOOGLE-12
2KB A

