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A. Regression Importance Sampling is Consistent
In this appendix we show that the regression importance sampling (RIS) estimator is a consistent estimator of v(πe)
under two assumptions. The main intuition for this proof is that RIS is performing policy search on an estimate of the
log-likelihood, L̂(π|D), as a surrogate objective for the true log-likelihood, L(π). Since πb has generated our data, πb is
the optimal solution to this policy search. As long as, for all π, L̂(π|D) is a consistent estimator of L(π) then selecting
πD = argmax

π
L̂(π|D) will converge probabilistically to πb and the RIS estimator will be the same as the OIS estimator

which is a consistent estimator of v(πe). If the set of policies we search over, Π, is countable then this argument is almost
enough to show RIS to be consistent. The difficulty (as we explain below) arises when Π is not countable.

Our proof takes inspiration from Thomas and Brunskill who show that their Magical Policy Search algorithm converges to
the optimal policy by maximizing a surrogate estimate of policy value (2016b). They show that performing policy search on
a policy value estimate, v̂(π), will almost surely return the policy that maximizes v(π) if v̂(π) is a consistent estimator of
v(π). The proof is almost identical; the notable difference is substituting the log-likelihood, L(π), and a consistent estimator
of the log-likelihood, L̂(π|D), in place of v(π) and v̂(π).

A.1. Definitions and Assumptions

Let (Ω,F , µ) be a probability space and Dm : Ω → D be a random variable. Dm(ω) is a sample of m trajectories with
ω ∈ Ω. Let dπb be the distribution of states under πb. Define the expected log-likelihood:

L(π) = E [log π(A|S)|S ∼ dπb , A ∼ πb]

and its sample estimate from samples in Dm(ω):

L̂(π|Dm(ω)) =
1

mL

∑
H∈Dm(ω)

L−1∑
t=0

log π(AHt |SHt ).

where SHt and AHt are the random variables representing the state and action that occur at time-step t of trajectory H .

Assuming for all s, a the variance of log π(a|s) is bounded, L̂(π|Dm(ω)) is a consistent estimator of L(π). We make this
assumption explicit:

Assumption 1. (Consistent Estimation of Log likelihood). For all π ∈ Π, L̂(π|Dm(ω))
a.s.−−→ L(π).

This assumption will hold when the support of πb is a subset of the support of π for all π ∈ Π, i.e., no π ∈ Π places zero
probability measure on an action that πb might take. We can ensure this assumption is satisfied by only considering π ∈ Π
that place non-zero probability on any action that πb has taken.

We also make an additional assumption about the piece-wise continuity of the log-likelihood, L, and the estimate of the
log-likelihood, L̂. First we present two necessary definitions as given by Thomas and Brunskill (2016b):
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Definition 1. (Piecewise Lipschitz continuity). We say that a function f : M → R on a metric space (M,d) is piecewise
Lipschitz continuous with respect to Lipschitz constant K and with respect to a countable partition, {M1,M2, ...} if f is
Lipschitz continuous with Lipschitz constant K on all metric spaces in {(Mi, di)}∞i=1.

Definition 2. (δ-covering). If (M,d) is a metric space, a set X ⊂ M is a δ-covering of (M,d) if and only if
maxy∈M minx∈X d(x, y) ≤ δ.

We now present our final assumption:

Assumption 2. (Piecewise Lipschitz objectives). Our policy class, Π, is equipped with a metric, dΠ, such that for all
Dm(ω) there exist countable partition of Π, ΠL := {ΠL1 ,ΠL2 , ...} and ΠL̂ := {ΠL̂1 ,ΠL̂2 , ...}, where L and L̂(·|Dm(ω)) are
piecewise Lipschitz continuous with respect to ΠL and ΠL̂ with Lipschitz constants K and K̂ respectively. Furthermore, for
all i ∈ N>0 and all δ > 0 there exist countable δ-covers of ΠLi and ΠL̂i .

As pointed out by Thomas and Brunskill, this assumption holds for the most commonly considered policy classes but is also
general enough to hold for other settings (see Thomas and Brunskill (2016b) for further discussion of Assumptions 1 and 2
and the related definitions).

A.2. Consistency Proof

Note that:
πb = argmax

π∈Π
L(π)

πD = argmax
π∈Π

L̂(π|Dm(ω)).

Define the KL-divergence (DKL)) between πb and πD in state s as: δKL(s) = DKL(πb(·|s), πD(·|s)).

Lemma 1. If Assumptions 1 and 2 hold then Edπb [δKL(s)]
a.s.−−→ 0.

Proof. Define ∆(π, ω) = |L̂(π|Dm(ω))− L(π)|. From Assumption 1 and one definition of almost sure convergence, for
all π ∈ Π and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∆(π, ω) < ε}
)

= 1. (1)

Thomas and Brunskill point out that because Π may not be countable, (1) may not hold at the same time for all π ∈ Π. More
precisely, it does not immediately follow that for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε}
)

= 1. (2)

Let C(δ) denote the union of all of the policies in the δ-covers of the countable partitions of Π assumed to exist by
Assumption 2. Since the partitions are countable and the δ-covers for each region are assumed to be countable, we have that
C(δ) is countable for all δ. Thus, for all π ∈ C(δ), (1) holds simulatenously. More precisely, for all δ > 0 and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ C(δ),∆(π, ω) < ε}
)

= 1. (3)

Consider a π 6∈ C(δ). By the definition of a δ-cover and Assumption 2, we have that ∃π′ ∈ ΠLi , d(π, π′) ≤ δ. Since
Assumption 2 requires L to be Lipschitz continuous on ΠLi , we have that |L(π)−L(π′)| ≤ Kδ. Similarly |L̂(π|Dm(ω))−
L̂(π′|Dm(ω))| ≤ K̂δ. So, |L̂(π|Dm(ω))−L(π)| ≤ |L̂(π|Dm(ω))−L(π′)|+Kδ ≤ |L̂(π′|Dm(ω))−L(π′)|+(K̂+K)δ.
Then it follows that for all δ > 0:

(∀π ∈ C(δ),∆(π, ω) ≤ ε)→(
∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ

)
.

Substituting this into (3) we have that for all δ > 0 and for all ε > 0:
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Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ}
)

= 1

The next part of the proof massages (3) into a statement of the same form as (2). Consider the choice of δ := ε/(K + K̂).
Define ε′ = 2ε. Then for all ε′ > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε′}
)

= 1 (4)

Since ∀π ∈ Π,∆(π, ω) < ε′, we obtain:
∆(πb, ω) < ε′ (5)

∆(πD, ω) < ε′ (6)

and then applying the definition of ∆

L(πD)
(a)

≤L(πb) (7)
(b)
<L̂(πb|Dm(ω)) + ε′ (8)
(c)

≤L̂(πD|Dm(ω)) + ε′ (9)
(d)

≤L(πD) + 2ε′ (10)

where (a) comes from the fact that πb maximizes L, (b) comes from (5), (c) comes from the fact that πD maximizes
L̂(·|Dm(ω)), and (d) comes from (6). Considering (7) and (10), it follows that |L(πD)−L(πb)| < 2ε′. Thus, (4) implies
that:

∀ε′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < 2ε′}
)

= 1

Using ε′′ := 2ε′ we obtain:

∀ε′′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < ε′′}
)

= 1

From the definition of the KL-Divergence,

L(πD)− L(πb) = Edπb [δKL(s)]

and we obtain that:
∀ε > 0,Pr

(
lim inf
n→∞

{ω ∈ Ω : | −Edπb [δKL(s)]| < ε}
)

= 1

And finally, since the KL-Divergence is non-negative:

∀ε > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : Edπb [δKL(s)]| < ε}
)

= 1,

which, by the definition of almost sure convergence, means that Edπb [δKL(s)]
a.s.−−→ 0.

Proposition 1. If Assumptions 1 and 2 hold, then RIS(n) is a consistent estimator of v(πe): RIS(n)(πe,D)
a.s.−−→ v(πe).

Proof. Lemma 1 shows that as the amount of data increases, the behavior policy estimated by RIS will almost surely
converge to the true behavior policy. Almost sure convergence to the true behavior policy means that RIS almost surely
converges to the ordinary OIS estimate. Since OIS is a consistent estimator of v(πe), RIS is also a consistent estimator of
v(πe).
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B. Asymptotic Variance Proof
In this appendix we prove that, ∀n, RIS(n) has asymptotic variance at most that of OIS. We give this result as a corollary to
Theorem 1 of Henmi et al. (2007) that holds for general Monte Carlo integration. Note that while we define distributions as
probability mass functions, this result can be applied to continuous-valued state and action spaces by replacing probability
mass functions with density functions.

Corollary 1. Let Πn
θ be a class of twice differentiable policies, πθ(·|st−n, at−n, . . . , st). If ∃θ̃ such that πθ̃ ∈ Πn

θ and
πθ̃ = πb then

VarA(RIS(n)(πe,D)) ≤ VarA(IS(πe,D, πb))

where VarA denotes the asymptotic variance.

Corollary 1 states that the asymptotic variance of RIS(n) must be at least as low as that of OIS.

We first present Theorem 1 from Henmi et al. (2007) and adopt their notation for its presentation. Consider estimating
v = Ep [f(x)] for probability mass function p and real-valued function f . Given parameterized and twice differentiable
probability mass function q(·|θ̃), we define the ordinary importance sampling estimator of v as ṽ = 1

m

∑m
i=1

p(xi)

q(xi,θ̃)
f(xi).

Similarly, define v̂ = 1
m

∑m
i=1

p(xi)

q(xi,θ̂)
f(xi) where θ̂ is the maximum likelihood estimate of θ̃ given the m samples from

q(·|θ̃). The following theorem relates the asymptotic variance of v̂ to that of ṽ.

Theorem 1.
VarA(v̂) ≤ VarA(ṽ)

where VarA denotes the asymptotic variance.

Proof. See Theorem 1 of Henmi et al. (2007).

Theorem 1 shows that the maximum likelihood estimated parameters of the sampling distribution yield an asymptotically
lower variance estimate than using the true parameters, θ̃. To specialize this theorem to our setting, we show that
the maximum likelihood behavior policy parameters are also the maximum likelihood parameters for the trajectory
distribution of the behavior policy. First specify the class of sampling distribution: Pr(h;θ) = p(h)wθ(h) where p(h) =

d0(s0)
∏L−1
t=1 P (st|st−1, at−1) and wθ(h) =

∏L−1
t=0 πθ(at|st−n, at−n, . . . , st). We now present the following lemma:

Lemma 2.

argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st) = argmax
θ

∑
h∈D

log Pr(h;θ)

Proof.

argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st)

= argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st) + log d(s0) +

L−1∑
t=1

logP (st|st−1, at−1)︸ ︷︷ ︸
const w.r.t. θ

= argmax
θ

∑
h∈D

logwθ(h) + log p(h)

θ = argmax
θ

∑
h∈D

log Pr(h; θ)

Finally, we combine Lemma 2 with Theorem 1 to prove Corollary 1:
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Corollary 1. Let Πn
θ be a class of policies, πθ(·|st−n, at−n, . . . , st) that are twice differentiable with respect to θ. If

∃θ ∈ Πn
θ such that πθ = πb then

VarA(RIS(n)(πe,D)) ≤ VarA(IS(πe,D, πb))

where VarA denotes the asymptotic variance.

Proof. Define f(h) = g(h), p(h) = Pr(h|πe) and q(h|θ) = Pr(h|πθ). Lemma 2 implies that:

θ̂ = argmax
θ∈Πθ

∑
h∈D

L∑
t=0

log πθ(at|st)

is the maximum likelihood estimate of θ̃ (where πθ̃ = πb and Pr(h|θ̃) is the probability of h under πb) and then Corollary 1
follows directly from Theorem 1.

Note that for RIS(n) with n > 0, the condition that πθ̃ ∈ Πn can hold even if the distribution of At ∼ πθ̃ (i.e., At ∼ πb) is
only conditioned on st. This condition holds when ∃πθ ∈ Πn such that ∀st−n, at−n, . . . at−1:

πθ̃(at|st) = πθ(at|st−n, at−n, . . . , st),

i.e., the action probabilities only vary with respect to st.

C. Connection to the REG estimator
In this appendix we show that RIS(L − 1) is an approximation of the REG estimator studied by Li et al. (2015). This
connection is notable because Li et al. showed REG is asymptotically minimax optimal, however, in MDPs, REG requires
knowledge of the environment’s transition and initial state distribution probabilities while RIS(L− 1) does not. For this
discussion, we recall the definition of the probability of a trajectory for a given MDP and policy:

Pr(h|π) = d0(s0)π(a0|s0)P (s1|s0, a0) · · ·P (sL−1|sL−2, aL−2)π(aL−1|sL−1).

We also defineH to be the set of all state-action trajectories possible under πb of length L: s0, a0, ...sL−1, aL−1.

Li et al. introduce the regression estimator (REG) for multi-armed bandit problems (2015). This method estimates the mean
reward for each action as r̂(a,D) and then computes the REG estimate as:

REG(πe,D) =
∑
a∈A

πe(a)r̂(a,D).

This estimator is identical to RIS(0) in multi-armed bandit problems (Li et al., 2015). The extension of REG to finite horizon
MDPs estimates the mean return for each trajectory as ĝ(h,D) and then computes the estimate:

REG(πe,D) =
∑
h∈H

Pr(h|πe)ĝ(h,D).

Since this estimate uses Pr(h|πe) it requires knowledge of the initial state distribution, d0, and transition probabilities, P .

We now elucidate a relationship between RIS(L−1) and REG even though they are different estimators. Let c(h) denote the
number of times that trajectory h appears in D. We can rewrite REG as an importance sampling method with a count-based
estimate of the probability of a trajectory in the denominator:

REG(πe,D) =
∑
h∈H

Pr(h|πe)ĝ(h,D) (11)

=
1

m

∑
h∈H

c(h)
Pr(h|πe)
c(h)/m

ĝ(h,D) (12)

=
1

m

m∑
i=1

Pr(hi|πe)
c(hi)/m

g(hi) (13)
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The denominator in (13) can be re-written as a telescoping product to obtain an estimator that is similar to RIS(L− 1):

REG(πe,D) =
1

m

m∑
i=1

Pr(hi|πe)
c(hi)/m

g(hi)

=
1

m

m∑
i=1

Pr(hi|πe)
c(s0)
m

c(s0,a0)
c(s0) · · ·

c(hi)
c(hi/aL−1)

g(hi)

=
1

m

m∑
i=1

d0(s0)πe(a0|s0)P (s1|s0, a0) · · ·P (sL−1|sL−2, aL−2)πe(aL−1|sL−1)

d̂(s0)πD(a0|s0)P̂ (s1|s0, a0) · · · P̂ (sL−1|h0:L−1)πD(aL−1|hi:j)
g(hi).

This expression differs from RIS(L− 1) in two ways:

1. The numerator includes the initial state distribution and transition probabilities of the environment.
2. The denominator includes count-based estimates of the initial state distribution and transition probabilities of the

environment where the transition probabilities are conditioned on all past states and actions.

If we assume that the empirical estimates of the environment probabilities in the denominator are equal to the true
environment probabilities then these factors cancel and we obtain the RIS(L− 1) estimate. This assumption will almost
always be false except in deterministic environments. However, showing that RIS(L− 1) is approximating REG suggests
that RIS(L− 1) may have similar theoretical properties to those elucidated for REG by Li et al. (2015). Our SinglePath
experiment (See Figure 2 in the main text) supports this conjecture: RIS(L− 1) has high bias in the low to medium sample
size but have asymptotically lower MSE compared to other methods. REG has even higher bias in the low to medium
sample size range but has asymptotically lower MSE compared to RIS(L− 1). RIS with smaller n appear to decrease the
initial bias but have larger MSE as the sample size grows. The asymptotic benefit of RIS for all n is also corroborated
by Corollary 1 in Appendix B though Corollary 1 does not tell us anything about how different RIS methods compare
asymptotically. The asymptotic benefit of REG compared to RIS methods can be understood as REG correcting for
sampling error in both the action selection and state transitions.

D. Sampling Error with Continuous Actions
In Section 3 of the main text we discussed how ordinary importance sampling can suffer from sampling error. Then, in
Section 4, we presented an example showing how RIS corrects for sampling error in D in deterministic and finite MDPs.
Most of this discussion assumed that the state and action spaces of the MDP were finite. Here, we discuss sampling error in
continuous action spaces. The primary purpose of this discussion is intuition and we limit discussion to a setting that can be
easily visualized. We consider a deterministic MDP with scalar, real-valued actions, reward R : A → R, and L = 1.

We assume the support of πb and πe is bounded and for simplicity assume the support to be [0, 1]. Policy evaluation is
equivalent to estimating the integral:

v(πe) =

∫ 1

0

R(a)πe(a)da (14)

and the ordinary importance sampling estimate of this quantity with m samples from πb is:

1

m

m∑
i=1

πe(ai)

πb(ai)
R(ai). (15)

Even though the OIS estimate is a sum over a finite number of samples, we show it is exactly equal to an integral over a
particular piece-wise function. We assume (w.l.o.g) that the ai’s are in non-decreasing order, (a0 <= ai <= am). Imagine
that we place the R(ai) values uniformly across the interval [0, 1] so that they divide the range [0, 1] into m equal bins. In
other words, we maintain the relative ordering of the action samples but ignore the spatial relationship between samples.
We now define piece-wise constant function R̄OIS where R̄OIS(a) = R(ai) if a is in the ith bin. The ordinary importance
sampling estimate is exactly equal to the integral

∫ 1

0
R̄OIS(a)da.

It would be reasonable to assume that R̄OIS(a) is approximatingR(a)πe(a) since the ordinary importance sampling estimate
(15) is approximating (14), i.e., lim

m→∞
R̄OIS(a) = R(a)πe(a). In reality, R̄OIS approaches a stretched version of R where
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(a) Policy and Reward (b) 10 Sample Approximation (c) 200 Sample Approximation

Figure 1. Policy evaluation in a continuous armed bandit task. Figure 1(a) shows a reward function, R, and the pdf of a policy, π, with
support on the range [0, 1]. With probability 0.25, π selects an action less than 0.5 with uniform probability; otherwise π selects an action
greater than 0.5. The reward is equal to the action chosen. All figures show R̄?: a version of R that is stretched according to the density
of π; since the range [0.5, 1] has probability 0.75, R on this interval is stretched over [0.25, 1]. Figure 1(b) and 1(c) show R̄? and the
piece-wise R̄OIS and R̄RIS approximations to R̄? after 10 and 200 samples respectively.

areas with high density under πe are stretched and areas with low density are contracted. We call this stretched version of R,
R̄?. The integral of

∫ 1

0
R̄?(a)da is v(πe).

Figure 1(a) gives a visualization of an example R̄? using on-policy Monte Carlo sampling from an example πe and linear R.
In contrast to the true R̄?, the OIS approximation to R̄, R̄OIS stretches ranges of R according to the number of samples in
that range: ranges with many samples are stretched and ranges without many samples are contracted. As the sample size
grows, any range of R will be stretched in proportion to the probability of getting a sample in that range. For example, if
the probability of drawing a sample from [a, b] is 0.5 then R̄? stretches R on [a, b] to cover half the range [0, 1]. Figure 1
visualizes R̄OIS the OIS approximation to R̄? for sample sizes of 10 and 200.

In this analysis, sampling error corresponds to over-stretching or under-stretching R in any given range. The limitation of
ordinary importance sampling can then be expressed as follows: given πe, we know the correct amount of stretching for any
range and yet OIS ignores this information and stretches based on the empirical proportion of samples in a particular range.
On the other hand, RIS first divides by the empirical pdf (approximately undoing the stretching from sampling) and then
multiplies by the true pdf to stretch R a more accurate amount. Figure 1 also visualizes the R̄RIS approximation to R̄? for
sample sizes of 10 and 200. In this figure, we can see that R̄RIS is a closer approximation to R̄? than R̄OIS for both sample
sizes. In both instances, the mean squared error of the RIS estimate is less than that of the OIS estimate.

Since R may be unknown until sampled, we will still have non-zero MSE. However the standard OIS estimate has error
due to both sampling error and unknown R values.

E. Extended Empirical Description
In this appendix we provide additional details for our experimental domains. Code is provided at https://github.
com/LARG/regression-importance-sampling.

SinglePath: This environment is shown in Figure 2 with horizon L = 5. In each state, πb selects action, a0, with
probability p = 0.6 and πe selects action, a0, with probability 1− p = 0.4. Action a0 causes a deterministic transition to
the next state. Action a1 causes a transition to the next state with probability 0.5, otherwise, the agent remains in its current
state. The agent receives a reward of 1 for action a0 and 0 otherwise. RIS uses count-based estimation of πb and REG uses
count-based estimation of trajectories. REG is also given the environment’s transition matrix, P .

Gridworld: This domain is a 4× 4 Gridworld with a terminal state with reward 100 at (3, 3), a state with reward −10 at
(1, 1), a state with reward 1 at (1, 3), and all other states having reward −1. The domain has been used in prior off-policy
policy evaluation work (Thomas, 2015; Thomas & Brunskill, 2016a; Hanna et al., 2017; Farajtabar et al., 2018). The action
set contains the four cardinal directions and actions move the agent in its intended direction (except when moving into a
wall which produces no movement). The agent begins in (0, 0), γ = 1, and L = 100. All policies use a softmax action
selection distribution with temperature 1 and a separate parameter, θsa, for each state, s, and action a. The probability of

https://github.com/LARG/regression-importance-sampling
https://github.com/LARG/regression-importance-sampling
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s0 s1 ... s5

a0

a1

a0

a1

a0

a1

Figure 2. The SinglePath MDP referenced in Section 4 of the main text. Not shown: If the agent takes action a1 it remains in its current
state with probability 0.5.

taking action a in state s is given by:

π(a|s) =
eθsa∑

a′∈A e
θsa′

The first set of experiments uses a behavior policy, πb, that can reach the high reward terminal state and an evaluation policy,
πe, that is the same policy with lower entropy action selection. The second set of experiments uses the same behavior policy
as both behavior and evaluation policy. RIS estimates the behavior policy with the empirical frequency of actions in each
state. This domain allows us to study RIS separately from questions of function approximation.

Linear Dynamical System This domain is a point-mass agent moving towards a goal in a two dimensional world by
setting x and y acceleration. The state-space is the agent’s x and y position and velocity. The agent acts for L = 20 time-
steps under linear-gaussian dynamics and receives a reward that is proportional to its distance from the goal. Specifically, if
st is the agent’s state vector and it takes action at, then the resulting next state is:

st+1 = A · st +B · at + εt

where εt ∼ N (0, I), A is the identity matrix, and

B =


0.5 0
0 0.5
1 0
0 1

 .
The agent’s policy is a linear map from state features to the mean of a Gaussian distribution over actions. For the state
features, we use second order polynomial basis functions so that policies are non-linear in the state features but we can still
estimate πD efficiently with ordinary least squares. We obtain a basic policy by optimizing the linear weights of this policy
for 10 iterations of the Cross-Entropy method (Rubinstein & Kroese, 2013). The evaluation policy uses a standard deviation
of 0.5 and the true πb uses a standard deviation of 0.6.

Continuous Control We also use two continuous control tasks from the OpenAI gym: Hopper and HalfCheetah.1 The
state and action dimensions of each task are shown in Table 1. In each task, we use neural network policies with 2 layers of

Environment State Dimension Action Dimension
Hopper 15 3

Half Cheetah 26 6

Table 1. State and action dimension for each OpenAI Roboschool environment.

64 hidden units each for πe and πb. Each policy maps the state to the mean of a Gaussian distribution with state-independent
standard deviation. We obtain πe and πb by running the OpenAI Baselines (Dhariwal et al., 2017) version of proximal policy
optimization (PPO) (Schulman et al., 2017) and then selecting two policies along the learning curve. For both environments,
we use the policy after 30 updates for πe and after 20 updates for πb. These policies use tanh activations on their hidden
units since these are the default in the OpenAI Baselines PPO implementation.

RIS estimates the behavior policy with gradient descent on the negative log-likelihood of the neural network. Specifically,
we interpret the neural network outputs, µ(s), as the mean of a multi-variate Gaussian distribution with diagonal covariance

1For these tasks we use the Roboschool versions: https://github.com/openai/roboschool

https://github.com/openai/roboschool
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matrix. We use a state-independent parameter vector, σ, to represent the log-standard deviation of the Gaussian distribution.
Given m, state-action pairs, RIS uses the loss function:

L =

m∑
i=1

0.5((ai − µ(si))/e
σ)2 + σ

Minimizing L is equivalent to minimizing a squared-error loss function with regards to estimating µ.

In our experiments we use a learning rate of 1× 10−3 and L2-regularization with a weight of 0.02. The multi-layer behavior
policies learned by RIS use relu activations. The specific architectures considered for πD have either 0, 1, 2, or 3 hidden
layers with 64 units in each hidden layer.

In these domains we only consider a batch size of 400 trajectories for estimating πD and computing the policy value estimate.
For determining early stopping and measuring validation error we use a separate batch of 80 trajectories (20% of the policy
evaluation data).

F. Extended Empirical Results
This appendix includes two additional plots that space constraints limited from the main text.

F.1. Importance Sampling Variants

This appendix presents additional importance sampling methods that are implemented with both OIS weights and RIS
weights. Specifically, we implement the following:

• The ordinary importance sampling estimator described in Section 2.
• The weighted importance sampling estimator (WIS) (Precup et al., 2000) that normalizes the importance weights with

their sum.
• Per-decision importance sampling (PDIS) (Precup et al., 2000) that importance samples the individual rewards.
• The doubly-robust (DR) estimator (Jiang & Li, 2016; Thomas & Brunskill, 2016a) that uses a model of P and r to

lower the variance of PDIS.
• The weighted doubly robust (WDR) estimator (Thomas & Brunskill, 2016a) that uses weighted importance sampling

to lower the variance of the doubly robust estimator.

Since DR and WDR require a model of the environment, we estimate a count-based model with half of the available data in
D.

Figure 3(a) gives results for all 5 of these IS variants implemented with both RIS weights and OIS weights. Figure 3(b)
gives the same results except for the on-policy setting. Note that in the on-policy setting, PDIS and WIS are identical to
IS and WDR is identical to DR when implemented with OIS weights. Thus we only present the RIS versions of these
methods. In addition to the results for ordinary IS, WIS, and WDR that are also in the main text, Figure 3 shows RIS
weights improve DR and PDIS.

F.2. Gradient Descent Policy Estimation

This appendix shows how the MSE of RIS changes during estimation of πD in the HalfCheetah domain. Figure 4 gives
the results. As in the Hopper domain, we see that the minimal validation loss policy and the minimal MSE policy are
misaligned. The RIS estimate initially over-estimates the policy value and then begins under-estimating. Further discussion
of these observations are given in Section 6 of the main text.
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Figure 4. Mean squared error and estimate of the importance sampling estimator during training of πD . The x-axis is the number of
gradient ascent steps. The top plot shows the training and validation loss curves. The y-axis of the top plot is the average negative
log-likelihood. The y-axis of the middle plot is mean squared error (MSE). The y-axis of the bottom plot is the value of the estimate. MSE
is minimized close to, but slightly before, the point where the validation and training loss curves indicate that overfitting is beginning. This
point corresponds to where the RIS estimate transitions from over-estimating to under-estimating the policy value. Results are averaged
over 200 trials and the shaded region represents a 95% confidence interval around the mean result.


