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Abstract

Distribution estimation is a statistical-learning
cornerstone. Its classical min-max formulation
minimizes the estimation error for the worst dis-
tribution, hence under-performs for practical dis-
tributions that, like power-law, are often rather
simple. Modern research has therefore focused
on two frameworks: structural estimation that
improves learning accuracy by assuming a sim-
ple structure of the underlying distribution; and
competitive, or instance-optimal, estimation that
achieves the performance of a genie-aided esti-
mator up to a small excess error that vanishes as
the sample size grows, regardless of the distribu-
tion. This paper combines and strengthens the two
frameworks. It designs a single estimator whose
excess error vanishes both at a universal rate as the
sample size grows, as well as when the (unknown)
distribution gets simpler. We show that the result-
ing algorithm significantly improves the perfor-
mance guarantees for numerous competitive- and
structural-estimation results. The algorithm runs
in near-linear time and is robust to model mis-
specification and domain-symbol permutations.

1. Introduction
Estimating large-alphabet distributions from their samples
is a fundamental statistical-learning staple. Over the past
few decades, distribution estimation has found numerous
applications, ranging from language modeling (Chen &
Goodman, 1999) to biological studies (Armaanzas et al.,
2008), and has been extensively studied. In the following
subsections, we formalize the discussion and present major
research frameworks used in the field.
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1.1. Distribution Estimation

Let ∆k denote the collection of distributions over the dis-
crete alphabet [k] := {1, . . . , k}. Let [k]∗ be the set of
finite-length sequences over [k]. An estimator is a mapping
p̂ : [k]∗ → ∆k that associates with every sequence xn a
distribution p̂(xn) ∈ ∆k. Let Xn := X1, . . . , Xn be an
i.i.d. sample sequence from an unknown p. Our objective is
to find an estimator p̂ such that p̂(Xn) approximates p well.

Specifically, for two distributions p, q ∈ ∆k, let `(p, q) be
the loss when approximating distribution p by estimate q.
The loss of estimating p by p̂(Xn) is therefore `(p, p̂(Xn)).
We also consider the expected loss, known as risk,

r`n(p, p̂) := EXn∼pL(p, p̂(Xn)).

The two most important losses for distribution estimation
are the KL-divergence D(p ‖ q) :=

∑
x∈[k] px log px

qx
, and

the `1-distance |p−q| :=
∑
x∈[k] |px−qx|.We study mainly

the KL-loss, hence abbreviate rKL as simply r.

Next, we formalize the uncertainty about the distribution and
the three common measures for the approximation quality:
min-max, structural, and competitive estimation.

1.2. Previous Works

MIN-MAX

While the underlying distribution p is unknown, it often
belongs to a known distribution collection P . The worst-
case risk of an estimator p̂ over all distributions in P is

r`n(P, p̂) := max
p∈P

r`n(p, p̂),

and the minimal possible worst-case risk for P , incurred by
any estimator, is the min-max risk,

r`n(P) := min
p̂
r`n(P, p̂) = min

p̂
max
p∈P

r`n(p, p̂).

The most classical and widely-studied class of distribu-
tions is simply the set ∆k of all discrete distributions.
The problem of determining r`n(∆k) up to the first or-
der was introduced by (Cover, 1972) and studied in a se-
quence of papers (Krichevsky & Trofimov, 1981; Braess
et al., 2002; Paninski, 2005). Among the many results on
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the topic, (Braess & Sauer, 2004) showed that for KL-
divergence, as n/k → ∞, the min-max KL-risk satisfies
rn(∆k) = (1 + o(1))k−1

2n , achieved by a variant of the
add-3/4 estimator. On the other hand, (Paninski, 2005)
proved that as k/n → ∞, the optimal KL-risk becomes
rn(∆k) = (1 + o(1)) log k

n , which is achieved by add-
constant estimators. Similar results for other loss measures
like `1-distance can be found in (Kamath et al., 2015).

Beyond min-max The success of add-constant estimators
in achieving the classical min-max risks does not extend
to practical applications. One possible explanation is that
practical distributions, like power-law, or Poisson, are often
rather simple and can be estimated more efficiently and ac-
curately than the worst distribution targeted by the min-max
paradigm. The desire to construct estimators that perform
better on practical distributions has led to the following two
frameworks.

STRUCTURAL

Instead of considering arbitrary underlying distributions,
the structural approach focuses on learning distributions
that posses a natural structure, such as monotonicity, log-
concavity, and m-modality. In many cases, structural as-
sumptions lead to more effective estimators that provably
perform better on the corresponding distribution classes.

For example, (Kamath et al., 2015) showed that for fixed k,
as n increases, the empirical estimator achieves the min-max
`1-risk over ∆k,

r`1n (∆k) = (1 + o(1))

√
2(k − 1)

πn
.

In many practical applications, the alphabet k is often
large, hence several papers considered structured distri-
butions (Acharya et al., 2017; Diakonikolas et al., 2016;
Kamath, 2014; Chan et al., 2013; Daskalakis et al., 2012;
Jankowski & Wellner, 2009; Feldman et al., 2008). For
example, for the collection Mt,m

k of t-mixture m-modal
distributions over [k], more sophisticated estimators, e.g.,
(Acharya et al., 2017) attain

r`1n (Mt,m
k ) = Θ

(
tm log k

n

)1/3

,

which for k/ log k � n1/3(tm)2/3, is lower than r`1n (∆k).

Drawbacks The structural approach leverages the struc-
ture assumptions to design more efficient estimators, thus
has the drawback of relying on the hypothetical models.

For example, to learn t-mixture m-modal distributions ef-
ficiently as above, one needs to ensure the correctness of
the structure assumption and know both t and m up to con-
stant factors. While it may seem possible to use hypothesis

testing to find the best parameters, existing work on dis-
tribution property testing shows that even testing whether
a distribution is m-modal requires a non-trivial number of
samples (Canonne et al., 2018). Hence, when t and m are
relatively large, finding the best parameters may require
many samples.

In addition, many structures possessed by real-world dis-
tributions, for example, mixtures of log-concave and log-
convex, have not been addressed before.

COMPETITIVE

Instead of relying on often-uncertain structural assumptions,
the competitive distribution estimation framework takes a
different view and aims to design universally near-optimal
estimators. Any reasonable estimator for i.i.d. distributions
would assign the same probability to all symbols appearing
the same number of times in the sample, and we let Qnat
denote this collection of natural estimators.

Our objective is to design a distribution estimator p̂ that esti-
mates every distribution nearly as well as the best estimator
designed with prior knowledge of the true distribution p, but
is restricted to be natural. Specifically, for any distribution
p ∈ ∆k, the lowest risk of a natural estimator knowing p is

r̃`n(p,Qnat) := min
p̂′∈Qnat

r`n(p, p̂′),

and the excess risk of an arbitrary estimator p̂ is

r̃`n(p, p̂) := r`n(p, p̂)− r̃`n(p,Qnat).

Therefore, the worst-case excess risk, or competitive risk, of
the estimator p̂ over all distribution in ∆k is

r̃`n(p̂) := max
p∈∆k

r̃`n(p, p̂).

This formulation was introduced in (Orlitsky & Suresh,
2015) who showed that a simple variant of the Good-
Turing estimator p̂GT achieves a vanishing competitive KL-
risk of r̃n(p̂GT) ≤ (3 + o(1))/n1/3, regardless of the al-
phabet size, and a more involved estimator p̂MI achieves
Θ̃(min{k/n, 1/

√
n}), For `1-distance, (Valiant & Valiant,

2016) designed a linear-programming-based estimator p̂LP

and proved r̃`1n (p̂LP) = O(1/polylog(n)).

Drawbacks The upper bounds provided by the competi-
tive approach apply to all distributions, and similar to the
min-max approach, track the excess error of the worst distri-
bution. As we now show, they are too lax for many practical
distributions. Consider the following generalization of the
ubiquitous power-law distributions. For c > 0, α > 1, and
large alphabet-size k, define the enveloped distribution col-
lection Pα,ck := {p ∈ ∆k : px ≤ c · x−α}. It can be shown
that for n ∈ [k0.1, k2] there is a constant Cα,c depending on
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α and c, such that the min-max KL-risk of Pα,ck satisfies

rn(Pα,ck ) = Cα,c · n−
α−1
α +o(1).

By simple algebra, for α > 2 and large n, this term is
smaller than Θ̃(min{k/n, 1/

√
n}), the lowest competitive

risk of any estimator (Orlitsky & Suresh, 2015). Hence
the guarantees the competitive framework provides do not
suffice to address relatively “simple” common distributions.

2. New Results
The foregoing section reviewed the merits and drawbacks of
classical and modern approaches to distribution-estimation.
It noted that the min-max approach is “pessimistic” and
often performs sub-optimally in both theory and practice.
Of the modern frameworks, the structural approach works
well if the structural assumptions are both correct and accu-
rate, but fails otherwise, hence this approach is “local” but
not “global”. The competitive approach constructs univer-
sally near-optimal estimators, but provides the same guar-
antees regardless of the distribution’s structure, potentially
resulting in sub-optimal estimators for practical distribu-
tions, hence this approach is “global” but not “local”.

This raises the question of whether a single estimator can be
both “global” and “local”. Namely, without any assumptions
on the distribution, provide universal excess-loss guarantees
for general distributions, and stronger excess-loss guaran-
tees for simple distributions. For example, an estimator p̂
such that for any distribution p, r̃n(p, p̂) ≤ n−1/2, and yet if
the distribution p happens to be in the enveloped power-law
class P3,c

k , then r̃n(p, p̂) ≤ n−3/4.

We answer this question in the affirmative, and present the
first competitive and structural distribution estimator.

2.1. Definitions

Instant competitive loss For consistency, let us instanti-
ate the loss ` as the KL-divergence, i.e., for p, q ∈ ∆k,

`(p, q) := D(p ‖ q).

Let p ∈ ∆k be an unknown discrete distribution, and let
xn be a realization of Xn ∼ p. The best natural estimator,
knowing both p and xn, incurs the minimal possible loss

˜̀
xn(p,Qnat) := min

p̂′∈Qnat
`(p, p̂′(xn)),

and for this particular pair (p, xn), the excess loss of an
arbitrary estimator p̂ is

˜̀
xn(p, p̂) := `(p, p̂(xn))− ˜̀

xn(p,Qnat).

Hence for sequence xn, the worst-case excess loss of p̂ over
∆k, or simply the instance competitive loss of p̂, is

˜̀
xn(p̂) := max

p∈∆k

˜̀
xn(p, p̂).

Permutation class For any distribution p ∈ ∆k, we de-
note by 〈p〉 the collection of distributions in ∆k that are
equal to p up to some permutation over [k]. Knowing 〈p〉 is
equivalent to knowing the multiset of p but not p itself.

General notation For Xn ∼ p ∈ ∆k, the multiplicity
of a symbol x ∈ [k] is Nx :=

∑n
i=1 1Xi=x, the number

of times x appears in Xn. The prevalence of an integer
µ is Φµ :=

∑
x∈[k] 1Nx=µ, the number of symbols that

appear µ times. Let D :=
∑
µ>0 Φµ be the number of

distinct symbols inXn, and letDΦ :=
∑
µ>0 1Φµ>0 be the

number of distinct positive multiplicities. Clearly, D ≥ DΦ,
and typically, D � DΦ. For example, if all symbols in the
sequence Xn are distinct, then D = n, while DΦ is just 1.

2.2. Main Results

We construct an explicit, near-linear-time computable distri-
bution estimator p̂∗ such that

Theorem 1. For any distribution p, let Xn ∼ p, then with
probability at least 1− n−8,

˜̀
Xn(p̂∗) ≤ Õ

(
DΦ

n

)
.

Note that the right-hand side is determined by just Xn, its
computation requires no additional information about p.

The exact form of p̂∗ can be found in Section 5, and the
proof of Theorem 1 appears in the supplemental material.

Our main theorem implies the following new results and
improvements on existing ones.

Global competitiveness In Section 3 we show that our es-
timator provides stronger estimation guarantees than many
existing estimators: adaptive estimators (Corollary 3) such
as the robust absolute discounting estimator (Ohannessian
& Dahleh, 2012; Ben-Hamou et al., 2017); competitive es-
timators (Corollary 4) such as the modified Good-Turing
estimator (Orlitsky & Suresh, 2015); and min-max estima-
tors (Corollary 5).

Example: Section 3 shows thatDΦ ≤ min{
√

2n, k}. Corol-
lary 4 then concludes that the excess loss ˜̀Xn(p̂∗) is always
at most Õ (min{

√
n, k}/n), providing a guarantee not only

stronger than the n−1/3 rate of the modified Good-Turing
estimator, but also as strong as the more involved estimator
in (Acharya et al., 2013; Orlitsky & Suresh, 2015).

Local competitiveness In Section 4, we use the theorem
to establish eight new results on learning important struc-
tured distributions. We show that our estimator has strong
excess-loss bounds for three important structured distribu-
tion families: T-value (Corollary 7 and 8), log-concave
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(Corollary 9 and 10), and log-convex (Corollary 11, 12,
and 13). Many common distributions are covered by these
three classes. In particular, our results for power-law dis-
tributions (Corollary 12) are uniformly stronger than those
in (Falahatgar et al., 2017) for all parameter regimes.

Example: Corollary 8 shows that for all uniform distri-
butions, E[DΦ] is bounded above by Õ(n1/3), hence the
algorithm’s excess risk is at most Õ(n−2/3).

Robustness to model misspecification The structural ap-
proach often uses different estimators for different distri-
bution classes. By contrast, our single estimator provides
robust and adaptive guarantees for a variety of structural
classes without any modification.

Example: Over uniform distributions, p̂∗ achieves an ex-
cess risk of Õ(n−2/3) (Corollary 8), while for power law
distributions with power parameter 1.5 , the same estimator
achieves an excess risk of Õ(n−3/5) (Corollary 11).

Robustness to domain permutations The structural ap-
proach often assumes that we know how to order the sym-
bols so that the underlying distribution would exhibit certain
structure (such as power-law). As discussed in Section 4,
this assumption may be impractical. By contrast, since the
distribution of DΦ is the same for all p′ ∈ 〈p〉, the excess
loss/risk guarantees of our algorithm are invariant under any
permutation of the domain symbols.

Example: If under some unknown ordering of the domain
symbols, the underlying distribution is a power-law with
power parameter 1.5 , then Corollary 11 implies that our
estimator achieves an excess risk of Õ(n−3/5).

Outline Besides Section 3 and 4 mentioned above, we
present the exact form of our estimator in Section 5.

3. Global Competitiveness
In this section, we present several implications of Theorem 1
for the universal estimation guarantees of p̂∗. In particular,
we show that p̂∗ is near-optimal under various classical and
modern distribution learning frameworks, including min-
max and competitive mentioned above.

Corollary 1. For any distribution p,

r̃n(p, p̂∗) ≤ Õ
(
E[DΦ]

n

)
.

As in the proof of Theorem 1, ˜̀Xn(p, p̂∗) ≤ O(log n) al-
ways. The corollary then follows from Theorem 1 itself.

Analogous to the previous definition of competitive dis-
tribution estimation, we can consider competing with an
estimator that knows the probability multi-set. Specifically,

for any distribution p ∈ ∆k, the lowest worst-case risk of a
natural estimator knowing the multi-set of p is

ṙ`n(〈p〉) := min
p̂′

max
p′∈〈p〉

r`n(p′, p̂′),

and an arbitrary estimator p̂ has the multi-set excess risk of

ṙ`n(p, p̂) := r`n(p, p̂)− ṙ`n(〈p〉).

For KL-divergence, the following lemma relates ṙ`n to r̃`n.

Lemma 1. (Orlitsky & Suresh, 2015) For any distribution
p ∈ ∆k and estimator p̂,

max
p′∈〈p〉

ṙn(p′, p̂) ≤ r̃n(p, p̂).

Together with Corollary 2, the lemma yields,

Corollary 2. For any distribution p,

max
p′∈〈p〉

ṙn(p, p̂∗) ≤ Õ
(
E[DΦ]

n

)
.

Adaptive optimality The min-max results (Krichevsky
& Trofimov, 1981) imply that for any estimator, learning
an arbitrary k-symbol distribution up to a certain KL-risk
requires Ω(k) samples in the worst case. Since modern
data science often considers applications over large alpha-
bets, this is normally viewed as a negative result. However,
as experience suggests, many practical distributions have
small “effective alphabet sizes”. For example, if we draw
10 samples from a geometric distribution with success prob-
ability 0.9, although the support size is infinite, with high
probability, we shall observe at most 3 distinct symbols.

To formalize this intuition, for a given n, let the effective al-
phabet size of a distribution p be the expected number E[D]
of distinct symbols that appear in Xn ∼ p. As in (Falahat-
gar et al., 2017), given n, k, and d, let Pd be the collection
of distributions in ∆k satisfying E[D] ≤ d. By Corollary 2,
the performance of p̂∗ over Pd is adaptive to d:

Corollary 3. For all d ≥ 2 and every distribution p ∈ Pd,

rn(p, p̂∗) ≤ d

n
log k + Õ

(
d

n

)
.

The following lemma shows the optimality of Corollary 3.

Lemma 2. (Falahatgar et al., 2017) Let α be any constant
greater than 1. There exist constants c0 > 0 and n0 such
that for d = n

1
α , any estimator p̂, all n > n0, and all

k > max{3n, 1.2
1

α−1n
1
α },

max
p∈Pd

rn(p, p̂) ≥ c0
d

n
log k − Õ

(
d

n

)
.
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Here we present two immediate implications. First, to learn
a k-symbol distribution up to a certain KL-risk, the number
of samples we need is at most Õ(E[D] log k), which is
often much smaller than Ω(k). Second, in the extreme case
when k/n → ∞, the upper bound on rn(p, p̂∗) is at most
(1+o(1)) log k. Hence, our estimator achieves the min-max
KL-risk over ∆k to the right constant.

Competitive optimality Now we show that p̂∗ is near-
optimal under the competitive formulation described in Sec-
tion 1.2. We begin by finding a simple upper bound for
DΦ, the number of distinct positive multiplicities. Since
different multiplicities correspond to distinct symbols, DΦ

is at most the alphabet size k. On the other hand, since
only distinct positive multiplicities count,

∑DΦ

µ=1 µ ≤ n.
Hence, DΦ ≤ min{k,

√
2n}, which together with Corol-

lary 2 yields

Corollary 4. For any distribution p,

r̃n(p, p̂∗) ≤ Õ
(

min{k,
√
n}

n

)
.

The following lemma shows the optimality of Corollary 4.

Lemma 3. (Orlitsky & Suresh, 2015) For any estimator p̂,

max
p∈∆k

r̃n(p, p̂) ≥ Ω̃

(
min{k,

√
n}

n

)
.

Min-max optimality The previous results show that p̂∗

often achieves the min-max KL-risk rn(∆k) to the right
constant. Specifically,

Corollary 5. Let α0 be any constant greater than 1/2. For
any α > α0 and k > nα,

rn(∆k, p̂
∗) = (1 + on(1))rn(∆k).

4. Local Competitiveness
We use Corollary 2 and 3 to establish eight new results on
learning important structured distributions. We show that
our estimator has strong excess-loss bounds for three impor-
tant structured distribution families: T-value (Corollary 7
and 8), log-concave (Corollary 9 and 10), and log-convex
(Corollary 11, 12, and 13). Many common distributions are
covered by these three classes.

4.1. A Simple Bound on E[DΦ]

By Corollary 2, the excess KL-risk r̃n(p, p̂∗) of p̂∗ in esti-
mating p is upper bounded by Õ (E[DΦ]/n). Perhaps the
most natural question to ask is: given n and p, how large is
E[DΦ]? To get a relatively simple closed-form expression
for E[DΦ], we adopt the conventional “Poisson Sampling”

technique where the sample size is an independent Pois-
son variable with mean n. By doing so, the multiplicities
Nx ∼ Poi(npx) independently of each other. Under Pois-
son sampling, the linearity of expectation implies

E[DΦ] = n−
∑
µ>0

∏
x∈[k]

(
1− e−npx (npx)µ

µ!

)
.

Expanding the right-hand side would give us an expression
consisting of n · (2k − 1) terms, which is hard to analyze.
Hence, instead of evaluating E[DΦ] directly, we would like
to work on its simple upper bounds. Given sampling pa-
rameter n, we partition the unit-length interval (0, 1] into a
sequence of sub-intervals,

Ij :=

(
(j − 1)2 log n

n
, j2 log n

n

]
, 1 ≤ j ≤

√
n

log n
.

For any distribution p, denote by pIj the number of proba-
bilities px in Ij . Then,
Lemma 4. For any distribution p,

E[DΦ] ≤ O(
∑
j≥1

min
{
pIj , j

}
) · log n.

In addition, since p is a distribution, for all j, pIj ·
j2 logn
n ≤

1, which in turn implies

min
{
pIj , j

}
≤ min

{
n

j2 log n
, j

}
< n

1
3 .

More generally, let PIj denote the sum of probabilities px
in Ij . Then,

min
{
pIj , j

}
≤ min

{
nPIj
j2 log n

, j

}
< (nPIj )

1
3 .

Combined, Corollary 2 and Lemma 4 yield
Corollary 6. For any distribution p,

r̃n(p, p̂∗) ≤ Õ
(

1

n

)∑
j≥1

min
{
pIj , j

}
.

To illustrate the Corollary’s significance, we present its
implications for various distribution-learning problems.

4.2. T-Value Distributions

A uniform distribution can be described as a distribution
whose positive probabilities take only a single value. As
a generalization of this formulation, we call a distribution
p a T -value distribution if its positive probabilities px can
take T different values. Note that T -value distributions over
[k] can be viewed as mixtures of T uniform distributions
over different subsets of [k], and that these distributions
generalize T -piecewise histogram distributions. Intuitively,
for smaller values of T , we would expect the task of learning
an unknown T -value distribution to be easier. The following
corollary confirms this intuition.
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Corollary 7. For any T -value distribution p and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õ

(
T

2
3 ∧ n 1

6

n
2
3

)
.

Note that p ∈ 〈p〉. To prove the corollary, observe that by
our previous result, for all j,

min
{
pIj , j

}
< (nPIj )

1
3 .

Note that for a T -value distribution, pIj 6= 0 for at most T
different j values, say j1, . . . , jT . By the above inequality
and Corollary 6,

r̃n(p, p̂∗) ≤ Õ
(

1

n

) T∑
i=1

(nPIji )
1
3 ≤ Õ

(
T (n/T )

1
3

n

)
.

combined with Corollary 4, this completes the proof.

Uniform Distributions Now we consider the collection
Uk of 1-value distributions, i.e., uniform distributions over
non-empty subsets of [k]. Our objective is to derive a result
stronger than Corollary 7. Let Sp denote the support size of
a distribution p ∈ Uk. For all x ∈ [k], px is either 0 or S−1

p .
Since {Ij , j ≥ 1} forms a partition of (0, 1], there exists a
unique j′ such that S−1

p ∈ Ij′ , i.e.,

S−1
p ∈ Ij′ =

log n

n

(
(j′ − 1)2, j′

2
]
,

which further implies 1 +
√
n/(Sp log n) ≥ j′. Together

with DΦ ≤ D ≤ Sp and Corollary 6, this shows

Corollary 8. Let p be an arbitrary distribution in Uk, then

r̃n(p, p̂∗) ≤ Õ

(
min

{
1√
nSp

,
Sp
n

})
.

Note that the right-hand side is no more than Õ(n−2/3).
Furthermore, in both the small alphabet regime where Sp =
O(1) and the large alphabet regime where Sp = Ω(n), we
have r̃n(p, p̂∗) ≤ Õ(n−1), which is fairly tight.

4.3. Log-Concave Distributions

The class of discrete log-concave distributions covers a vari-
ety of well-known distribution classes including binomial,
Poisson, negative binomial, geometric, hypergeometric, hy-
perPoisson, Skellam, and Pólya-Eggenberger (Qu et al.,
1990). We say a discrete distribution p ∈ ∆k is log-concave
if for all x ∈ [k], p2

x ≥ px−1 · px+1, and denote the collec-
tion of all such distributions by Lk. Further, for all σ > 0,
let Ln,σk denote the collection of p ∈ Lk whose standard de-
viation lies in (σ · log−1 n, σ]. Intuitively, one would expect

the learning task over Ln,σk to be easier for smaller values
of σ. The following corollary demonstrates the correctness
of this intuition and shows the competitive performance of
our estimator. Due to space considerations, we postpone its
proofs to the supplemental material.

Corollary 9. For any distribution p ∈ Ln,σk and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õ
(

(σn)−
1
3 ∧ σ

n

)
.

For any σ � 1, the right-hand side is uniformly smaller
than the bound Õ(min{k,

√
n} · n−1) in Corollary 4.

For mixtures of distributions in Ln,σk , an analogous argu-
ment gives the following result.

Corollary 10. Let p be a t-mixture of distributions in Ln,σk
and p′ be any distribution in 〈p〉,

r̃n(p′, p̂∗) ≤ Õ
(

(σn)−
1
3 ∧ tσ ∧

√
n

n

)
.

4.4. Log-Convex Distributions

While the T-value and log-concave families cover many
common distributions, there are certainly more distribution
classes to be explored. For example, a truncated power-
law distribution is always log-convex. In this section, we
consider two generic classes of log-convex distributions:
power-law and HurwitzLerch Zeta distribution families.

Enveloped power-law distributions Consider the collec-
tion Pα,ck := {p ∈ ∆k : px ≤ c · x−α} of enveloped
(truncated) power-law distributions. Note that this definition
generalizes power-law families, and that distributions in
Pα,ck are not necessarily log-convex. We have the following
result, whose proof appears in the supplemental material.

Corollary 11. For any distribution p ∈ Pα,ck and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õc,α
(
n−max{ α

α+1 ,
1
2}
)
.

The distribution collection Pα,ck has the interesting property
that it is closed under mixtures. Hence, Corollary 11 also
covers mixtures of enveloped power-law distributions.

Implications of Corollary 11 Let pα ∈ ∆k be the trun-
cated power-law distribution with power α that is trun-
cated at k, i.e., pαx ∝ x−α, ∀x ∈ [k]. Clearly, we have
pα ∈ Pα,ck for all c ≥ 1. The recent work of (Falahatgar
et al., 2017) shows that for k > {n, n

1
α−1 } and any distribu-

tion p′ ∈ 〈pα〉, the estimator p̂′′ proposed in (Ohannessian
& Dahleh, 2012) satisfies

ṙn(p′, p̂′′) ≤ Oc,α
(
n−

2α−1
2α+1

)
.

A simple combination of Lemma 1 and Corollary 11 yields
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Corollary 12. For any distribution p′ ∈ 〈pα〉,

ṙn(p′, p̂∗) ≤ r̃n(p, p̂∗) ≤ Õc,α
(
n−max{ α

α+1 ,
1
2}
)
.

Our approach has the following three advantages over the
previous result in (Falahatgar et al., 2017). First, for all α >
0, we have−α/(α+ 1) < −(2α− 1)/(2α+ 1), hence our
guarantee is uniformly better than the previous one. Second,
the previous result requires k > {n, n

1
α−1 } to hold, which

can be non-realistic for α close to 1. In comparison, our
result does not require such conditions at all. Third, for
small α < 1/2, the previous result only implies a multi-set
excess risk of O(nΘ(1)), while Corollary 12 always yields
Õ
(
n−1/2

)
regardless of α.

Enveloped HurwitzLerch Zeta distributions For any
distribution p ∈ ∆k, p is a (truncated) HurwitzLerch Zeta
(HLZ) distribution (Gupta et al., 2008) if

px =
1

T (θ, s, a, k)
· θx

(a+ x)s+1
,

for some parameter s ≥ 0, a ∈ [0, 1] and θ ∈ (0, 1], where
the normalization factor T (θ, s, a, k) :=

∑
x∈[k] θ

x/(a +

x)s+1. Analogously, consider the collection Hθ,s,a,ck :=
{p ∈ ∆k : px ≤ c · θx/(a+ x)s+1} of enveloped HLZ
distributions. HLZ distributions include the well-known
Riemann Zeta, Zipf-Mandelbrot, Lotka, Good, logarithmic-
series, and Estoup distributions. These distributions have
various applications in many fields. For example, the Good
distribution (Zornig & Altmann, 1995) can be used to model
species’ frequencies and to estimate population parameters.

Note that Hθ,s,a,ck ⊆ Ps+1,c
k for α ≥ 1. Hence, by Corol-

lary 11, for any distribution p ∈ Hθ,s,a,ck and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õc,s
(
n−

s+1
s+2

)
.

Let x1 be the threshold parameter such that c · θx1 = n−1.
Direct computation gives x1 = log(cn)/ log 1

θ . The sym-
bols x ∈ [k] that are no larger than x1 contribute at most
x1 to E[DΦ]. Furthermore, the proof of Lemma 4 essen-
tially shows that symbols with probability no larger than
n−1 contributes at most O(log n) to E[DΦ]. Therefore, we
conclude that E[DΦ] ≤ O(log(cn)/ log 1

θ + log n).

Corollary 3 combines the above results and yields
Corollary 13. For any p ∈ Hθ,s,a,ck and p′ ∈ 〈p〉,

r̃n(p′, p̂∗) ≤ Õc,s

(
n

1
s+2

n
∧ 1− log−1 θ

n

)
.

Note that the right-hand side is the minimum of two quanti-
ties. For θ ∈ (1−n−

1
s+2 , 1], we can reduce the upper bound

to Õc,s(n−
s+1
s+2 ). On the other hand, for θ ∈ (0, 1−n−

1
s+2 ],

the upper bound becomes Õc,s((1− log−1 θ) · n−1).

4.5. Robustness to Domain Permutations

Our results on learning structured distribution families differ
significantly from nearly all the existing ones. Prior work
has mainly considered unknown distribution with a certain
structure over a known and ordered domain. In our formula-
tion, we assume that the underlying distribution has certain
structure under some particular ordering of the domain ele-
ments, and this ordering is unknown to the estimator.

Below we illustrate this by a concrete example.

Let F be a finite discrete domain of size k. Consider learn-
ing an unknown log-concave distribution P ∈ ∆F from its
sample sequence Y n. Traditional formulations like (Chan
et al., 2013) assume that we know an exact bijective mapping
σ from F to [k], such that reordering the probabilities of
P according to σ yields a log-concave distribution p ∈ ∆k.
Further applying σ to Y n and denoting the resulting se-
quence by Xn transforms the problem into learning p from
a sample sequence Xn ∼ p. Here, the assumption that p is
log-concave is equivalent to requiring p2

x ≥ px−1 ·px+1, for
all x ∈ [k] \ {1, k}. We can see that such formulation may
be non-practical. For example, in natural language process-
ing, the observed samples are words and punctuation marks.
Even we know these samples come from a log-concave dis-
tribution, we don’t know how to order the alphabet, i.e., find
the right mapping σ, so that the corresponding distribution
p ∈ ∆k would be log-concave.

5. The Estimator
Let p be an arbitrary distribution in ∆k, and let Xn be a
length-n sample sequence from p. For simplicity, abbreviate
1µx := 1Nx=µ. For any natural number µ, denote the total
probability mass of the symbols that appear µ times by

Mµ :=
∑
x∈[k]

px1
µ
x.

After observing Xn, an estimator p̂ approximates Mµ by

M̂µ :=
∑

x:Nx=µ

p̂x(Xn).

Assume that p̂ is a natural estimator. By (Orlitsky & Suresh,
2015), the excess loss of p̂ over the best natural estimator
that knows the underlying distribution p is

˜̀
Xn(p, p̂) = D(M ‖ M̂) :=

∑
µ≥0

Mµ log
Mµ

M̂µ

.

The above characterization of ˜̀Xn(p, p̂) converts the prob-
lem of finding good natural estimators for the underlying
distribution to that of finding good estimators for

M := (M0, . . . ,Mn).
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Intuition We first motivate the estimator, whose form is
similar to that in (Acharya et al., 2013), but with some
modifications. Since the estimator is natural, it needs to
approximate only M := (M0, . . . ,Mn). The construction
is guided by analyzing the estimator bias and concentra-
tion properties for various multiplicities µ. To estimate M0,
we use the provably near-optimal (Rajaraman et al., 2017)
Good-Turing estimator. For the remaining multiplicities,
analysis shows that for moderate, yet frequent multiplicities,
namely µ = O(log n) and Φµ = Ω(log2 n), the Good-
Turing estimator performs nearly optimally. For infrequent
multiplicities, the empirical estimator performs better. For
the remaining multiplicities, both estimates are sub-optimal.
Applying polynomial approximation techniques, we con-
struct a more involved estimator that approximates the be-
havior of a genie that knows that expected Mµ values. The
estimator is slightly simpler than that in (Acharya et al.,
2013), yet achieves better performance.

Details Since our estimator p̂∗ is natural, we simply spec-
ify M̂∗µ :=

∑
x:Nx=µ p̂

∗
x(Xn). To simplify the analysis, we

adopt the standard “Poisson sampling” technique, and make
the sample size a Poisson variable N with mean value n.

For N < n log n, let c1, c2, and c3 be properly chosen
absolute constants. For any two natural numbers µ ≥ µ′,
denote aµ

′

µ := µ′!/µ! and Eµ
′

x,µ := 1µ
′

x a
µ′

µ (Nx)µ−µ
′
, where

AB is the falling factorial of A of order B. Let

Ex,µ =
1

c1
√
µ/log n

µ−1∑
µ′=µ−c1

√
µ/logn

Eµ
′

x,µ.

We can show that Eµ :=
∑
x∈[k]Ex,µ is an unbiased esti-

mator of E[Φµ]. Empirical-frequency estimates Mµ by

φ̂µ := Φµ
µ

n
,

while Good-Turing estimates it by

Ĝµ := Φµ+1
µ+ 1

n
.

To avoid zero probability estimates, slightly modify the
Good-Turing estimator to Ĝ′µ := max{1/n, Ĝµ} and let

Ôµ := Φµ
µ+ 1

n

Eµ+1

Eµ
,

and similarly set

Ô′µ := min{max{1/n, Ôµ}, log2 n}.

For µ < n log n, our estimator is

M̂∗µ =



Ĝ′µ if µ = 0,

φ̂µ if µ ≥ 1 and Φµ ≤ c2(log2 n),

Ô′µ if µ > c3 log n and Φµ > c2(log2 n),

Ĝ′µ if c3 log n ≥ µ ≥ 1 and Φµ > c2(log2 n).

As Poisson variables are concentrated around their mean,
for N ≥ n log n, which rarely happens, and µ ∈ [0, N ], we
simply set M̂∗µ = 1/(N + 1). If these probability estimates
do not sum to 1, we normalize them by their sum.

Finally for each x ∈ [k], our distribution estimator is

p̂∗x(Xn) =
M̂∗Nx
ΦNx

.

6. Numerical Experiments
The estimator is easy to implement. In Section 1 of the
supplemental material, we present experimental results on a
variety of distributions, and show that the proposed estima-
tor indeed outperforms the improved Good-Turing estimator
in (Orlitsky & Suresh, 2015).

7. Future Directions
The results obtained in paper strengthen and extend the com-
petitive approach to distribution estimation taken in (Or-
litsky & Suresh, 2015). It would be of interest to ob-
tain similar results for distribution estimation under `1 dis-
tance. (Kamath et al., 2015) showed that the simple em-
pirical estimator achieves the min-max `1-risk r`1n (∆k) =
(1 + o(1))

√
2(k − 1)/(πn). Yet the excess risk of the es-

timator in the nice work of (Valiant & Valiant, 2016) is
O(1/polylog(n)). Hence, for k ≤ Õ(n), this guarantee
does not improve that of the empirical estimator, raising the
possibility of strengthening the competitive results.

A similar approach can be applied to the related property-
estimation task. A property, e.g., Shannon entropy, is simply
a mapping f : ∆k → R. Most existing property-estimation
results are worst-case (min-max) in nature. Yet practical
and natural distributions are rarely the worst possible, and
often possess a simple structure. To address this discrep-
ancy, recent works (Hao et al., 2018; Hao & Orlitsky, 2019)
took a competitive approach, constructing estimators whose
performance is adaptive to the simplicity of the underlying
distribution. Specifically, the widely-used empirical estima-
tor estimates property values by evaluating the property at
the empirical distribution. For every property in a broad
class and every distribution in ∆k, the expected error of
the estimator in (Hao & Orlitsky, 2019) with sample size
n/ log n is at most that of the empirical estimator with sam-
ple size n, plus a distribution-free vanishing function of n.

These results cover several well-known properties such as
entropy and support size, for which the log n factor is opti-
mal up to constants, and also apply to any property in the
form of

∑
x fx(px), such as the `1 distance to a given distri-

bution, where fx is 1-Lipschitz for all x ∈ [k]. It would be
of interest to construct a doubly-competitive estimator for
property estimation as well.
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