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Abstract
Training neural networks is traditionally done
by providing a sequence of random mini-batches
sampled uniformly from the entire training data.
In this work, we analyze the effect of curriculum
learning, which involves the non-uniform sam-
pling of mini-batches, on the training of deep net-
works, and specifically CNNs trained for image
recognition. To employ curriculum learning, the
training algorithm must resolve 2 problems: (i)
sort the training examples by difficulty; (ii) com-
pute a series of mini-batches that exhibit an in-
creasing level of difficulty. We address challenge
(i) using two methods: transfer learning from
some competitive “teacher” network, and boot-
strapping. In our empirical evaluation, both meth-
ods show similar benefits in terms of increased
learning speed and improved final performance
on test data. We address challenge (ii) by inves-
tigating different pacing functions to guide the
sampling. The empirical investigation includes
a variety of network architectures, using images
from CIFAR-10, CIFAR-100 and subsets of Ima-
geNet. We conclude with a novel theoretical anal-
ysis of curriculum learning, where we show how
it effectively modifies the optimization landscape.
We then define the concept of an ideal curriculum,
and show that under mild conditions it does not
change the corresponding global minimum of the
optimization function.

1. Introduction
In order to teach complex tasks, teachers are often required
to create a curriculum. A curriculum imposes some order
on the concepts that constitute the final task, an order which
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typically reflects their complexity. The student is then grad-
ually introduced to these concepts by increasing complexity,
in order to allow her to exploit previously learned concepts
and thus ease the abstraction of new ones. But the use of a
curriculum is not limited to complex tasks. When teaching
a binary classification task, for example, teachers tend to
present typical examples first, followed by the more ambigu-
ous examples (Avrahami et al., 1997).

In many traditional machine learning paradigms, a target
function is estimated by a learner (the “student”) using a
set of training labeled examples (provided by the “teacher”).
The field of curriculum learning (CL), which is motivated
by the idea of a curriculum in human learning, attempts at
imposing some structure on the training set. Such structure
essentially relies on a notion of “easy” and “hard” exam-
ples, and utilizes this distinction in order to teach the learner
how to generalize easier examples before harder ones. Em-
pirically, the use of CL has been shown to accelerate and
improve the learning process (e.g. Selfridge et al., 1985;
Bengio et al., 2009) in many machine learning paradigms.

When establishing a curriculum for human students, teach-
ers need to address two challenges: (i) Arrange the material
in a way that reflects difficulty or complexity, a knowledge
which goes beyond what is available in the training set in
most machine learning paradigms. (ii) Attend to the pace
by which the material is presented – going over the sim-
ple ideas too fast may lead to more confusion than benefit,
while moving along too slowly may lead to boredom and
unproductive learning (Hunkins & Ornstein, 2016). In this
paper, we study how these principles can be beneficial when
the learner is a neural network.

In order to address the first challenge, Weinshall et al. (2018)
introduced the idea of curriculum learning by transfer. The
idea is to sort the training examples based on the perfor-
mance of a pre-trained network on a larger dataset, fine-
tuned to the dataset at hand. This approach was shown to
improve both the speed of convergence and final accuracy
for convolutional neural networks, while not requiring the
manual labeling of training data by difficulty.

In our work, we address both challenges. We begin by de-
composing CL into two separate - but closely related - sub-
tasks and their corresponding functions. The first, termed
scoring function, determines the “difficulty” or “complexity”
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of each example in the data. The scoring function makes
it possible to sort the training examples by difficulty, and
present to the network the easier (and presumably simpler)
examples first. Scoring is done based on transfer learning
as in Weinshall et al. (2018), or bootstrapping as explained
below. The second function, termed pacing function, deter-
mines the pace by which data is presented to the network.
The pace may depend on both the data itself and the learner.

We show that the use of different pacing functions can indi-
rectly affect hyper-parameters of the neural network, remi-
niscent of increased learning rate. As Weinshall et al. (2018)
did not employ parameter tuning in their empirical study, the
improvement they report might be explained by the use of
inappropriate learning rates. As part of our work, we repeat
their experimental paradigm while optimizing the network’s
hyper-parameters (with and without cross-validation), show-
ing improvement in both the speed of convergence and final
accuracy in a more reliable way. We then extend these
results and report experiments on larger datasets and archi-
tectures, which are more commonly used as benchmarks.

We continue by analyzing several scoring and pacing func-
tions, investigating their inter-dependency and presenting
ways to combine them in order to achieve faster learning
and better generalization. The main challenge is, arguably,
how to obtain an effective scoring function without addi-
tional labeling of the data. To this end we investigate two
approaches, each providing a different estimator for the
target scoring function: (i) Knowledge transfer as in (Wein-
shall et al., 2018), based on transfer learning from networks
trained on the large and versatile Imagenet dataset. (ii)
Bootstrapping based on self-tutoring - we train the network
without curriculum, then use the resulting classifier to rank
the training data in order to train the same network again
from scratch. Unlike curriculum by transfer, bootstrapping
does not require access to any additional resources. Both
scoring functions maintain the required property that prefers
points with a lower loss with respect to the target hypothesis.
The aforementioned functions are shown in Section 3 to
speed up learning and improve the generalization of CNNs.

We investigate three pacing functions. (i) Fixed exponential
pacing presents the learner initially with a small percentage
of the data, increasing the amount exponentially every fixed
number of learning iterations. (ii) Varied exponential pacing
allows the number of iterations in each step to vary as well.
(iii) Single-step pacing is a simplified version of the first
protocol, where mini-batches are initially sampled from the
easiest examples (a fixed fraction), and then from the whole
data as usual. In our empirical setup, the three functions
have comparable performance.

In Section 4 we conclude with a theoretical analysis of the
effects of curriculum learning on the objective function of
neural networks. We show that curriculum learning modifies

the optimization landscape, making it steeper while main-
taining the same global minimum of the original problem.
This analysis provides a framework by which apparently
conflicting heuristics for the dynamic sampling of training
points can coexist and be beneficial, including SPL, boost-
ing and hard data mining, as discussed under previous work.

Previous work. Imposing a curriculum in order to speed
up learning is widely used in the context of human learning
and animal training (Skinner, 1958; Pavlov, 2010; Krueger
& Dayan, 2009). In many application areas, it is a common
practice to introduce concepts in ascending order of diffi-
culty, as judged by either the human teacher or in a problem
dependent manner (e.g. Murphy et al., 2008; Zaremba &
Sutskever, 2014; Amodei et al., 2016). With the rebirth of
deep learning and its emerging role as a powerful learning
paradigm in many applications, the use of CL to control the
order by which examples are presented to neural networks
during training is receiving increased attention (Graves et al.,
2016; 2017; Florensa et al., 2017).

In a closely related line of work, a pair of teacher and student
networks are trained simultaneously, where mini-batches
for the student network are sampled dynamically by the
teacher, based on the student’s output at each time point. As
opposed to our method, here the curriculum is based on the
current hypothesis of the student, while achieving improved
performance for corrupted (Jiang et al., 2018) or smaller
(Fan et al., 2018) datasets. Improvement in generalization
over the original dataset has not been shown.

In some machine learning paradigms, which are related to
CL but differ from it in an essential manner, mini-batches are
likewise sampled dynamically. Specifically, in Self-Paced
Learning (SPL- Kumar et al., 2010), boosting (Freund et al.,
1996), hard example mining (Shrivastava et al., 2016) and
even active learning (Schein & Ungar, 2007), mini-batches
are sampled at each time point based on the ranking of
the training examples by their difficulty with respect to the
current hypothesis of the model. Thus they differ from
CL, which relies on the ranking of training points by their
difficulty with respect to some target hypothesis.

Confusingly, based on the same ephemeral ranking, SPL
advocates the use of easier training examples first, while the
other approaches prefer to use the harder examples. Still, all
approaches show benefit under different empirical settings
(Chang et al., 2017; Zhang et al., 2017). This discrepancy
is analyzed in Weinshall et al. (2018), where it is shown
that while it is beneficial to prefer easier points with respect
to the target hypothesis as advocated by CL, it is at the
same time beneficial to prefer the more difficult points with
respect to the current hypothesis in agreement with hard
data mining and boosting, but contrary to SPL. In contrast,
our theoretical analysis (Section 4) is consistent with both
heuristics being beneficial under different circumstances.
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2. Curriculum Learning
Curriculum learning as investigated here deals with the ques-
tion of how to use prior knowledge about the difficulty of
the training examples, in order to sample each mini-batch
non-uniformly and thus boost the rate of learning and the
accuracy of the final classifier. The paradigm of CL is based
on the intuition that it helps the learning process when the
learner is presented with simple concepts first.

2.1. Notations and Definitions

Let X = {Xi}Ni=1 = {(xi, yi)}Ni=1 denote the data, where
xi ∈ Rd denotes a single data point and yi ∈ [K] its cor-
responding label. Let hϑ : Rd → [K] denote the target
classifier (or learner), and mini-batch B ⊆ X denote a sub-
set of X. In the most common training procedure, which is
a robust variant of Stochastic Gradient Descent (SGD), hϑ
is trained sequentially when given as input a sequence of
mini-batches [B1, ...,BM ] (Shalev-Shwartz & Ben-David,
2014). The common approach – denoted henceforth vanilla
– samples each mini-batch Bi uniformly from X. Both in
the common approach and in our work, the size of each
mini-batch remains constant, to be considered as a hyper-
parameter defining the learner.

We measure the difficulty of example (xi, yi) by its minimal
loss with respect to the set of optimal hypotheses under con-
sideration. We define a scoring function to be any function
f : X→ R, and say that example (xi, yi) is more difficult
than example (xj , yj) if f (xi, yi) > f (xj , yj). Choos-
ing f is the main challenge of CL, as it encodes the prior
knowledge of the teacher.

We define a pacing function gϑ : [M ] → [N ], which may
depend on the learner hϑ. The pacing function is used to
determine a sequence of subsets X′

1, ...,X
′

M ⊆ X, of size
|X′

i| = gϑ(i), from which {Bi}Mi=1 are sampled uniformly.
In CL the i-th subset X′

i includes the first gϑ(i) elements of
the training data when sorted by the scoring function f in
ascending order. Although the choice of the subset can be
encoded in the distribution each Bi is sampled from, adding
a pacing function simplifies the exposition and analysis.

2.2. Curriculum Learning Method

Together, each scoring function f and pacing function gϑ
define a curriculum. Any learning algorithm which uses the
ensuing sequence [Bi]

M
i=1 is a curriculum learning algo-

rithm. We note that in order to avoid bias when picking
a subset of the N examples for some N , it is important to
keep the sample balanced with the same number of exam-
ples from each class as in the training set. Pseudo-code for
the CL algorithm is given in Alg. 1.

In order to narrow down the specific effects of using a

Algorithm 1 Curriculum learning method

Input: pacing function gϑ, scoring function f , data X.
Output: sequence of mini-batches

[
B′

1, ...,B
′

M

]
.

sort X according to f , in ascending order
result← []
for all i = 1, ...,M do
size← gϑ(i)
X′

i ← X [1, ..., size]

uniformly sample B′

i from X′

append B′

i to result
end for
return result

scoring function based on ascending difficulty level, we
examine two control conditions. Specifically, we define 2
additional scoring functions and corresponding algorithms:
(i) The anti-curriculum algorithm uses the scoring func-
tion f ′ = −f , where the training examples are sorted in
descending order of difficulty; thus harder examples are
sampled before easier ones. (ii) The random-curriculum
algorithm (henceforth denoted random) uses a scoring
function where the training examples are randomly scored.

2.3. Scoring and Pacing Functions

We evaluate two scoring functions: (i) Transfer scoring
function, computed as follows: First, we take the Inception
network (Szegedy et al., 2016) pre-trained on the ImageNet
dataset (Deng et al., 2009) and run each training image
through it, using the activation levels of its penultimate layer
as a feature vector (Caruana, 1995). Second, we use these
features to train a classifier and use its confidence score
as the scoring function for each image1. (ii) Self-taught
scoring function, computed as follows: First, we train the
network using uniformly sampled mini-batches (the vanilla
method). Second, we compute this network’s confidence
score for each image to define a scoring function2.

The pacing function can be any function gϑ : [M ] → [N ].
However, we limit ourselves to monotonically increasing
functions so that the likelihood of the easier examples can
only decrease. For simplicity, gϑ is further limited to stair-
case functions. Thus each pacing function is defined by
the following hyper-parameters, where step denotes all
the learning iterations during which gϑ remains constant:
step length - the number of iterations in each step; in-
crease - an exponential factor used to increase the size of
the data used for sampling mini-batches in each step; start-

1Similar results are obtained when using different confidence
scores (e.g, the classifier’s margin), different classifiers (e.g, linear
SVM), and different teacher networks (e.g, VGG-16 (Simonyan &
Zisserman, 2014) or ResNet (He et al., 2016)), see Suppl A.

2Self-taught can be used repeatedly, see Suppl B.



Curriculum Learning in Deep Networks

ing percent - the fraction of the data in the initial step. An
illustration of these parameters can be seen in Fig. 1.

Figure 1. Illustration of the 3 pacing functions used below, showing
the different hyper-parameters that define each of them (see text).
The values of the hyper-parameters used in this illustration were
chosen arbitrarily, for illustration only.

We evaluate three pacing functions: (i) Fixed exponential
pacing has a fixed step length, and exponentially increasing
data size in each step. Formally, it is given by:

gϑ(i) = min
(
starting percent · incb

i
step length c, 1

)
·N

(ii) Varied exponential pacing is the same as (i), while al-
lowing step length to vary. This method adds additional
hyper-parameters, but removes the need to re-tune the learn-
ing rate parameters (see Suppl A). (iii) Single step pacing
entails the simplification of the staircase function into a step
function, resulting in fewer hyper-parameters. Formally:

gϑ(i) = starting percent1[i<step length] ·N

3. Empirical Evaluation
Methodology.3 We define 6 test cases: Case 1 replicates
the experimental design described in (Weinshall et al., 2018),
by using the same dataset and network architecture. The
dataset is the “small mammals” super-class4 of CIFAR-100
(Krizhevsky & Hinton, 2009) - a subset of 3000 images
from CIFAR-100, divided into 5 classes. The neural net-
work is a moderate size hand-crafted convolutional network,
whose architecture details can be found in Suppl C. Cases
2 and 3 adopt the same architecture while extending the
datasets to the entire CIFAR-10 and CIFAR-100 datasets.
Cases 4 and 5 use a well known public-domain VGG-based
architecture5 (Simonyan & Zisserman, 2014; Liu & Deng,
2015), to classify the CIFAR-10 and CIFAR-100 datasets.
Case 6 adopts the same architecture as cases 1-3, trained
with a subset of 7 classes of cats (see Suppl C) from the
ImageNet dataset.

3All the code used in the paper is available at
https://github.com/GuyHacohen/curriculum learning

4Other super-classes achieve similar results, see Suppl A.
5Code available at https://github.com/geifmany/cifar-vgg.

Hyper-parameter tuning. As in all empirical studies in-
volving deep learning, the results are quite sensitive to the
values of the hyper-parameters, hence parameter tuning is re-
quired. In practice, in order to reduce the computation time
of parameter tuning, in the curriculum conditions, we per-
formed first grid-search on the curriculum hyper-parameters,
followed by a second grid-search on the learning rate pa-
rameters, thus avoiding the need to tune a large number of
parameters at once. In the non-curriculum conditions, a full
1-stage grid-search was performed. In addition, we varied
only the first 2 step length instances in the varied exponen-
tial pacing condition. Accordingly, fixed exponential pacing,
varied exponential pacing and single step pacing define 3, 5
and 2 new hyper-parameters respectively, henceforth called
the pacing hyper-parameters.

With CL, the use of a pacing function affects the optimal val-
ues of other hyper-parameters, the learning rate in particular.
Specifically, the pacing function significantly reduces the
size of the dataset at the beginning of the learning, which has
the concomitant effect of increasing the effective learning
rate at that time. As a result, for a fair comparison, when us-
ing the fixed exponential or the single step pacing functions,
the learning rate must be tuned separately for every test
condition. This tuning is missing in Weinshall et al. (2018),
whose results may therefore be tainted by their arbitrary
choice of learning rate. Using the varied exponential pacing
function can overcome the need for learning rate re-tuning,
while adding 2 hyper-parameters (see Suppl A).

As traditionally done (e.g Simonyan & Zisserman, 2014;
Szegedy et al., 2016; He et al., 2016), we set an initial learn-
ing rate and decrease it exponentially every fixed number of
iterations. This method gives rise to 3 learning rate hyper-
parameters which require tuning: (i) the initial learning rate;
(ii) the factor by which the learning rate is decreased; (iii)
the length of each step with constant learning rate6.

Cross-validation. In grid search, parameters are chosen
based on performance on the test set. To avoid contami-
nation of the conclusions, all results were cross-validated,
wherein the hyper-parameters are chosen based on perfor-
mance on a validation set before being used on the test
set. For more details on the steps we took to ensure a fair
comparison when employing a grid search, see Suppl B.

3.1. Curriculum by Transfer

Case 1: A moderate size network is trained to distinguish
5 classes from CIFAR-100, which are members of the same
super-class as defined in the original dataset. Results are
shown in Fig. 2. Curriculum learning is clearly and signifi-
cantly beneficial - learning starts faster, and converges to a
better solution. We observe that the performance of CL with

6Other tuning methods achieve similar results, see Suppl B.
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a random scoring function is similar to vanilla, indicating
that the main reason for the improvement achieved by CL
is due to its beneficial transfer scoring function. In fact, al-
though tuned separately, the learning rate hyper-parameters
for both the random and the curriculum test conditions are
very similar, confirming that the improved performance is
due to the use of an effective transfer scoring function.

Figure 2. Results in case 1, with Inception-based transfer scoring
function and fixed exponential pacing function. Inset: bars indi-
cating the average final accuracy in each condition over the last
few iterations. Error bars indicate the STE (STandard Error of
the mean) after 50 repetitions. The curriculum method (in blue)
reaches higher accuracy faster, and converges to a better solution.

To check the robustness of these results, we repeated the
same empirical evaluation using different super-classes of
CIFAR-100, with similar results (see Suppl A). Interestingly,
we note that the observed advantage of CL is more signifi-
cant when the task is more difficult (i.e. lower vanilla test
accuracy). The reason may be that in easier problems there
is a sufficient number of easy examples in each mini-batch
even without CL. Although the results reported here are
based on transfer from the Inception network, we are able
to obtain the same results using scoring functions based
on transfer learning from other large networks, including
VGG-16 and ResNet, as shown in Suppl A.

Cases 2 and 3: Similar empirical evaluation as in case
1, using the same moderate size network to classify two
benchmark datasets. The results for CIFAR-10 are shown in
Fig. 4b and for CIFAR-100 in Fig. 3. Like before, test accu-
racy with curriculum learning increases faster and reaches
better final performance in both cases, as compared to the
vanilla test condition. The beneficial effect of CL is larger
when classifying the more challenging CIFAR-100 dataset.

Cases 4 and 5: Similar empirical evaluation as in case
1, using a competitive public-domain architecture. Specifi-
cally, we use the Inception-based transfer scoring function
to train a VGG-based network (Liu & Deng, 2015) to clas-
sify the CIFAR-10 and CIFAR-100 datasets. Differently
from the previous cases, here we use the varied exponential
pacing function with a slightly reduced learning rate, as it

Figure 3. Results in case 3, CIFAR-100 dataset, with Inception-
based transfer scoring function and fixed exponential pacing func-
tion. Inset: zoom-in on the final iterations, for better visualization.
Error bars show STE after 5 repetitions.

(a) ImageNet Cats (b) Cifar10 (c) Cifar10 VGG (d) Cifar100 VGG

Figure 4. Curriculum by transfer learning. Bars indicate the aver-
age final accuracy, and error bars indicate the STE. We performed
25 repetitions in (a), 5 in (b) and 3 in (c,d). (a) Cats subset of Ima-
geNet. (b) CIFAR-10, trained on a small network. (c, d) CIFAR-10
and CIFAR-100 respectively, trained on the VGG network.

has the fewest hyper-parameters to tune since learning rate
parameters do not need to be re-tuned, an important factor
when training large networks. Results for CIFAR-10 are
shown in Fig. 4c and for CIFAR-100 in Fig. 4d; in both
cases, no data augmentation has been used. The results
show the same qualitative results as in the previous cases;
CL gives a smaller benefit, but the benefit is still significant.

Case 6: Similar to case 1, using the same moderate size
network to distinguish 7 classes of cats from the ImageNet
dataset (see Suppl C for details). The results are shown in
Fig. 4a. Again, the test accuracy in the curriculum test con-
dition increases faster and achieves better final performance
with curriculum, as compared to the vanilla test condition.

3.2. Curriculum by Bootstrapping

The self-taught scoring function is based on the loss of train-
ing points with respect to the final hypothesis of a trained
network - the same network architecture pre-trained with-
out a curriculum. Using this scoring function, training is
re-started from scratch. Thus defined, curriculum by boot-
strapping may seem closely related to the idea of Self-Paced
Learning (SPL), an iterative procedure where higher weights
are given to training examples that have lower cost with re-
spect to the current hypothesis. There is, however, a very
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Figure 5. Results in case 1, with Inception-based transfer scoring
function and Single step pacing function. Inset: bars indicating the
average final accuracy in each condition over the last few iterations.
Error bars indicate the STE after 50 repetitions.

important difference between the methods: SPL determines
the scoring function based on the loss with respect to the
current hypothesis (or network), while bootstrapping CL
scores each point by its loss with respect to the target hy-
pothesis. SPL, it appears, has not yet been introduced to
deep neural networks in a way that benefits accuracy.

To compare the self-taught scoring function and the self-
paced scoring function, we investigate their effect on CL in
the context of test case 1. Final accuracy results are shown
in Fig. 7 (the entire learning curves are depicted in Suppl C,
Fig. 12). As expected, we see that bootstrapping CL im-
proves test accuracy throughout the entire learning session.
On the other hand, CL training using the self-paced scor-
ing function decreases the test accuracy throughout. This
decrease is more prominent at the beginning of the learning,
where most of the beneficial effects of the curriculum are
observed, suggesting that the self-paced scoring function
can significantly delay learning.

3.3. Alternative Pacing Functions

Single step pacing. Curriculum learning can be costly,
and it affects the entire learning protocol via the pacing
function. At the same time, we observed empirically that
the main effect of the procedure seems to have taken place
at the beginning of training. This may be due, in part,
to the fact that the proposed scoring function f is based
on transfer from another network trained on a different
dataset, which only approximates the unknown ideal scoring
function. Possibly, since the scoring function is based on
one local minimum in a complex optimization landscape
which contains many local minima, the score given by f
is more reliable for low scoring (easy) examples than high
scoring (difficult) examples, which may be in the vicinity of
a different local minimum.

Once again we evaluate case 1, using the transfer scoring
function and the single step pacing function. We see im-
provement in test accuracy in the curriculum test condition,

which resembles the improvement achieved using the expo-
nential pacing. Results are shown in Fig. 5. It is important
to note that this pacing function ignores most of the prior
knowledge provided by the scoring function, as it only uses
a small percent of the easiest examples, and yet it achieves
competitive results. Seemingly, in our empirical setup, most
of the power of CL lies at the beginning of training.

3.4. Analysis of Scoring Function

In order to analyze the effects of transfer based scoring
functions, we turn to analyze the gradients of the network’s
weights w.r.t the empirical loss. We evaluate the gradients
using a pre-trained vanilla network in the context of case 1.
First, for each method and each scoring function, we collect
the subset of points used to sample the first mini-batch
according to the pacing function gϑ(1)7. For comparison,
we also consider the set of all training points, which are used
to compute the exact gradient of the empirical loss in batch
learning using GD. We then compute the corresponding set
of gradients for the training points in each of these subsets of
training points, treating each layer’s parameters as a single
vector, and subsequently estimate the gradients’ mean and
total variance8. We use these measurements to evaluate the
coherence of the gradients in the first mini-batch of each
scoring function. The Euclidean distance between the mean
gradient in the different conditions is used to estimate the
similarity between the different scoring functions, based
on the average preferred gradient. We compare the set of
gradients defined by using three transfer scoring functions,
which differ in the teacher network used for scoring the
points: ’VGG-16’, ’ResNet’, and ’Inception’. We include in
the comparison the gradients of the random scoring function
denoted ’Random’, and the gradients of the whole batch of
training data denoted ’All’. Results are shown in Fig. 6.

(a) Distances between mean gradients. (b) Total variance.

Figure 6. (a) Distance between the mean gradient direction of pre-
ferred examples under different scoring functions. Each bar corre-
sponds to a pair of mean gradients in two different conditions, see
text. (b) The total variance of each set of gradients.

We see in Fig. 6a - blue bars - that the average gradient
vectors, computed based on the 3 transfer scoring functions,

7In this experiment gϑ(1) is set such that it corresponds to 10%
of the data or 250 examples. This number was set arbitrarily, with
similar qualitative results obtained for other choices.

8Total variance denotes the trace of the covariance matrix.
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are quite similar to each other. This suggests that they are
pointing towards nearby local minima in parameters space.
We also see - green bar - that the average gradient vector
computed using a random subset of examples resembles
the exact empirical gradient computed using all the training
data. This suggests that a random subset provides a reason-
able estimate of the true empirical gradient. The picture
changes completely when we compute - red bars - the dis-
tance between the average gradient corresponding to one of
the 3 transfer scoring functions, and the average random gra-
dient or the empirical gradient. The large distances suggest
that CL by transfer stirs the weights towards different local
minima in parameter space as compared to vanilla training.

We see in Fig. 6b that the total variance for the 3 transfer
scoring functions is much smaller than the total variance of
some random subset of the whole training set. This intuitive
result demonstrates the difference between training with
easier examples and training with random examples, and
may – at least partially – explain the need for a different
learning rate when training with easier examples.

3.5. Summary of Results

Figure 7. Results in case 1, bars showing final accuracy in percent
for all test conditions. Error bars indicate STE after 50 repetitions.

Fig. 7 summarizes the main results presented in this section,
including: curriculum with an Inception-based scoring func-
tion for (i) fixed exponential pacing (denoted curriculum),
(ii) single step pacing, and (iii) varied exponential pacing. It
also shows curriculum with fixed exponential pacing for (iv)
self-taught scoring, and (v) self-paced scoring. In addition,
we plot the control conditions of vanilla, anti -curriculum,
and random. The bars depict the final accuracy in each
condition. All the curriculum conditions seem to improve
the learning accuracy throughout the entire learning ses-
sion while converging to similar performance, excluding the
self-paced scoring function which impairs learning. While
different conditions seem to improve the final accuracy in a
similar way, the results of curriculum by transfer are easier
to obtain, and are more robust (see Suppl C for details).

4. Theoretical Analysis
LetH denote a set of hypotheses hϑ defined by the vector
of hyper-parameters ϑ. Let Lϑ(Xi) denote the loss of hy-
pothesis hϑ when given example Xi. In order to compute
the best hypothesis hϑ̃ from the data, one commonly uses
the Empirical Risk Minimization (ERM) framework where9

L(ϑ) = Ê[Lϑ] =
1

N

N∑
i=1

Lϑ(Xi)

ϑ̃ = argmin
ϑ

L(ϑ)
(1)

L(ϑ) denotes the empirical loss given the observed data,
thus defining the Risk of choosing hypothesis hϑ. (1) can
be rewritten as follows:

ϑ̃ = argmin
ϑ

N∑
i=1

Lϑ(Xi) = argmax
ϑ

exp(−
N∑
i=1

Lϑ(Xi))

= argmax
ϑ

N∏
i=1

e−Lϑ(Xi) , argmax
ϑ

N∏
i=1

αP (ϑ|Xi
)

Thus ERM can be interpreted as Maximum Likelihood (ML)
estimation with probability defined by the loss function as
P (ϑ|X ) ∝ e−Lϑ(X).

The choice of loss Lϑ(X), and the choice of the estimation
framework used to select some optimal hypothesis hϑ̃, are
somewhat arbitrary. In a similar manner we may choose
to maximize the average Utility Uϑ(X) = e−Lϑ(X) of the
observed data, which is defined as follows

U(ϑ) = Ê[Uϑ] =
1

N

N∑
i=1

Uϑ(Xi) ,
1

N

N∑
i=1

e−Lϑ(Xi)

ϑ̃ = argmax
ϑ

U(ϑ)
(2)

The ERM formulation defined in (1) is different from the em-
pirical utility maximization formulation defined in (2). Both
formulations can be similarly justified from first principles.

The scoring function in curriculum learning effectively pro-
vides a Bayesian prior for data sampling. This can be for-
malized as follows:

Up(ϑ) = Êp[Uϑ] =

N∑
i=1

Uϑ(Xi)p(Xi) =

N∑
i=1

e−Lϑ(Xi)pi

ϑ̃ = argmax
ϑ

Up(ϑ) (3)

Above pi = p(Xi) denotes the induced prior probability,
which is determined by the scoring function and pacing func-
tion of the curriculum algorithm. Thus p(Xi) will always

9Â, for any operator A, denotes the empirical estimate of A.
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be a non-increasing function of the difficulty level of Xi.
In our algorithm, p(Xi) =

1
M for M training points whose

difficulty score is below a certain threshold, and p(Xi) = 0
otherwise. The threshold is determined by the pacing func-
tion which drives a monotonic increase in the number of
points M , thus changing the optimization function in a cor-
responding manner.

From (3), Up(ϑ) is a function of ϑ which is determined by
the correlation between two random variables, Uϑ(X) and
p(X). We rewrite (3) as follows

Up(ϑ) =
N∑
i=1

(Uϑ(Xi)− Ê[Uϑ])(pi − Ê[p]) +N Ê[Uϑ]Ê[p]

= ˆCov[Uϑ, p] +N Ê[Uϑ]Ê[p] = U(ϑ) + ˆCov[Uϑ, p]

(4)

This proves the following result:

Proposition 1 The difference between the expected utility
when computed with and without prior p is the covariance
between the two random variables Uϑ(X) and p(X).

Curriculum learning changes the landscape of the optimiza-
tion function over the hyper-parameters ϑ from U(ϑ) to
Up(ϑ). Intuitively, (4) suggests that if the induced prior
probability p, which defines a random variable over the
input space p(X), is positively correlated with the optimal
utility Uϑ̃(X), and more so than with any other Uϑ(X),
then the gradients in the direction of the optimal parameter
ϑ̃ in the new optimization landscape may be overall steeper.

More precisely, assume that ϑ̃ maximizes the covariance
between pϑ(X) and the utility Uϑ(X), namely

argmax
ϑ

U(ϑ) = argmax
ϑ

ˆCov[Uϑ, p] = ϑ̃ (5)

Proposition 2 For any curriculum satisfying (5):

1. ϑ̃ = argmaxϑ U(ϑ) = argmaxϑ Up(ϑ)

2. Up(ϑ̃)− Up(ϑ) ≥ U(ϑ̃)− U(ϑ) ∀ϑ

Proof can be found in Suppl C. We conclude that when
assumption (5) holds, the modified optimization landscape
induced by curriculum learning has the same global opti-
mum ϑ̃ as the original problem. In addition, the modified
optimization function in the parameter space ϑ has the prop-
erty that the global maximum at ϑ̃ is more pronounced.

We define an ideal curriculum to be the prior corresponding
to the optimal hypothesis (or one of them, if not unique):

pi =
e−Lϑ̃(Xi)

C
, C =

N∑
i=1

e−Lϑ̃(Xi)

From10 (4):

Up(ϑ) = U(ϑ) +
1

C
Cov[Uϑ, Uϑ̃]

The utility at the optimal point ϑ̃ in parameter space is:

Up(ϑ̃) = U(ϑ̃) +
1

C
Cov[Uϑ̃, Uϑ̃] = U(ϑ̃) +

1

C
Var[Uϑ̃]

(6)
In any other point

Up(ϑ) = U(ϑ) +
1

C
Cov[Uϑ, Uϑ̃]

≤ U(ϑ̃) + 1

C

√
Var[Uϑ]Var[Uϑ̃]

(7)

Note that if Var[Uϑ] = b ∀ϑ for some constant b, then
assumption (5) immediately follows from (7):

Up(ϑ) ≤ U(ϑ̃)+
1

C

√
b2 = Up(ϑ̃) =⇒ ϑ̃ = argmax

ϑ
Up(ϑ)

Therefore

Corollary 1 When using the ideal curriculum, Proposi-
tion 2 holds if the variance of the utility function is roughly
constant in the relevant range of plausible parameter values.

From (6) and (7) we can also conclude the following

Proposition 3 When using the ideal curriculum

Up(ϑ̃)−Up(ϑ) ≥ U(ϑ̃)−U(ϑ) ∀ϑ : Cov[Uϑ, Uϑ̃] ≤ Var[Uϑ̃]

This implies that the optimization landscape is modified
to amplify the difference between the optimal parameters
vector and all other parameter values whose covariance with
the optimal solution (the covariance is measured between
the induced prior vectors) is small, and specifically smaller
than the variance of the optimum. In particular, this includes
all parameters vectors which are uncorrelated (or negatively
correlated) with the selected optimal parameter vector.

Discussion: Training a network based on its current hy-
pothesis ϑt can be done in one of 2 ways: (i) using a prior
which is monotonically increasing with the current utility,
as suggested by self-paced learning; (ii) using a prior mono-
tonically decreasing with the current utility, as suggested
by hard data mining or boosting. Our analysis suggests
that as long as the curriculum is positively correlated with
the optimal utility, it can improve the learning; hence both
strategies can be effective in different settings. It may even
be possible to find a curriculum which is directly correlated
with the optimal utility, and that outperforms both methods.

10Henceforth we will assume that N → ∞, so that the estima-
tion symbol â can be omitted.
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