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Abstract

Distribution estimation is a statistical-learning cornerstone. Its classical min-max
formulation minimizes the estimation error for the worst distribution, hence under-
performs for practical distributions that, like power-law, are often rather simple.
Modern research has therefore focused on two frameworks: structural estimation
that improves learning accuracy by assuming a simple structure of the underlying
distribution; and competitive, or instance-optimal, estimation that achieves the
performance of a genie-aided estimator up to a small excess error that vanishes
as the sample size grows, regardless of the distribution. This paper combines
and strengthens the two frameworks. It designs a single estimator whose excess
error vanishes both at a universal rate as the sample size grows, as well as when
the (unknown) distribution gets simpler. We show that the resulting algorithm
significantly improves the performance guarantees for numerous competitive- and
structural-estimation results. The algorithm runs in near-linear time and is robust
to model mis-specification and domain-symbol permutations.

1 Outline

We organize the supplemental material as follows. In Section 2, we present experimental results
demonstrating the competitiveness of our estimator. In Section 3, we prove Theorem 1 in the main
paper and establish the estimator’s optimality. In Section 4 and 5, we provide the proofs of Corollary 9
(log-concave distributions) and Corollary 11 (enveloped power-law distributions) in the main paper.

2 Experiments

Experimental plots and relevant details are shown below.

Estimators We consider three estimators: the proposed estimator with sample size n, the improved
Good-Turing estimator [1] with the same sample size, and the empirical estimator with a larger n log n
sample size. As shown in [1], the improved Good-Turing estimator considerably outperforms other
estimators such as the Laplace estimator (add-1 estimator), the Krichevsky-Trofimov estimator [2],
and the Braess-Sauer estimator [3]. Hence we do not include the latter estimators here.

Hyper-Parameters Our algorithm employs three hyper-parameters: c1 is inversely related to the
variance of the probability estimates and is best chosen above 1, c2 controls the boundary between
frequent and infrequent multiplicities and is best chosen below 1, and c3 is proportional to the
threshold separating small and large probabilities and is best chosen be around 1. In the experiments,
we simply set c1 = 2, c2 = 0.5, and c3 = 1.
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(a) Uniform (b) Two-Step (c) Geometric (parameter 1/k)

(d) Zipf with parameter 0.5 (e) Uniform prior (Dirichlet 1) (f) Dirichlet 2 prior

Figure 1: Experimental results for support k = 10, 000, number of samples n ranging from 10k to
100k, averaged over 30 independent trials.

Distributions We choose alphabet size k = 10, 000 and consider six different distributions over
[k]: a uniform distribution of support size k; a two-step distribution with half the symbols having
probability 1/(2k), and the other half having probability 3/(2k); a geometric distribution with
parameter g = 1/k, i.e., pi = (1− g)i−1g, truncated at i = k and renormalized; a Zipf distribution
with parameter 0.5, i.e., pi ∝ i−0.5, truncated at i = k and renormalized; a distribution generated by
the uniform prior on ∆k; and a distribution generated by a Dirichlet-2 prior.

Experimental settings For each distribution we repeated the experiments 30 times and show the
average KL-divergence between the underlying distribution and the distribution estimates. The
relative performance of the three estimators is consistent over a wide range of sample sizes. To better
differentiate the performance of the three estimators, we limit the dynamic range of the error by
showing the results for sample sizes n ranging from 10 · k to 100 · k.

Code The code is available at https://github.com/ucsdyi/Competitive.

Conclusions As can be observed in all six plots, the proposed estimator outperforms the improved
Good-Turing estimator. Because of the estimator construction, outlined in Section 5 of the main
paper, the improvement is most pronounced when n ≥ k.

3 Proof of Theorem 1

In this section we prove Theorem 1 in the main paper.

Proof sketch From the discussion in Section 5 of the main paper, we need to estimate only Mµ.
Relations such as E[Mµ−1] = (µ/n)E [Φµ] suggest constructing estimators for E [Φµ]. By the
identity E [Φµ] =

∑
x∈[k] E [1µx], we can further reduce the problem to estimating E [1µx]. We then

approximate E [1µx] by scaled versions of 1µ
′

x where µ′ is close to µ. This simple approach yields
unbiased estimators Eµ

′

x,µ with sub-optimal variances. An important observation is that 1µx · 1µ
′

x = 0
for all µ 6= µ′, making it possible to construct a new estimator Ex,µ with near-optimal variance by
averaging a sequence of these unbiased estimators. Note that Ex,µ is still unbiased. Summing the
estimators over [k], we estimate E [Φµ] by Eµ :=

∑
x∈[k]Ex,µ. As shown in [6], a genie that

knows both E[Φµ+1] and E[Φµ] could accurately estimate Mµ by (Φµ(µ+ 1)/n)(E[Φµ+1]/E[Φµ]).
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Hence, to approximate the genie’s performance, we leverage the estimator for E[Φµ] and use Ôµ :=
(Φµ(µ+ 1)/n)(Eµ+1/Eµ). Note that this estimator is the ratio of two estimators and hence not easy
to analyze. To simplify the analysis, we modify Eµ slightly so that it has a structure similar to that of
Eµ+1. Then we prove that for relatively large, and frequent multiplicities, namely µ = Ω(log n) and
Φµ = Ω(log2 n), the proposed estimator almost achieves the performance of the genie. As illustrated
in Section 5 of the main paper, for other multiplicities, analysis shows that Good-Turing and empirical
estimators are already near-optimal. Combined, these estimates form our final estimator for the vector
M , and establish the guarantees stated in Theorem 1.

The Expected Total Probability Mass

To simplify our analysis, we adopt the standard “Poisson sampling” technique [4]. Instead of having a
sample sequence of fixed length n, we make the sample size a Poisson random variable N with mean
value n. Let p be an arbitrary distribution over [k], and XN be a length-Poi(n) sample sequence from
p. Let Nx denote the number of times symbol x appearing in XN , and let Φµ denote the number of
symbols appearing µ times. For simplicity, denote 1µx := 1Nx=µ. Then, the total probability mass of
the symbols that appear µ times is

Mµ =
∑
x∈[k]

px1
µ
x.

By the argument in Section 5 of the main paper, it suffices to design an estimator for Mµ.

The expectation of Mµ is

E[Mµ] = E

∑
x∈[k]

px1
µ
x

 =
∑
x∈[k]

pxe
−npx (npx)µ

µ!
=
µ+ 1

n

∑
x∈[k]

E
[
1µ+1
x

]
=
µ+ 1

n
E [Φµ+1] .

Furthermore, as shown in [6], a genie that knows both E[Φµ+1] and E[Φµ] could estimate Mµ really
well using the estimator

Oµ := Φµ
µ+ 1

n

E[Φµ+1]

E[Φµ]
.

Both observations suggest that we should find a good estimator for E[Φµ+1].

Estimating an Indicator Variable

The above derivation shows that E [Φµ+1] =
∑
x∈[k] E

[
1µ+1
x

]
. Symmetry further reduces the

problem to estimating a single term E
[
1µ+1
x

]
. For notational convenience, we change (µ+ 1) to µ.

For any two natural numbers µ and µ′, let aµ
′

µ := µ′!/µ!. Direct computation yields

E[1µx] = E[1µ
′

x ]aµ
′

µ (npx)
µ−µ′

.

To further simplify our derivations, let us assume that another two independent length-Poi(n) sample
sequences from p are given, say XN ′ and XN ′′ where N ′ ∼ Poi(n) and N ′′ ∼ Poi(n). Denote
by N ′x and N ′′x the number of times symbol x appearing, and Φ′µ and Φ′′µ the number of symbols
appearing µ times, in XN ′ and XN ′′ , respectively. This is equivalent to the commonly-used “sample
splitting” technique [5], namely, we split the given sample sequence into three independent subse-
quences of roughly the same length. It is not hard to see that even without these additional sample
sequences, performing sample splitting shall change the right-hand side of Theorem 1 by at most a
multiplicative factor of three, hence does not affect the statement of the theorem. By the last identity
and properties of Poisson random variables, for µ ≥ µ′, the following estimator is an unbiased
estimator for E[1µx],

Eµ
′

x,µ := 1µ
′

x a
µ′

µ (N ′x)µ−µ
′
,

where AB is the falling factorial of A of order B.

Let c1 be a positive absolute constant. In the subsequent proofs, we will assume that c1 is sufficiently
small and lies in (0, 1) to avoid large constants in the expressions. For c1 > 1, the proof of Theorem 1

3



still follows from the remaining arguments. Other related constants have also been chosen to simplify
the proofs and expressions. For example, we set c3 = 100 to eliminate some edge cases.

While the bias of Eµ
′

x,µ in estimating E[1µx] is zero, the variance of Eµ
′

x,µ satisfies

Var(Eµ
′

x,µ) ≤ E[(Eµ
′

x,µ)2] ≤
(
aµ
′

µ

)2

E[1µ
′

x ] · E
[(

(N ′x)µ−µ
′
)2
]
.

The quantity on the right-hand side is the product of three terms. We bound the first term using the
following lemma.

Lemma 1. For sufficiently large n and any two natural numbers µ, µ′ such that n log n > µ >
100 log n and

µ− c1
√

µ

log n
≤ µ′ ≤ µ− 1,

we have

(aµ
′

µ )2 ≤ 4

(µµ−µ′)2
.

Proof. The quantity of interest satisfies

aµ
′

µ =
µ′!

µ!

=
1

µµ−µ′
· µµ−µ

′∏µ−µ′−1
j=0 (µ− j)

≤ 1

µµ−µ′
·

 µ

µ− c1
√

µ
logn

c1
√

µ
logn

=
1

µµ−µ′
·

 1

1− c1
√

1
µ logn

c1
√

µ
logn

≤ 1

µµ−µ′
·

(
1(

1− 1
2

)2
) c21

logn

≤ 2

µµ−µ′
.

Replacing the first term by the upper bound in the lemma implies

Var(Eµ
′

x,µ)

4
≤ E

( (N ′x)µ−µ
′

µµ−µ′

)2
E[1µ

′

x ].

It suffices to bound the last quantity. To proceed, we need the following concentration inequalities for
Poisson random variables . Note that these inequities hold for any Poisson random variables, and
simply follow from the well-known Chernoff bound [4].

Lemma 2. For X ∼ Poi(M) and any λ > 0,

P(X ≤ (1− λ)M) ≤
(

e−λ

(1− λ)(1−λ)

)M
≤ e−λ

2M
2 ,

and

P(X ≥ (1 + λ)M) ≤
(

eλ

(1 + λ)(1+λ)

)M
≤ e−

min{λ2,λ}M
3 .
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Let c be a sufficiently large absolute constant. As a corollary of the lemma above, for any natural
number µ > 100 log n and j such that

√
µ/(c log n) > j ≥ 1,

Pr
(
N ′x > µ+ jc

√
µ log n

)
Pr(1µx = 1) ≤ e−Θ(j

√
c logn),

and for any i ≥ 1 and natural number µ,
Pr (N ′x > µ+ iµ) Pr(1µx = 1) ≤ e−Θ(iµ),

Intuitively, Poisson random variables are highly concentrated around their mean values. Hence, for a
Poisson random variable X and natural numbers a, b such that a� b, we should expect the product
Pr(X ≥ a) · Pr(X ≤ b) to be small. We are ready to bound the quantity of interest.
Lemma 3. For sufficiently large n and any two natural numbers µ, µ′ such that n log n > µ >
100 log n and

µ− c1
√

µ

log n
≤ µ′ ≤ µ− 1,

we have

E

( (N ′x)µ−µ
′

µµ−µ′

)2
E[1µ

′

x ] ≤ e2c

(
E[1µ

′

x ] +
1

nΘ(
√
c)

)
.

Proof. The proof follows from the two concentration inequalities above. Note that for µ′ ≤ µ− 1,
those inequalities still hold if we replace Pr(1µx = 1) by Pr(1µ

′

x = 1).

E

( (N ′x)µ−µ
′

µµ−µ′

)2
E[1µ

′

x ]

≤

(
1 + c

√
log n

µ

)2(µ−µ′)

E[1µ
′

x ] +

√
µ/(c logn)∑
j=1

(
1 + (j + 1)c

√
log n

µ

)2(µ−µ′)

e−Θ(j
√
c logn)

+

∞∑
i=
√
c

(1 + (i+ 1))2(µ−µ′)e−Θ(iµ)

≤ e2cE[1µ
′

x ] +

√
µ/(c logn)∑
j=1

e2(j+1)ce−Θ(j
√
c logn) +

∞∑
i=
√
c

eΘ(
√
µ log i)e−Θ(iµ)

≤ e2cE[1µ
′

x ] +
1

nΘ(
√
c)

+

∞∑
i=
√
c

eΘ(
√
µ log i)e−Θ(iµ)

= e2c

(
E[1µ

′

x ] +
1

nΘ(
√
c)

)
.

Ignoring the 1/nΘ(
√
c) term, the proof actually shows that Eµ

′

x,µ is at most a constant multiple of√
E[1µ

′
x ], with high probability.

Under Poisson sampling, the multiplicity Nx is also a Poisson random variable with mean npx.
Note that E[1µ

′

x ] = e−npx(npx)µ
′
/µ′! ≤ (npx)e−npx(npx)µ

′−1/(µ′ − 1)! = E[1µ
′−1
x ](npx). This

observation together with an argument analogous to that above yields
Lemma 4. Under the same conditions as in Lemma 3,

E

( (N ′x)µ−µ
′

µµ−µ′

)2
E[1µ

′

x ] ≤ e2c

(
E[1µ

′

x ] +
px

nΘ(
√
c)

)
.

Since E[1µ
′

x ] = Pr(Nx = µ′), and Eµ
′

x,µ = O(

√
E[1µ

′
x ]) with high probability, there exists an

absolute constant c′ satisfying
Pr(Eµ

′

x,µ ≥ c′) ≤
px
nΘ(c)

.
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An Estimator for E[1µx]

While Eµ
′

x,µ is an unbiased estimator for E[1µx], in the last section we showed that it can have a
constant variance. To reduce the estimation variance, we estimate E[1µx] by the following estimator

Ex,µ :=
1

c1
√
µ/log n

µ−1∑
µ′=µ−c1

√
µ/logn

Eµ
′

x,µ.

The estimator simply averages a sequence of Eµ
′

x,µ’s and remains as an unbiased estimator for
E[1µx]. An important observation is that Ex,µ is the sum of Eµ

′

x,µ = 1µ
′

x a
µ′

µ (N ′x)µ−µ
′
, and only

one of these terms can be non-zero, as 1µ
′

x · 1µx = 0 for all µ 6= µ′. Therefore, the inequality
Pr(Eµ

′

x,µ ≥ c′) ≤ px/nΘ(c) immediately translates to

Pr

(
Ex,µ >

c′

c1
√
µ/log n

)
≤ px
nΘ(c)

.

We have designed Ex,µ in a way such that its variance would be small. Specifically,

Lemma 5. Under the same conditions as in Lemma 3,

Var(Ex,µ) ≤ Θ

(
log n

µ

) µ−1∑
µ′=µ−c1

√
µ/logn

(
E[1µ

′

x ] +
px

nΘ(
√
c)

)
.

Proof. The variance of Ex,µ satisfies

Var(Ex,µ)
(a)
=

(
1

c1
√
µ/log n

)2

Var

 µ−1∑
µ′=µ−c1

√
µ/logn

1µ
′

x a
µ′

µ (N ′x)µ−µ
′


(b)

≤ Θ

(
log n

µ

)
E

 µ−1∑
µ′=µ−c1

√
µ/logn

1µ
′

x a
µ′

µ (N ′x)µ−µ
′


2

(c)
= Θ

(
log n

µ

) µ−1∑
µ′=µ−c1

√
µ/logn

E
[(
1µ
′

x a
µ′

µ (N ′x)µ−µ
′
)2
]

(d)

≤ Θ

(
log n

µ

) µ−1∑
µ′=µ−c1

√
µ/logn

(
E[1µ

′

x ] +
px

nΘ(
√
c)

)
,

where (a) follows from Var(aX) = a2Var(X), (b) follows from Var(X) ≤ EX2, (c) follows from
1µ
′

x · 1µx = 0 for all µ 6= µ′, and (d) follows from Lemma 4.

Estimating E[Φµ]

The last section shows that Ex,µ is a well-behaved estimator for E[1µx]. Following the identity
E[Φµ] =

∑
x∈[k] E [1µx], we naturally estimate E[Φµ] by

Eµ :=
∑
x∈[k]

Ex,µ.
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By construction,Eµ is an unbiased estimator for E[Φµ]. Due to Poisson sampling, all the multiplicities
Nx are independent. Following lemma 20, the variance of Eµ admits

Var(Eµ) =
∑
x∈[k]

Var(Ex,µ)

≤
∑
x∈[k]

Θ

(
log n

µ

) µ−1∑
µ′=µ−c1

√
µ/logn

(
E[1µ

′

x ] +
px

nΘ(
√
c)

)

= Θ

(
log n

µ

) µ−1∑
µ′=µ−c1

√
µ/logn

(
E[Φµ′ ] +

1

nΘ(
√
c)

)
.

Furthermore, by a non-asymptotic version of the Stirling’s formula,

E[1µx] = e−npx
(npx)µ

µ!
≤ e−µµ

µ

µ!
≤ e−µµµ · (2π)−1/2 eµ

µµ+1/2
=

1√
2πµ

.

Combining this with the following inequality mentioned in the last section,

Pr

(
Ex,µ >

c′

c1
√
µ/log n

)
≤ px
nΘ(c)

,

we immediately get

Pr

(
|Ex,µ − E[1µx]| > c′

c1
√
µ/log n

)
≤ Pr

(
Ex,µ > −

1√
2πµ

+
c′

c1
√
µ/log n

)
≤ px
nΘ(c)

,

where we have increased the value of c′ by 1.

We are ready to characterize the tail probability of Eµ, for which we use the following variation [6]
of the well-known Bernstein inequality.

Lemma 6. Let Y1, . . . , Ym be m independent variables such that with probability ≥ 1− εi, |Yi −
E[Yi]| < M , then for any δ ∈ (0, 1),

Pr

(∣∣∣∣∣∑
i

Yi − E

[∑
i

Yi

]∣∣∣∣∣ >
√

2
∑
i

Var(Yi) log
1

δ
+

2

3
M log

1

δ

)
≤ 2δ +

∑
i

εi.

Set δ = n−10, m = k, and Yx = Ex,µ for all x ∈ [k], and choose M = c′/c1
√
µ/log n and

εx = px/n
Θ(c) for all x ∈ [k]. For a sufficiently large absolute constant c4, the concentration

inequality above combines all the previous results and yields

Pr

|Eµ − E[Φµ]| > c4
log

3
2 n
√
µ

√√√√√ 1

c21
+

µ−1∑
µ′=µ−c1

√
µ/logn

E[Φµ′ ]

 ≤ Θ

(
1

n10

)
.

Next we derive a similar inequality for which E[Φµ′ ]’s in the inner sum are replaced with E[Φµ].

To do this, we utilize the following lemma [6], which shows that E[Φµ] and E[Φµ−1] are often close
to each other. Note that we have made the constants explicit.

Lemma 7. For µ ≥ 100 log n,

|E[Φµ]− E[Φµ−1]| ≤ 5

√
log n

µ
E[Φµ−1] +

3

n2
,

and for µ ≥ 1,

E[Φµ] ≤ O
(

(log n)E[Φµ−1] +
1

n

)
.
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By the above lemma, for n log n > µ ≥ 100 log n,

E[Φµ−1] + µ
3

n2
≤

(
1 + 10

√
log n

µ

)(
E[Φµ] + (µ+ 1)

3

n2

)
.

This recursive inequality implies that for sufficiently small constant c1 and any µ′ satisfying µ −
c1
√
µ/log n ≤ µ′ ≤ µ− 1,

E[Φµ′ ] + µ′
3

n2
≤
(
E[Φµ] + (µ+ 1)

3

n2

) µ∏
i=µ′+1

(
1 + 10

√
log n

i

)

≤
(
E[Φµ] + (µ+ 1)

3

n2

)(
1 + 10

√
log n

µ− c1
√
µ/log n

)c1√µ/logn

≤
(
E[Φµ] + (µ+ 1)

3

n2

)(
1 +

√
121 log n

µ

)11c1
√

µ
121 logn

≤
(
E[Φµ] + (µ+ 1)

3

n2

)
e11c1

≤ 2

(
E[Φµ] + (µ+ 1)

3

n2

)
,

where we have used the fact that (1 + 1/x)x < e for x > 0. Consequently, under the same conditions,

E[Φµ′ ] ≤ 2E[Φµ] + 2(µ+ 1)
3

n2
≤ 2E[Φµ] +

7 log n

n
.

Hence for sufficiently small c1,
µ−1∑

µ′=µ−c1
√
µ/logn

E[Φµ′ ] ≤ 2c1
√
µ/log n

(
E[Φµ] +

7 log n

n

)
≤ 2c1

√
µ

log n
E[Φµ] +

7 log n√
n

.

This together with the previous tail bound yields
Lemma 8. For n log n > µ ≥ 100 log n,

Pr

(
|Eµ − E[Φµ]| > c4

log
3
2 n
√
µ

√
1

c21
+ 2c1

√
µ

log n
E[Φµ]

)
≤ Θ

(
1

n10

)
.

An Alternative Estimator for E[Φµ−1]

Under the proper conditions mentioned previously,Ex,µ−1 is not only unbiased in estimating E[1µ−1
x ],

but also has small variance. However, our latter analysis calls for bounding the difference between
Ex,µ−1 and Ex,µ, and it is inconvenient to use Ex,µ−1 since it may have fewer terms than Ex,µ.
Hence to simplify our derivations, we construct the following estimator for E[1µ−1

x ],

E′x,µ−1 :=
1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

Eµ
′

x,(µ−1),

and consequently estimate E[Φµ−1] by

E′µ−1 :=
∑
x∈[k]

E′x,µ−1.

By an argument that is almost the same as that in the last few sections,
Lemma 9. For n log n > µ ≥ 100 log n,

Pr

∣∣E′µ−1 − E[Φµ−1]
∣∣ > c4

log
3
2 n
√
µ

√
1

c21
+ 2c1

√
µ− 1

log n
E[Φµ−1]

 ≤ Θ

(
1

n10

)
.
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The Difference between Two Estimators

In this section, we consider

E(1)
µ := Eµ − E′µ−1 =

∑
x∈[k]

(Ex,µ − E′x,µ−1),

the difference between the two estimatorsEµ andE′µ−1. We show that,E(1)
µ , as an unbiased estimator

for E[Φµ]− E[Φµ−1], highly concentrates around its mean. In the subsequent sections, we leverage
this property to design an accurate estimator for the total probability Mµ.

Similar to the previous derivations, we start by considering a single term

E(1)
x,µ := Ex,µ − E′x,µ−1.

We can bound the absolute value of E(1)
x,µ as follows.

|E(1)
x,µ| = |Ex,µ − E′x,µ−1|

=

∣∣∣∣∣∣∣
1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

Eµ
′

x,µ −
1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

Eµ
′

x,(µ−1)

∣∣∣∣∣∣∣
≤ 1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

∣∣∣Eµ′x,µ − Eµ−1
x,µ

∣∣∣
=

1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

∣∣∣1µ′x aµ′µ (N ′x)µ−µ
′
− 1µ

′

x a
µ′

µ−1(N ′x)(µ−1)−µ′
∣∣∣

=
1

c1

√
log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

1µ
′

x a
µ′

µ (N ′x)(µ−1)−µ′ |(N ′x − µ)− (µ− µ′) + 1| .

The above inequality together with Var(E
(1)
x,µ) ≤ E(E

(1)
x,µ)2 implies

Var(E(1)
x,µ) ≤ 1

c21

log n

µ

µ−1∑
µ′=µ−c1

√
µ/logn

(aµ
′

µ )2E[1µ
′

x ]E
(

(N ′x)(µ−1)−µ′ |(N ′x − µ)− (µ− µ′) + 1|
)2

,

where we have used 1µ
′

x · 1µx = 0 for all µ 6= µ′. Note that the bound on the right-hand side is a sum
of three-term products. Assume that n� 1 and n log n > µ > 100 log n, and consider one of these
products that corresponds to an arbitrary µ′ satisfying µ − c1(µ/log n) ≤ µ′ ≤ µ − 1. Lemma 1
bounds its first term as (aµ

′

µ )2 ≤ 4/(µµ−µ
′
)2. Replacing the first term with this bound, the following

lemma further upper bounds the resulting quantity.

Lemma 10. Under the same conditions as in Lemma 3,

E[1µ
′

x ]

(µµ−µ′)2
E
(

(N ′x)(µ−1)−µ′ |(N ′x − µ)− (µ− µ′) + 1|
)2

≤ Θ

(
log n

µ

)
E[1µ

′

x ] +
1

nΘ(
√
c)
.

Proof. Since (N ′x − µ) can be negative, we need the concentration inequality

Pr
(
N ′x − µ < −c

√
µ log n

)
Pr(1µx = 1) ≤ e−Θ(

√
c logn),

9



which follows from Lemma 2. Similar to the proof of Lemma 3, we have

E[1µ
′

x ]E
(

(N ′x)(µ−1)−µ′ |(N ′x − µ)− (µ− µ′) + 1|
)2 1

(µµ−µ′)2

≤ E[1µ
′

x ]

(
2c
√
µ log n

µ

)2
(

1 + c

√
log n

µ

)2((µ−1)−µ′)

+

(
2µ− 1

u

)2

e−Θ(
√
c logn)

+

√
µ/(c logn)∑
j=1

(
1 + (j + 1)c

√
log n

µ

)2(µ−µ′)

e−Θ(j
√
c logn) +

∞∑
i=
√
c

(1 + (i+ 1))2(µ−µ′)e−Θ(iµ).

Since (1 + 1/x)x < e for x > 0, the first term on the right-hand side can be bounded by 4(c2 ·
e2c)E[1µ

′

x ](log n)/µ. The sum of the remaining three terms is at most

4e−Θ(
√
c logn) +

√
µ/(c logn)∑
j=1

e2(j+1)ce−Θ(j
√
c logn) +

∞∑
i=
√
c

eΘ(
√
µ log i)e−Θ(iµ) ≤ 1

nΘ(
√
c)
.

Consolidating these bounds yields the desired result.

By E[1µ
′

x ] ≤ E[1µ
′−1
x ](npx), an analogous argument yields

Lemma 11. Under the same conditions as in Lemma 3,

E[1µ
′

x ]

(µµ−µ′)2
E
(

(N ′x)(µ−1)−µ′ |(N ′x − µ)− (µ− µ′) + 1|
)2

≤ Θ

(
log n

µ

)
E[1µ

′

x ] +
px

nΘ(
√
c)
.

There is always a unique µ′ such that 1µ
′

x = 1. The proof of Lemma 10 together with E[1µ
′

x ] ≤
E[1µ

′−1
x ](npx) also shows that for a sufficiently large absolute constant c′′,

Pr

(
|E(1)
x,µ| >

c′′ log n

µ

)
≤ px
nΘ(c)

.

Furthermore, the expectation of E(1)
x,µ satisfies

Lemma 12. For any natural number µ such that n log n > µ ≥ 100 log n,

|E[E(1)
x,µ]| ≤ 1/µ.

Proof. Recall that E(1)
x,µ is an unbiased estimator for E[1µx]− E[1µ−1

x ]. Therefore,

|E[E(1)
x,µ]| = |E[1µx]− E[1µ−1

x ]|

=

∣∣∣∣e−npx (npx)µ

µ!
− e−npx (npx)µ−1

(µ− 1)!

∣∣∣∣
=

∣∣∣∣e−npx (npx)µ−1(npx − µ)

µ!

∣∣∣∣ .
In general, consider the function gµ(y) := e−yyµ−1(y − µ)/µ! for y ≥ 0. The first-order derivative
of gµ(y) with respect to y is

g′µ(y) = − 1

µ!
e−yy−2+µ(µ2 + y2 − µ(1 + 2y))

which has two roots, y1 := µ−√µ and y2 := µ+
√
µ. Since both gµ(0) and limy→∞ g(y) equal to

zero, the maximum of |gµ(y)| for y ≥ 0 is max{|g(y1)|, |g(y2)|}. By a non-asymptotic version of

10



the Stirling’s formula,

|g(y1)| = e−µ+
√
µ (µ−√µ)µ−1√µ

µ!

≤ e−µ+
√
µ(µ−√µ)µ−1√µ eµ√

2πµµ+ 1
2

= e
√
µ

(
µ−√µ

µ

)µ−1
1√
2πµ

= e
√
µ

(
1− 1
√
µ

)√µ(
√
µ−(1/

√
µ))

1√
2πµ

≤ e
√
µe−(

√
µ−(1/

√
µ)) 1√

2πµ

=
e1/
√
µ

√
2πµ

≤ 1

µ
.

Similarly, we can also show that |g(y1)| ≤ 1/µ.

Increase the value of c′′ by 1. The above lemma implies

Pr

(
|E(1)
x,µ − E[E(1)

x,µ]| > c′′ log n

µ

)
≤ px
nΘ(c)

.

Turning back to E(1)
µ and using Lemma 11, we can bound the variance of E(1)

µ as

Var(E(1)
µ ) ≤

∑
x∈[k]

Var(E(1)
x,µ) ≤ Θ

(
log2 n

µ2

) µ−1∑
µ′=µ−c1

√
µ/logn

(
E[Φµ′ ] +

1

nΘ((c/k)∧k)

)
.

Let c′4 be a sufficiently large absolute constant. By the Bernstein-inequality variation in Lemma 6,

Pr

∣∣∣E(1)
µ − E[E(1)

µ ]
∣∣∣ > c′4

log2 n

µ

√√√√√1 +

µ−1∑
µ′=µ−c1

√
µ/logn

E[Φµ′ ]

 ≤ Θ

(
1

n10

)
.

Furthermore, by Lemma 7, for sufficiently small constant c1 and any µ′ satisfying µ−c1
√
µ/log n ≤

µ′ ≤ µ− 1 ,

µ−1∑
µ′=µ−c1

√
µ/logn

E[Φµ′ ] ≤ 2c1
√
µ/log n

(
E[Φµ] +

7 log n

n

)
≤ 2c1

√
µ

log n
E[Φµ] +

7 log n√
n

.

Combined, the two inequalities above yield

Lemma 13. For n log n > µ ≥ 100 log n,

Pr

(∣∣∣E(1)
µ − E[E(1)

µ ]
∣∣∣ > c′4

log2 n

µ

√
2 + 2c1

√
µ

log n
E[Φµ]

)
≤ Θ

(
1

n10

)
.

Estimating the Total Probability Mass

A genie estimator that knows both E[Φµ] and E[Φµ−1] could accurately estimate Mµ−1 by

Oµ−1 := Φµ−1
µ

n

E[Φµ]

E[Φµ−1]
.

and achieve the following guarantee [6] for a sufficiently large constant c′′4 .

11



Lemma 14. For µ satisfying n log n > µ ≥ 100 log n and E[Φµ−1] ≥ 1,

Pr

(
|Mµ−1 −Oµ−1| ≥ c′′4

√
E[Φµ−1](µ− 1) log2 n

n

)
≤ O

(
1

n10

)
.

Replace E[Φµ]/E[Φµ−1] with Eµ/E′µ−1. Our estimator is simply

Ôµ−1 := Φµ−1
µ

n

Eµ
E′µ−1

.

Note that we use E′µ−1 instead of Eµ−1 just to simplify the proofs. Clearly, our objective is to
characterize the estimation error |Mµ−1 − Ôµ−1|. By the triangle inequality and the above lemma, it

suffices to bound
∣∣∣Oµ−1 − Ôµ−1

∣∣∣. To do this, we use the following interesting result.

Lemma 15. If b > 0, b+ ∆b > 0, and |∆b| ≤ 0.9b,∣∣∣∣a+ ∆a

b+ ∆b
− a

b

∣∣∣∣ ≤ O( |∆b||a|+ |∆a||b|b2

)
.

The above lemma appears in [6] and follows by simple algebra. Set a = E[Φµ−Φµ−1], b = E[Φµ−1],
∆a = Eµ − E′µ−1 − E[Φµ − Φµ−1], and ∆b = E′µ−1 − E[Φµ−1]. Note that a = E[E

(1)
µ ] and

∆a = E
(1)
µ − E[E

(1)
µ ]. Assuming that n log n > µ ≥ 100 log n, we analyze each term below.

For a = E[Φµ − Φµ−1], by Lemma 7,

|a| ≤ 5

√
log n

µ
E[Φµ−1] +

3

n2
.

For ∆a = E
(1)
µ − E[E

(1)
µ ], as shown in Lemma 13,

Pr

(
|∆a| > c′4

log2 n

µ

√
2 + 2c1

√
µ

log n
E[Φµ]

)
≤ Θ

(
1

n10

)
.

For b = E[Φµ−1], Lemma 7 implies a lower bound

b ≥

(
1 + 5

√
log n

µ

)−1(
E[Φµ]− 3

n2

)
≥ 2

3
E[Φµ]− 2

n2
,

as well as an upper bound

b ≤

(
1 + 10

√
log n

µ

)
E[Φµ] +

3

n2
≤ 2E[Φµ] +

3

n2
.

For ∆b = E′µ−1 − E[Φµ−1], Lemma 9 states that

Pr

|∆b| > c4
log

3
2 n
√
µ

√
1

c21
+ 2c1

√
µ− 1

log n
E[Φµ−1]

 ≤ Θ

(
1

n10

)
.

Our bound on |b| further implies

Pr

|∆b| > c4
log

3
2 n
√
µ

√
2

c21
+ 6c1

√
µ− 1

log n
E[Φµ]

 ≤ Θ

(
1

n10

)
.

Here, we can choose a sufficiently large constant c5 so that, if n� 1, µ > 100 log n, and E[Φµ−1] >

c5(log2 n)/10, then |∆b| < 0.9b with probability at least 1 − Θ(n−10). Also note that Φµ =

12



∑
x∈[k] 1

µ
x . In Lemma 6, set δ = n−10, m = k, and Yx = 1µx for all x ∈ [k], M = 1, and choose

εx = 0 for all x ∈ [k]. Then,

Pr

|Φµ − E [Φµ]| >
√

20
∑
x∈[k]

Var(1µx) log n+
20

3
log n

 ≤ 2

n10
.

Together with Var(1µx) ≤ E(1µx)2 = E[1µx], the above inequality implies

Lemma 16. For sufficiently large n, and µ satisfying µ > 100 log n and E[Φµ−1] > c5(log2 n)/10,

Pr

(
|Φµ − E [Φµ]| >

√
20E[Φµ] log n+

20

3
log n

)
≤ 2

n10
.

For our purpose, it suffices to apply the estimator Ôµ−1 to indices µ satisfying µ > 100 log n and
E[Φµ] ≥ 0.5c5 log2 n. While not knowing p, we can use the independent sample sequence XN ′′

to ensure that with high probability, E[Φµ] ≥ 0.5c5 log2 n. More concretely, we only apply Ôµ−1

to indices µ satisfying Φ′′µ−1 > c5 log2 n. By construction, E [Φµ] = E
[
Φ′′µ
]
. Then for sufficiently

large c5 and n, and E[Φµ−1] < 0.5c5 log2 n, Lemma 16 implies

Pr
(
Φ′′µ−1 > c5 log2 n

)
≤ Pr

(∣∣Φ′′µ−1 − E [Φµ−1]
∣∣ >√20E[Φµ−1] log n+

20

3
log n

)
≤ 2

n10
.

Hence for µ satisfying the conditions mentioned previously, we can assume that E[Φµ−1] ≥
0.5c5 log2 n. Under this assumption, Lemma 7 implies that E[Φµ] ≥ E[Φµ−1]/3 ≥ c5(log2 n)/6.
By the same reasoning, E[Φµ]/18 ≤ E[Φµ−1]/6 ≤ Φµ−1 ≤ 6E[Φµ−1] ≤ 18E[Φµ] with probability
at least 1−Θ(n−10). In other words, we can also assume that Φµ−1 = Θ(E[Φµ−1]) = Θ(E[Φµ]).

Recall that a = E[Φµ − Φµ−1], b = E[Φµ−1], ∆a = Eµ − E′µ−1 − E[Φµ − Φµ−1], and ∆b =
E′µ−1 − E[Φµ−1]. The union bound together with Lemma 15 combines all the results in this section
and yields that with probability at least 1−Θ(n−10),∣∣∣Oµ−1 − Ôµ−1

∣∣∣ = Φµ−1
µ

n

∣∣∣∣ EµEµ−1
− E[Φµ]

E[Φµ−1]

∣∣∣∣
= Φµ−1

µ

n

∣∣∣∣Eµ − Eµ−1

Eµ−1
− E[Φµ]− E[Φµ−1]

E[Φµ−1]

∣∣∣∣
= Φµ−1

µ

n

∣∣∣∣a+ ∆a

b+ ∆b
− a

b

∣∣∣∣
≤ O

(
Φµ−1

µ

n

|∆b||a|+ |∆a||b|
b2

)

≤ O

Φµ−1
µ

n

(
log

3
2 n√
µ

√√
µ−1
lognE[Φµ]

)√
logn
µ+1 E[Φµ−1]

(E[Φµ])2



+O

Φµ−1
µ

n

(
log2 n
µ

√√
µ

lognE[Φµ]

)
E[Φµ]

(E[Φµ])2


= O

(
log2 n

n

√√
µ

log n
E[Φµ]

)
.

Again, we can make c5 sufficiently large so that with probability at least 1 − O(n−10), the upper
bound is at most 0.9Oµ−1 and Oµ−1 = Θ(E[Φµ−1]µ/n). Combined, the upper bound of 0.9Oµ−1,
the identity Φµ−1 = Θ(E[Φµ−1]) = Θ(E[Φµ]), and Lemma 14 imply

13



Lemma 17. For µ satisfying n log n > µ ≥ 100 log n and Φ′′µ > c5 log2 n,

Pr

(
|Mµ−1 − Ôµ−1| ≥ 2c′′4

√
E[Φµ−1](µ− 1) log2 n

n

)
≤ O

(
1

n10

)
.

Therefore, with probability at least 1−O(n−10), we have both Ôµ−1 = Θ(E[Φµ−1]µ/n) and

|Mµ−1 − Ôµ−1| ≤ O

(√
E[Φµ−1](µ− 1) log2 n

n

)
= O

(√
Φµ−1(µ− 1) log2 n

n

)
.

Furthermore, if these two claims hold,

(Mµ−1 − Ôµ−1)2

Ôµ−1

≤ O


(

(
√
E[Φµ−1](µ− 1) log2 n)/n

)2

E[Φµ−1]µ/n

 ≤ O( log4 n

n
1Φµ−1>0

)
.

Finally, we note that these results hold with high probability, i.e., 1−O(n−10), instead of surely. To
make sure that the KL-divergence between the underlying truth and our estimates is not infinity, we
modify our estimator slightly and denote

Ô′µ−1 := min{max{1/n, Ôµ−1}, log2 n}.

We use Ô′µ−1 to estimate Mµ−1 iff µ satisfies n log n > µ ≥ 100 log n and Φ′′µ > 2c5 log2 n. Note
that this estimator also admits the above inequalities, since with probability at least 1−O(n−10),
the value of the original estimator satisfies Ôµ−1 = Θ(µΦµ−1/n) ≤ O(N/n) = O(log n) < log2 n

and Ôµ−1 = Θ(µΦµ−1/n) ≥ Ω((log3 n)/n) > 1/n, implying that Ô′µ−1 = Ôµ−1.

The Good-Turing Estimator

The Good-Turing estimator estimates Mµ−1 by

Ĝµ−1 :=
µ

n
Φµ.

Let c′5 be a sufficiently large absolute constant. The following lemma [7] characterizes the perfor-
mance of Ĝµ−1 in estimating Mµ−1.
Lemma 18. For µ satisfying E[Φµ−1] ≥ 1 and δ ∈ (0, 1),

Pr

(
|Mµ−1 − Ĝµ−1| > c′5

√
E[Φµ] + 1

µ log2 n
δ

n

)
≤ δ.

For indices µ satisfying 2 ≤ u ≤ 100 log n and Φ′′µ−1 > 2c5(log2 n), we simply use the following
variant of the Good-Turing estimator,

Ĝ′µ−1 := max

{
1

n
, Ĝµ−1

}
.

Given Φ′′µ−1 > 2c5(log2 n), by derivations in the last section, we can assume that Φµ−1 = Θ(Φµ) =

Θ(E[Φµ−1]) = Θ(E[Φµ]) ≥ log2 n, and with probability at least 1−O(n−10), we would be correct.
Choose δ = n−10 in Lemma 18. Then,

Pr

(
|Mµ−1 − Ĝµ−1| > 152c′5

√
E[Φµ]

µ log2 n

n

)
≤ 1

n10
.

Additionally, note that µ ≤ 100 log n. Hence with probability at least 1−O(n−10),

|Mµ−1 − Ĝµ−1| ≤ O
(√

E[Φµ]
µ log2 n

n

)
≤ O

(√
Φµ−1(µ− 1) log5/2 n

n

)
,
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and

(Mµ−1 − Ĝµ−1)2

Ĝµ−1

≤ O


(√

E[Φµ]µ log2 n
n

)2

µ
nE[Φµ]

 = O
(
µ log4 n

n

)
= O

(
log5 n

n
1Φµ−1>0

)
.

The estimator G′µ−1 also admits these inequalities since with probability at least 1−O(n−10), we
have G′µ−1 = µΦµ/n ≥ 2(log3 n)/n > 1/n, implying G′µ = Gµ.

An Estimator for M0

For µ = 1, regardless of the value of Φ′′µ−1, we estimate the total probability Mµ−1 = M0, by the
estimator Ĝ′0 = max{1,Φ1}/n. We divide our analysis into two cases according to E[Φ0].

Case 1: If E[Φ0] ≥ 1, then by Lemma 18, with probability at least 1−O(n−10),

|M0 − Ĝ′0| ≤ |M0 − Ĝ0|+
1

n
≤ O

(√
E[Φ1] + 1

log2 n

n

)
If E[Φ1] ≥ c5 log2 n, then by Lemma 16 and arguments in the last section, with probability at least
1−O(n−10), we have E[Φ1] = Θ(Φ1) ≥ Ω(log2 n). This together with the above inequality further
implies Ĝ′0 = Φ1/n and

|M0 − Ĝ′0| ≤ O
(√

Φ1
log2 n

n

)
.

Therefore, with probability at least 1−O(n−10), we have Φ1 > 0 and

(M0 − Ĝ′0)2

Ĝ′0
≤ O


(√

Φ1
log2 n
n

)2

Φ1/n

 ≤ O( log4 n

n
1Φ1>0

)
.

If E[Φ1] < c5 log2 n, then by the first inequality, with probability at least 1−O(n−10),

|M0 − Ĝ′0| ≤ O
(√

E[Φ1] + 1
log2 n

n

)
≤ O

(
log3 n

n

)
,

which further implies

(M0 − Ĝ′0)2

Ĝ′0
≤ O


(

log3 n
n

)2

1/n

 ≤ O( log6 n

n

)
.

Case 2: If E[Φ0] ≤ 1, then by Lemma 7,

E[Φ1] ≤ O
(

(log n)E[Φ0] +
1

n

)
≤ O (log n) .

Furthermore, by Lemma 16, with probability at least 1−O(n−10),

Φ0 ≤ O(log n).

For δ ∈ (0, 1) and symbols x satisfying px ≥ log(n/δ)/n, we have Pr(10
x = 1) = e−npx ≤ δ/n.

Note that the number of such symbols is at most n. Hence by the union bound,

Pr

(
∃x ∈ [k] s.t. px >

log(n/δ)

n
,10
x = 1

)
≤ n · δ

n
= δ.

Setting δ = n−10 in the above inequality yields

Pr

(
∀x ∈ [k] s.t. px >

11 log(n)

n
,10
x = 0

)
≥ 1− n−10.
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Therefore if we further have Φ0 ≤ O(log n),

M0 =
∑
x∈[k]

10
x · px ≤ O(Φ0) · 11 log(n)

n
= O

(
log2 n

n

)
.

In addition, since E[Φ1] ≤ O(log n), Lemma 16 implies that with probability at least 1−O(n−10),

Φ1 ≤ O(log n).

Consolidating these results shows that with probability at least 1−O(n−10),

|M0 − Ĝ′0| ≤ O
(

log2 n

n
+

log n

n

)
= O

(
log2 n

n

)
.

and

(M0 − Ĝ′0)2

Ĝ′0
≤ O


(

log2 n
n

)2

1/n

 ≤ O( log4 n

n

)
.

Summary of case 1 and 2: With probability at least 1−O(n−10),

|M0 − Ĝ′0| = O
(

(
√

Φ1 + 1) log3 n

n

)
and

(M0 − Ĝ′0)2

Ĝ′0
≤ O

(
log6 n

n

)
.

The Empirical Estimator

For Φ′′µ−1 ≤ 2c5(log2 n) and µ ≥ 2, we use the empirical estimator,

φ̂µ−1 :=
µ− 1

n
Φµ−1.

By Lemma 16, since Φ′′µ−1 ≤ 2c5(log2 n), we can assume that E[Φµ−1] ≤ O(log2 n) and Φµ−1 ≤
O(log2 n), and be correct with probability at least 1−O(n−10).

The following lemma in [7] characterizes the performance of φ̂µ−1 in estimating Mµ−1.

Lemma 19. For µ ≥ 2 and δ ∈ (0, 1),

Pr

(
|Mµ−1 − φ̂µ−1| ≤ O

(
Φµ−1

√
µ log n

δ

n

))
≥ 1− δ.

Setting δ = n−10 in the lemma implies that with probability at least 1− n−10,

|Mµ−1 − φ̂µ−1| ≤ O
(

Φµ−1

√
µ log n

n

)
≤ O

(√
Φµ−1(µ− 1) log2 n

n

)
.

Assume that all the inequalities above hold. Then,

(Mµ−1 − φ̂µ−1)2

φ̂µ−1

≤ O


(

Φµ−1

√
µ logn

n

)2

µ−1
n Φµ−1

 = O
(

Φµ−1 log2 n

n

)
= O

(
log4 n

n
1Φµ−1>0

)
.

As a final remark, we can choose c2 = 2c5.
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Final Estimator

In case our estimates sum to 1, we can simply estimate each Mµ by

M̂µ :=


Ĝ′µ if µ = 0,

φ̂µ if µ ≥ 1 and Φµ ≤ c2(log2 n),

Ô′µ if µ > c3 log n and Φµ > c2(log2 n),

Ĝ′µ if c3 log n ≥ µ ≥ 1 and Φµ > c2(log2 n),

Otherwise, we normalize these probability estimates by their sum,

T :=
∑
µ≥0

M̂µ,

and approximate each Mµ by M̂∗µ := M̂µ/T .

First we show that T is often close to 1. By Lemma 2, under Poisson sampling,

Pr

1 ≤
∑
µ≥1

Φµµ = Poi(n) ≤ n log n

 ≥ 1−O(e−n).

By the union bound and results in the previous sections, with probability at least 1−O(n−8),

|Mµ − M̂µ| ≤ Õ

(√
Φµµ

n

)
,∀µ ≥ 1,

(Mµ − M̂µ)2

M̂µ

≤ Õ
(
1Φµ>0

n

)
,∀µ ≥ 1,

|M0 − M̂0| ≤ Õ
(√

Φ1 + 1

n

)
,

and

(M0 − M̂0)2

M̂0

≤ Õ
(

1

n

)
.

These inequalities further imply that with probability at least 1−O(n−8),

|T − 1| ≤ |M̂0 −M0|+
∑
µ≥1

|M̂µ −Mµ|

≤ Õ
(√

Φ1 + 1

n

)
+
∑
µ≥1

Õ

(√
Φµµ

n

)

=
∑
µ≥0

Õ

(√
Φµµ

n

)

≤ Õ

√∑µ≥1 1Φµ>0

n

 ,

where the second inequality follows from
∑
µ≥1 µΦµ < n log n and the Cauchy-Schwarz inequality.
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To characterize the performance of estimator M̂∗ := {M̂∗µ}µ≥0, we bound the KL-divergence by the
χ-squared distance. By the above inequalities, with probability at least 1−O(n−8),∑

µ≥0

Mu log
Mµ

M̂∗µ
≤
∑
µ≥0

(Mµ − M̂∗µ)2

M̂∗µ

≤ 2(T − 1)2 +
∑
µ≥0

2T
(Mµ − M̂µ)2

M̂µ

≤ Õ
(∑

µ≥1 1Φµ>0

n

)
+ Õ

(
1

n

)
+
∑
µ≥1

Õ
(
1Φµ>0

n

)

= Õ
(∑

µ≥1 1Φµ>0

n

)
= Õ

(
DΦ

n

)
.

Finally, for each x ∈ [k], define our probability estimate by

p̂∗x(Xn) =
M̂∗Nx
ΦNx

.

The following identity [1] completes the proof of Theorem 1.

˜̀
Xn(p, p̂∗) =

∑
µ≥0

Mµ log
Mµ

M̂∗µ
.

4 Proof of Corollary 9

We begin with a lemma that partially characterizes the shape of a log-concave distribution.
Lemma 20. [8] Let p be a log-concave distribution with mean µp and standard deviation σp. Let
α, β ∈ [k] be integers satisfying α ≤ µp−Ω(σp(1 + log(1/ε))) and β ≥ µp+ Ω(σp(1 + log(1/ε))).
Then,

α∑
x=1

px +

k∑
x=β

px ≤ 2ε.

In addition, for σp larger than an absolute constant, the maximum probability satisfies
max
x∈[k]

px ∈ [1/(8σp), 1/σp].

Setting ε = 1/n5 in the above lemma, we obtain

Pr(DΦ > Ω(log(n5)σ)) ≤ Pr(D > Ω(log(n5)σ))

≤ Pr(∃x, s.t. x 6∈ (α, β), Nx ≥ 1)

≤
α∑
x=1

npx +

k∑
x=β

npx

≤ 2 · n−4.

Therefore, E[DΦ] ≤ O
(
log(n5)σ

)
. Now, we use the second part of Lemma 20 to derive a different

upper bound on E[DΦ]. Let jmax be the index such that maxx∈[k] px ∈ Ijmax .

(jmax − 1)2 log n

n
< max
x∈[k]

px <
log n

σ
.

The above inequality implies jmax <
√

2n/σ + 1. Using the same reasoning as in Section 4.2 in the
main paper, we get

E[DΦ] ≤ O
(

(
√
n/σ)

2
3 · n 1

3

)
· log n = Õ

(
(σn)−

1
3

)
.

Combining the above two upper bounds on E[DΦ] yields
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Corollary 1. For any distribution p ∈ Ln,σk and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õ
(

(σn)−
1
3 ∧ σ

n

)
.

5 Proof of Corollary 11

Consider the collection Pα,ck := {p ∈ ∆k : px ≤ c · x−α} of enveloped (truncated) power-law
distributions. Note that this definition generalizes power-law families, and that distributions in Pα,ck
are not necessarily log-convex. Let β ∈ (0, 1) be a parameter to be determined, and x0 be the
threshold such that 2n(c · x−α0 ) = nβ . The symbols x ∈ [k] that are no larger than x0 contribute at
most x0 to DΦ. On the other hand, for any x > x0, we have E[Nx] = npx ≤ n(c · x−α) < 0.5nβ .
Therefore, for x > x0,

Pr(Nx > 2nβ) ≤ npx
1− px

Pr(Nx ≥ 2nβ)

≤ 2npx Pr
(
Nx ≥ E[Nx] + nβ

)
≤ 2npx exp

(
−nβ/3

)
,

where the first inequality follows from direct comparison and the last follows from the Chernoff
bound for binomial random variables. By the union bound,

Pr(∃x ∈ [k] s.t. Nx > 2nβ) ≤
∑
x∈[k]

Pr(Nx > 2nβ)

≤ 2n exp
(
−nβ/3

)
.

Therefore, with probability at least 1− 2n exp
(
−nβ/3

)
,

DΦ ≤ x0 + 2nβ = (2c)
1
αn

1−β
α + 2nβ .

Optimizing the right-hand side by choosing β = 1/(α+ 1), the inequality simplifies to

DΦ ≤ ((2c)
1
α + 2)n

1
α+1 .

Since DΦ ≤ n, we can convert this high-probability result into the expectation bound,

E[DΦ] ≤ O(n
1

α+1 ).

Along with Corollary 6 in the main paper this implies
Corollary 2. For any distribution p ∈ Pα,ck and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õc,α
(
n−max{ α

α+1 ,
1
2}
)
.
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