Random Shuffling Beats SGD after Finite Epochs: Supplementary Material

A. Proof of Theorem 1

Proof. Assume T = nl where [ is positive integer. Notate x! as the ith iteration for tth epoch. There is 2§ = z¢, 2!, = x6+1,

x!, = z7. Assume the permutation used in tth epoch is o (-). Define error term
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For one epoch of RANDOMSHUFFLE, We have the following inequality
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where the inequality is due to Theorem 2.1.11 in (Nesterov, 2013).

Take the expectation of (A.1) over randomness of permutation o; (-), we have
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What remains to be done is to bound the two terms with R? dependence. Firstly, we give a bound on the norm of R*:
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where the first and second inequality is by triangle inequality of vector norm, the third inequality is by definition of L, the
fourth inequality is by definition of GG. By this result, we have
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For the E [R'] term, we need more careful bound. Since the Hessian is constant for quadratic functions, we use H; to denote
the Hessian matrix of function f;(-). We begin with the following decomposition:
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Here we define random variables

n

1—1
Al =—y [Hmn > Ve (%‘6)] ,
j=1

i=1

——VZ{ o1 (0) Z_? (Ve (#51) = Vioris) (96'6)]}-

There is

Bla] ="k, 19y, (o)) a3

n 1—1
1B < TZ Hg, (i) Z IV fo ) (25-1) = Vo) (0) |
< WZLZ j—1)yGL
=1 Jj=1

_’YQLQGZ 2*2)



Random Shuffling Beats SGD after Finite Epochs: Supplementary Material

2 L2Gnd. (A.6)
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Using (A.4) and (A.5), we can decompose the inner product of zf, — z* and E [R'] into:
-2y (zf — 2, E [R"]) = =27 (af — «*,E [A"] + E [B])

= -2y <x6 -z E [At]> — 27 <x6 —z"E [Bt]>
=v*n(n—1){z} — 2", Eiz; H;V f; (z})) — 2v(z} — 2*,E[B']). (A7)

For the first term in (A.7), there is
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Here we introduce variable A = E,; [H,;V f;(«*)] for simplicity of notation, with ¢, j uniformly sampled from all pairs
of different indices. The first inequality is by (xf, — 2*, H; H; (zf, — z*)) > 0 and AM-GM inequality, where \; is any

positive number. The second inequality comes from noticing that E; ; H; H; = H? (with i, j uniformly sampled from all
—1,-1

pairs of indices), and let A\ = 3 Luy=n
For the second term in (A.7), we use the bound
A
~2y (e~ B[BT) < 27| 2 b |+ 5 B B)7]. (A9)
Set Ao = 2 (n — 1) in (A.9) and using (A.6), there is
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Substituting (A.8) and (A.10) back to (A.7), we get
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The next step requires to bound the ||A|| term. Toward this end, we use the following important fact:
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This fact captures the importance of randomly drawing a permutation instead of using a fixed one. Substituting (A.3) (A.11)
back to (A.2) and using (A.12) , we finally get a recursion bound for one epoch:
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Now assume
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which we call assumption 1 and assumption 2, (A.13) can be further turned into:
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where Cy = 2u7'L2G?, Cy = 2u~'L*G?, C3 = $G?L?. Now assume nvy

qu < 1, which we call assumption 3.
Expanding (A.14) over all epochs leads to a final bound of RANDOMSHUFFLE:
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Not substituting v = T, Into (A.15), we have:
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where Cy = Gfgl, Cs = 255403, Cs = mi‘ﬁc"’. The first inequality uses the fact that
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The second inequality comes from (1 — z)* < % for 0 < x < 1. Obviously, (A.16) is a result of the form O (% + ;—2)

Or in the expanding version with constant dependence, we have
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What remains to determine is to satisfy the three assumptions: (1) n'yLL—fM > dyp(n—1),2) QnWL%F# —37?n? > 0, and

(3) ny Lit < 1. The first is naturally satisfied since ﬁ“ > Land n > n — 1. The second assumption is equivalent to
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Assumption 3 is equivalent to

T o 4L
— > —0n
logT =~ L+u "’
which is obviously satisfied when
>4
logT -
So we only need
T >6(1+ L
— —|n
logT W
So whenever 10 - > 6 (1 + %) n, the three assumptions hold. Therefore the theorem is proved. O

B. Proof of Theorem 2

Proof. The idea is similar to the proof of Theorem 1, with a slightly different analysis on the R? term capturing the changing
Hessian. For any 4, we use H; to denote H; (x*). For any vector v not being zero, define vector value directional function

, v
dir (v) = ol

with norm being ¢ norm. For the convenience of notation, we define dir (6) = 6, where 0 is the zero vector. For any two

points a, b € R<, and a matrix function g(-): R4 — R4 define line integral:

/abg (z)dx = /Ollb—al g (a +t”z — ”) dir (b — a)dt,

where the integral on the right hand side is integral of vector valued function over real number interval. This integral
represents integrating the matrix values function along the line from a to b. Again, define error term
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We have the following decomposition for the error term:
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Here we define random variables
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Compared with quadratic case, C? is the new term capturing the difference introduced by a changing Hessian. There is
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Using (B.1) (B.2), we can decompose the innerproduct of zf, — z* and [E [R!] as following:
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Note that here H; (zf, — z*) is the matrix H;(z*) times vector 2, — 2*, not the Hessian at point 2, — 2*. The last inequality
is because of

it o ) = (95 ) = 95070 = o o) = [ )
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For the second term in (B.5), we use the bound

—m¢%—xﬁEpﬂ>giwun—UH%—x*2+mr%ﬁﬁ?&. (B.7)

For the third term in (B.5), we use the bound
=2y {zf — 2", E[C"]) < 2v||zf — «*|| - (n*yLuG ||z — *| + n*+*LuG?)
= 20°y* Ly G ||J:6 — JIC*H2 +43n32 ||J:6 — m*” LyG?

< 3n%y?LyG Hx(t) = YntG3Ly. (B.8)

Substituting (B.6) (B.7) (B.8) back to (B.5), we get
1 .
-2y (zf — 2*,E [R]) < +*n? |VF (zf) H2 + 5T (n—1)||zf - x"‘”2 +~3u % (n— 1) [|A]?
+ 20 P LAGS + 'GP Ly + 7*n® (LyLD + 3LyG) |t — 27| (B.9)

Substituting (B.9) to (A.2), for one epoch we get recursion bound:

2
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which we call assumption 1 and assumption 2, (B.10) can be further turned into:
1 L
EM%ﬁWLEOfwbﬁ>mng%v%q+%#@+ﬁﬁ@, (B.11)

where Cy = 2p7'L2G?, Cy = G* Ly +3G*L?, C3 = 2u~ ' L*G?. Further assume n’yLL—f# < 1, which we call assumption
3, expanding (B.11) over all the epochs we finally get a bound for RANDOMSHUFFLE:
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Lety = 81;’iT, there is
. onlog T\ TioaT 2108 T w2 T .
Eller - ') < (1- 2757 2o = H2 + T e+ 7471402 +47n7C)
1 a1
< ﬁ Hl’o —x || + ﬁ (IOgT) Cy + — (IOgT) Cs + (IOgT) Cs, (B.12)
where Oy = 21281 (O = 402602 Cs = 8MC"‘ .The second inequality comes from (1 — x)% < Lfor0 < x < 1. Obviously,

this is a result of the form O (ﬁ + ﬁ>

What remains to determine is to satisfy the three assumptions: (1) 2ny LL” > 2yp(n—1)+~*n?* (Ly LD + 3Ly G), (2)
2ny i 3v?n? > 0, and (3) ny 7 L“ < 1. The first is satisfied when
Ly 1

- 1
n7L+u> zw(n )

which is naturally satisfied and

1 2,2
= LyLD 4+ 3L
2n7L+,u>7n(H +3LgG),
which is equivalent to
T L+p
LyLD +3LyG
log T Lu? (L LD +3LuG)n
which is obviously satisfied if we assume
T 32
—— > — (LyLD +3LyG
logT z (L LD +3LuG)n
The second assumption is equivalent to
T L
—>12(1+—|n
logT I
Assumption 3 is equivalent to
T - 8L
—n
logT = L+u "’
which is satisfied when
> 8
log T "

Since 12 (1 + %) > 8, we only need

32 L
> max {NZ (LyLD +3LyG)n,12 (1 + ) n} .
w

So whenever o T gT > max {% (LyLD +3LyxG),12 (1 + ﬁ) } n, the three assumptions hold. Therefore the theorem is
proved. O

C. Proof of Theorem 3

Proof. We only need to show that when T = n (i.e., one epoch is run for each problem) and n is even, no such step size
schedule exists. We note the random permutation of this single epoch as o (+). For n even, consider the following quadratic

problem:
1 n
) ; fi(z)
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where

(x —b)A(z —b) iodd,

N[

filz) =
Lz +b) Az +b) ieven,

where A is some d x d positive definite matrix with minimal eigenvalue p and maximal eigenvalue L, b is a d dimensional
vector. We use (-) to notate the transpose, so as to distinguish from exponential 7. The exact value of A and b will be
determined later. Obviously, x* = 0 is the minimizer. In this setting, we have:

X = wp1 — YA(Tio1 + (—l)o(t)b)

= (I —yA)z1 — (—1)7 "y Ab. (C.1)
Expanding (C.1) over iterations leads to:
T
vr = (I —yA) 2o = (=1)7Dy(I —vA)" " Ab. (C.2)
t=1

Taking expectation of (C.2) over the randomness of o, there is

E[zr] = (I —yA) . (C.3)
With (C.2) (C.3), we have close-formed expression on the final error:

E|ller - 2*I?] = lIE[er] - 2*|* + E [llo7 - E wﬂ
= [T = 74) (w0 — ") ||* +E

T
Z (I —~yA)T—t Ab (C.4)

Assume the eigenvalues of A are A1, Ag, - - - , Ay, there is an orthogonal basis eq, - - - , ¢4 for R4 such that ey, is eigenvector
of A with eigenvalue \;. We can write

d
b= Z biei.
=1

Since (e;, e;) = 0 for i # j, we can simplify the last term in (C.4):
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Substituting (C.5) to (C.4), we have

T

E [lar - 1] = (1 = y4)7 (w0 — 2*)|* + 2 Z BNE | |3 (170 (1 — )" (C6)
i=1 t=1
Once again, we can write
d
To— " = Zaiei.
i=1
Then (C.6) can simplified as
d T 2
E“@fowﬂ::EZnyA2Tf4Jf§:wA2 3 (1)1 — AT €7
i=1 t=1
Define random variables s, = (—1)°® fort = 1,--- , T. Then for any index pair ¢ # u, over randomness of o, there is
2(%)(2%—1) (%)(%)
E[stsu] = T(T—1)  T(T—-1)
2 2
_ b
- T-1
Using this fact, we can simplify the last term in (C.7) as:
T 2 T
E Y (=07 D@ =)™ | =D 0= )2 T (1= )T T E [sys4)
t=1 t=1 t#u
T-1 | Tl Tl
_ N2t I
B SIUERI R S o TN
t=0 t=0 u=0,uzt
T-1 1 T-1 1 T—1 2
_ N2t b N2t UMY’
- Xt g Tt [T ]
t=0 t=0 t=0
LT 11— 1 11— )
S T-11-(1-9\N)?2 T-1 YA ' '
For contradiction, we assume for any 7', there is a v dependent on 7" such that
E[llzr - || < o(y/m). (C9)

Now we determine the specific requirement of A and b. The only requirement is: A has at least three different positive
eigenvalues \; > Ao > A3, and b; # O for any 7. Furthermore, we assume a; # 0 for any . Now for the faster convergence
rate (C.9) to hold, from (C.7) we know there must be

(1 —9\)* =o(), (C.10)

DG VA C 2 =o(%>, (C.11)

hold for any .
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However with (C.8), we know:

T 2
7*E Z(l)"(t)(lﬂi)Tt}
t=1
of T 10— 1 J1-(1-)7)

T-11-(1—y\)? T-1 i
o[ T 1 1 o[ T (A=) 1 20— )"+ (=)
T—11—(1—7X\)? T—172X T—-11—-(1—-~vX)? T-1 ¥2\2

=7

5
(C.12)

So by (C.11), there must be (C.12) is 0(%). We now analyze the terms in (C.12). There must be |1 — vA;| < 1 for

convergence, so |y| is no more than /\% which is constant. Since (C.10), there is (1 — yv\;)T = o(1), so

4= 1 =201 =) + (1 =) _ 0(1)
T-1 VA2 T
Again, since |1 — y\1| < 1, for i = 2, 3 there is
2 2

s €
290 — 2N T (2 Ra),

which is constant. Therefore by (C.10),

2 T (]‘ _’y)\i)2T — O(E)
T—11—(1—N)2 T

7y

for ¢ = 2, 3. So for what remains in (C.12),

o[ T (=721 =21 =)+ (1= N)*T _ o(l)
TlT 11— -2 T-1 V2N T
for i = 2, 3. Therefore,
[T 1 11 4
_ — o=
TAT—11= (=N T—142X2 T

S0
T 1 1 1 1

7T71M@77&):T4¢X§+df%

which means T 1
7

= — 1).

2 — ’}/)\i )\l + O( )

Since 2 — )\%)\i <2 — 9\ < 2fori = 2,3, there must be

sup lim T < C
T—o0
for some C' > 0, soy — 0 as T' — co. Therefore, (2 — y\;) — 2. So there has to be

2
lim AT = =
Thee TN

However, this cannot be true for Ay # A3 at the same time, contradiction. As a result, no step size can leads to convergence
of o(%). O
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D. Proof of Theorem 4

Proof. The idea is similar to the proof of Theorem 2, with a slightly different analysis on the R term adopting the sparsity
parameter. For any ¢, we use H; to denote H;(x*). Again, we have the following decomposition for the error term:

n

R =" [Visi)(@ 1) = Vo, (@h)]

Ti—1
/ (Ho, i) (x) — Hat(z'))dw]
xr

Ti_1
/ (Hy, iy () — Hot(i))dfl

i=1 i=1
n i—1 n zi_,
= Hyyi) > (=4 oy @) |+ / (Ho, (i) () — Ho,(iy)dx
i=1 j=1 i=1 ["%0
n 1—1 n
==Y | Hoi) ) Ve (@) | =7 WZ V fou () (@5-1) = V fo, () (@0)]
i=1 j=1 i=1 j=1
+Z / (Hat()( ) o ( ))d ‘|
i=1 L/76
=A' + Bt 4+ Ct. (D.1)

Here we define random variables

:_’yz m()zvfﬂf ) ‘TO) )

j=1
n i—1
Bt = _’yz Hm,(i) Z [vat,(j) (mz'*l) - v‘fa’(j)(xé):l ’
i=1 Jj=1

ct=>" [/  (Hoyiy (@) — Hyygay)dz | -

i=1

This time, we have bounds for these three terms adopting sparsity information:

n(n—1)

B[4 = -2

YEizj [Hoo)V oo () (@h)] (D.2)

n i—1
B <4 Howiy > (Vi) (@ 1) = V() (2h))
i=1 j=1

n i—1
< ’yz Lan’yGL

i=1 j=1
< n®y2pGL>. (D.3)

/ Ho,, (%) — Ho,(s))dz

n t—1

[CHEDIHD

i=1 j=1
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< an [max{”:r; —z*” 0<j<i-— 1}LH7G]

i=1
< pn? (|26 — =*|| + mvyG) LG
= pn*yLyG ||z — =*|| + pn®+*LuG®. (D.4)

Here the introduction of p in (D.3) is because: if f,,(x) and f,,(;) depend on disjoint dimensions of variables and £ < j,
then there must be V f,, ;) (x}.) = V fo,(j)(2},_1). The introduction of p in (D.4) is similar: if f,, ;) and f,, ;) depend on

disjoint dimensions of variables and j < 4, then there must be f;’ (Hg,i)(x) — Hy,(3y)dx = 0.
j—1
With (D.1) (D.2), we can decompose the innerproduct of zf, — z* and E [R!] into:
—2y(zf — a*,E [R"]) = =2y (zf — «*,E [A'] + E [B'] + E [C*])
= —2v(xf — ", E[A']) — 2v(af — =", E [B']) — 2y (zf — «*,E [C*])

=*n(n —1) (g} — 2", Ei; H;V f;(z)) — 2v(z} — 2*,E [B']) — 2v(a} — z*,E[C"]).
(D.5)

For the first term in the (D.5), there is

Vn(n —1) (zh — o, Big; HiV f;(x5))
= nyn(n — 1) E;x; <Hl(z6 —z"), ij(xé) - ij(:v*)> + 'an(n -1 <:c6 — 2", Eiy, Hinj(x*)>

<0 By (VAiad) = V). Vhy(ab) = Vh(a)) + = 1) |5 "4 gp A1)
(1) By (Hilah — ) = (Vi(ah) — V), V(o) ~ V()
< v%*n? ||VF(LIJ6)||2 + i’yp(n —1)||=f - z*HQ +4%u 2 (n = 1) | AP + 4*n(n — 1)Ly L ||zt — z*HS . (D.6)

t *
on - |

Where the last inequality is because of

it =) = (Vi) = V)| = HH( —a) - [

/:B(Hi — H;(z))dz

t %
Hy— H; (2" + 0" )| gt
[E%

||mé—m*
</ :
0 o — ||

<Ly Hxé —z*

2

For the second term in (D.5), we use the bound

> oIS g2 LAG2 RS, (D.7)

~2y(ah — 2, E [B']) < gyl — 1) b — 2°
For the third term in (D.5), we use the bound
=2y (zf — 2", E[C"]) < 2v||zf — «*|| - (pn*vLuG||zf — 2*|| + pn*y*LuG?)
=2n°py’LyG ||zf — = * 4 oy®n32 |z — 2*|| LuG?
< (2p+ 1)n*y’LyG ||zf — 2* |2 + P2y G Ly
<302 LG ||z — a*||° + p*+*n*G® L. (D.8)

Substituting (D.6) (D.7) (D.8) back to (D.5), we get

1
—2y(zf — 2*,E [R']) < +*n? HVF(QEB)H2 + g'y,u(n —1)||=f - :r*||2 +3u "2 (n—1) A2
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+2u NP 2 LAG*0S + p* 4GP Ly + 4?n?(Ly LD + 3Ly Q) ||x6 —x* ||2 . (D.9)
Substituting (D.9) to (A.2), we have recursion bound for one epoch:

E [laf, — |

< (-2 L= 1) PR (L LD £ 3L4G)) |7 — 2| — (2ny ) |[VE @)

H _
L+p 2 L+pu
F 32— D) AP+ 22y GE Ly + 20~ 9P p2LAG 05 + 2p2ny G2 L2,

Here the last inequality is because

17| =

D Ve @1) = > Voo (@)
=1 1=1

<Z||Vfat<z i 1) = Vo, (20)||

1—1

i=1
- Z Z vf"t(Z = Vo, (x ( ~1))

=1 ||j=

SZZHV'JC“”(Z ) va't ( 1)H

—

Finally, we again use the fact
1
Al < —LG.
1Al < —

The remaining process is same as proof of Theorem 2, leading to a bound O(7z + & ;@3 )-

E. Proof of Theorem 5

Proof. The idea is similar to the proof of Theorem 2. For any vector v not being zero, define vector value directional
function v
dir (v) = —,

o]
with norm being ¢5 norm. For the convenience of notation, we define dir (6) = 5, where 0 is the zero vector. For any two

points a, b € R?, and a matrix function g (-) : R — R?*4, define line integral:

/abg(ac) dz = /Ollbal <a+t||z — H) dir (b — a)dt,

where the integral on the right hand side is integral of vector valued function over real number interval. This integral
represents integrating the matrix values function along the line from a to b. Again, define error term

= vaﬂ't(i) Ti— 1 vao'f() 1’0
i=1

Assume F™* being the minimum of function F'(-). For one epoch of RANDOMSHUFFLE, we have

F(agtt) = F* < Faf) = F* =y (VF(af),nVF(x )+Rf>+ 202 |nVE(h) + R
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L
< (1= 2npy) [F(zy) — F*] =7 (VF(zf), R") + 772 [an |VF(zf H2 +2 HRtHZ}
< (1 = 2npy + 2L%n29?) [F(ah) — F*] — 7 (VF(x}), RY) + Ly? || R|| . (E.1)
Here the second inequality is by the definition of Polyak-Lojasiewicz condition, the last inequality uses the fact
2L[F(z}) — F*] > |[VF(zb)|| -

We have the following decomposition for the error term:

n

R =3 (Vo (#i1) = Ve ()]

i=1

n I:—l
= Z /t Hot(i) (SC) dI]
i=1 LY %o

=> [/j Ho, (i) (wp)da
i=1 L7 %o
= Z [Ho, iy (2h) (zf_y —2f)] + Z

/I - (Hﬂt(i) (:U) - Hﬂt(i)(xé)) dx]

i—1
- Z Ut( ) 1‘0 Z ( ’yvfaf(J) ] + Z / (CL‘) - Hat(i)(x(t))) dx]
j=1
i—1
:—72 H,,(5)(x0) vamm ) ] —VZ{ o) @) Y Vo) (721) = Vo) (»”66)]}
j=1
+ Z /tl_ (Ho, i) () = Hy, 5y (2)) dﬂ?]
i=1 Ty
=A"+B' +C" (E.2)
Here we define random variables
n i—1
At = _’YZ |: ot ( xé)zvfotu 1‘0)] 5
i=1 j=1

i=1 Lo
There is
-1
E[A"] = —%VE# [Hi(x5)V f; (25)] (E.3)
i—1
HBtH < P)/ZHUt(’L) xO Z vat(]) VfUt(J) (CUO))
=1 j=1

SvZLZ(j—l)yGL
i=1 j=1
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772L2GZ ) 1*2)

1

l\')

n

—~2L2Gn3. (E.4)
et <>

[y
/ dt
i=1 V0

<> [La ot -]

<n 72LHG2 (E.5)

Ti_y — T ¢
Ho't(i) 1‘0 +t i HO't(i) (xO)

sz 17 %H

Using (E.2) (E.3), we can decompose the innerproduct of VF(z}) and E [R!] as following:

—(VF(2§),E [R']) = —(VF(a}),E [A"] + E[B] +E [C"])
= (VF(ah),E [AY]) - (VF(z}),E [B']) — v (VF(zb), E [C!])

= 27 (n = ) (VF(ah). Eogy Hi(ah)V f; (44)) — 7 (VE(h),E [B]) = 7 (VF(ab), E [C1]).
(E.6)

For the first term in the (E.6), we have further bound:
1
57% (n = 1) (VF(x5), Eizj Hi(x5)V fj (25))

*n? (VF(zh), B j Hy(z§)Vf; (zh)) — 17 n(VF(z}),E; Hi(z))V fi (z§))

%’y n?L||VF(ah)| +f “||VF )|+ 7nu‘1L3G2

(v*n?L* + Zvn,u)[F(xo) - F*]+ 57 Snu ' LG2. (E.7)

IN

IN

For the second term in (E.6), we use the bound

N

—y(VF(h),E [B']) < cvn|[VE(b)||” + %u‘1'y5n5L5G2

< i’y;m[F(m’é) - F*]+ %u_lfy5n5L5G2. (E.8)
For the third term in (E.6), we use the bound
—7(VF(@)),E[C']) <7 [|VF(@p)| - (n**LuG?)
=7n® |VF(z})| LuG?
< ;n%?L IV E(h)|]” + —n474L2 G*
<n*y2L2[F(x}) — F*] + %n‘l'y‘lL%{G‘l. (E.9)
Substituting (E.7) (E.8) (E.9) back to (E.6), we get

1
—nytL2,G"

1 1 1
—v(VF(z}),E [R']) < (5ynp+ 2n*y*L?)[F(zf) — F*]+§73nu*1L3G2+§u LS LAG? + 57
(E.10)

2

Substituting (E.10) to (E.1), for one epoch we get recursion bound:

E[F (a5"") — F7]
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3 1 1 1 1
<(1- STy + 4L*n2~?) [F(zf) — F*] + §y3nu_1L3G2 + §,u_1’y5n5L5G2 + —n*y*L%,G* + Zn4’y4G2L3.

2L
(E.11)
Now assume ]
in/yy > 4L%n%2,
which we call assumption 1, (E.11) can be further turned into:
E[F(zp"") — F]
< (1 —=npy) [F(zf) — F*] + ¥*nCy + n*y'Cy 4+ n°4°Cs. (E.12)

where C; = %,u’lL;SGQ, Cy = ﬁL%G‘* + %G2L3, Cy = %u*1L5GQ. Further assume nyu < 1, which we call
assumption 2, expanding (E.12) over all the epochs we finally get a bound for RANDOMSHUFFLE:

3N

T 5
E[F(zr) — F*] < (1 —nyp)™ [F(zo) — F*] + P (v*nC1 +y*'n*Cy +9°n°Cs) .

Lety = Q?iT, there is
s—t——=2log T
2nlog T 2nloeT T
E[F(zr) — F*] < (1 - Tg> [F(wo) = F"]+ — (v*nCy +v*'n'Cy 4+ 4°n°Cs)
1 N 1 3 n3 4 nt 5
< E[F(l‘o) - F } + ﬁ (logT) Cy+ ﬁ (logT) 05 + ﬁ (logT) CG, (E.13)

1
=

where Cy = %, Cy = 15C2 ¢y = 3i€2 .The second inequality comes from (1 — x)= < é for 0 < = < 1. Obviously, this

#4 1)
. 3
is a result of the form O (% + %)

What remains to determine is to satisfy the two assumptions: (1) nuy > 4L?n?y2, (2) nyp < 1. The first is satisfied when

T > 16L2
—n.
logT 12
The second assumption is satisfied when
> 2n.
logT "
Since 2 < %, the theorem is proved. O

F. Proof of Theorem 6

Proof. For one epoch of RANDOMSHUFFLE, We have the following inequality

2

Z V fouti) (2i-1)

i=1

o= = [l o[ = 21 < S <xz_1>> iy

i=1

2 2y {(zh — ", nVF (zf)) — 2y (zf — 2", R") +~° HnVF (z5) + RtHZ
> — 2ny [F(ah) — F(z*)] — 2 (af) — 2%, B) + 24%n2 ||V F () ||” + 292 || BY||”
< af — 9:*“2 — (2ny — 2n*42L) [F(2f) — F(2*)] — 2y (2} — 2*, R") + 27* HRtHQ7 (F.1)

= tho —z*

< ot —a*

where the first inequality is because of
(ah — ", VF(ah)) = F(eh) — F(a"),

the second inequality is because of
2 *
|VF(xf)||” < L[F(z) — F(a*)].
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Therefore, taking expectation of (F.1) leads to:
E[||«f, — 1’*”2] < | = :v”‘”2 — (2ny — 2n*4°L) [F(zf) — F(2*)] — 2vE (2} — 2*, R") + 27*E [HRtHQ} , (F2)

Define random variables
k

Rl = Z [Vfgt(i) (I§—1) — Vo) (IB)] )

=1

where 1 < k < n. Obviously R!, = R'. We firstly show that || R || < 3n®L~y(||VEF(x)| + &), which is an important fact
to be used in further analysis.

For any index 1 < id < n, there is
IV fia(@t) =V fia(zh)|| < Ly(|VF(2h)|| +9).

Assume for any 1 < id < n and some i, there is (which is obviously true when ¢ = 1)

1—1
|V fia(z}) = V fia(xf)]|| < {Z(lJFLV Ly(||VE(xp)]| + 9).

7=0

Then for ¢ + 1, there is

I fia(at1) = Via(@h)|| < |V fialel) = fua(a)]| + || fiale (@31) =V Fale Dl
< ||V fia(z}) = V fia(ad)|| + Ly(|[VF ()| +6)

< ||V fia(al) = V fia(zh)|| + Ly (|| VE ()| + ) + Ly(|VF(2) — VF(zh)||)
i—1
< (1+Ly) [Z(Hm Ly(|[|[VF (@) || + ) + Ly (|| VF (=) || + 0)
§j=0
= | > (1 + Ly | Ly(||VF(zh)]| + ).
=0
So by induction, there is
f ._
|V fia(@}) = V fia(zh)|| < Z(l + L)’ | Ly(||[VF ()| + 6)
_]:0 -
forall 1 <7 < n. Since v < 16nL < nL there is 1 + yL < % Therefore, we have
Fy _
IV fia(@)) =V fia(af) || < [ D1+ Ly | (| V()| +6)
._j=0 .
< |n(1+ 711)”] Ly(|[VF ()| + 6)

< 3nLy(||VF(zf)| + ).

Therefore, for any 1 < k < n, there is
k
IR < D IV o (1) = Voo () ]
i=1

k
< ZSnL’y(HVF(a:é)H +9)

i=1
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< 3n2L’y ||VF || +9).

Similar to the previous proof, we have the following decomposition for the error term:

Rt — Z [V oty (#21) = Vs (zh)]

=1
n zi_y
S| [ e @ dx]
i=1 Y %o
n zi_y n zt
=1 Zo i=1 z§
n n xt_,
=2 [Houy (wloy )]+ / (Ho (i) () = Ho,(3)) dx]
i=1 i=1 /%6
n i—1
= Z Ho’t(i) Z ( ’-vaat(_]) + Z / (x) — HO't(i)) dlﬂ‘|
i=1 j=1

n 1—1 7—1
==Y [HWZWWU) (o) ] —VZ{ o) O Vo) (1) = Vo) (fﬂf))]}
i=1 =1 j=1
+

x'ti—l
/t (Ho, ) () — Ho, () dx}
_1 ‘T)O

= A"+ B 4+ C". (F3)

Here we define random variables

n 1—1
= [Hm) > Vi) (xé)] v

i=1 j=1

i—1
= —'YZ { o (i) Z Vfo't () ( ) - Vfgt(j) (.7;6)] } ,

=1 0

There is

1
YEizj [H:Vf; (zh)] (F4)

n 1—1
1B < VZHm(i) Z IV foriiy (@51) = Vo) (20)

<WZLZBnL7 |VF(zf)] +6)

=1 j=1
< 3VALPR3(||VE ()| + 6). (ES5)

n [l P
Il 52/ Hoygo | o+ b= 0 | = Flougo | de
= iy = b
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-

s
Il
-

< ) [Lrmax {{|af_y — 2|, [|26 — 27|} [|2f-1 — =0]l]

<nLygDn~G. (F.6)

Using (F.3) and (F.4), we can decompose the inner product of zf, — z* and E [R'] into:
2y (ah — 2% E [RY]) = —2y (a} — 2", E [A] + E[BY] + E[C?])
= 2y (ah — 2" E[A"]) — 2 (a} — " E[B']) — 2y (zf) — o, E [C?])
=v*n(n—1){zf — 2", Eiz; HiV f; (z})) — 2v (zf, — 2", E[B']) — 27 (af, — 2", E[C"]).

ET7)
For the first term in (F.7), there is
v?n(n —1) <x6 — 2" Eix; H;V f; (x(t))>
=71 (n — 1) Eig; (Hi (6 — 27) . Vfj (25) = Vf; (@) +9*n(n — 1) (2§ — ", Eig; HiV f; (27))
<*nPEi; (Vi (25) = Vi (@), Vfj (5) = V(@) +9*n(n—1) D |A]
+~%n (n—1) Eiz; <Hi (xé - x*) - (Vfi (xf)) - Vi (Jc*)) ,Vf; (mé) -V (a:*)>
< *n?||VF (xf) H2 +9°n(n—1)D | Al +~*n(n—1) LyL|jzf — «* |3 . (E.8)

Here we introduce variable A = E;; [H;V f;(«*)] for simplicity of notation, with ¢, j uniformly sampled from all pairs of
different indices. The last inequality is because of

[H; (26 — =) = (Vfi (25) = Vi (2) | = HHl (zf —2*) — /zo H; () dx

/ (H, — H, (2)) dz

[[e6—="]] b g
g/ H, — H, <x*+tx?x*>Hdt
0 [l — =]
w2
§LHH9U6—:E H .
For the second term in (F.7), we use (F.5) and have the bound
=27 (xf, — 2*,E [B']) < 64°n’ L’ D(||VF(x{)]| + 9). (F9)
For the third term in (F.7), we use (F.6) and have the bound
—2vy(zf — 2*,E[C"]) < 2¢4*n*Ly D*G. (F.10)

Substituting (F.8) (F.9) and (F.10) back to (F.7), we get
~2y (zh — 2, E [R']) < ¥*n?||VF (z0)||* + v*n (n — 1) D||A]| + 64*0® L2D(||V F (z4)]| + 4)
+ %2 Ly (LD? + 2D?G). (E11)
Furthermore, we have
B[R] < [3r2La(|| V()| +6))°

< 18n* L2 (||VF (zh)||” + 62).
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Inequality (F.2) can be simplified to:

El||«f, - a:*||2] < ah - x*H2 — (2ny = 3n*y°L) [F(zf) — F(z*)] +v*n(n— 1) D ||Al| + v*n*Ly (LD? 4+ 2DG)
+ 67 nPL2D(||VF(ah) || + 8) + 360  L24* (| VE(«h)||” + 62).

? — (2ny = 30%4%L) [F(ah) — F(z*)] + 7*n (n — 1) D | A + ¥*n? Ly (LD? + 2D*G)

+ 129202 ||VE(ah)||* + 1290 L*D? + 64°n> L2 D6 + 360 L2 (|| VF (ab)||* + 6%). (F.12)

< tho -z

By the definition of +, there is
360 L2y" < n242,
1610292 L < ny.
So there is
112 w112 N
Ell|2!, — 2*|[*] < |J2f — «*||* = (2ny — 16n*42L) [F(2) — F(x")] ++*n (n— 1) D | A
+ 202 Ly (LD? 4+ 2D*G) + 129*n*L*D? + 643n® L2 D6 4 36n* L% 6.
* 2 *
< |l — | = ny [F(ah) — F@™)] +9202D 4]
+ 202 Ly (LD? 4+ 2D*G) + 129*n*L*D? + 67°n® L2 D6 + 36n* L2~*62.

Furthermore, there is

ny [F(xf) — F(z*)] < ||=f - x*”z —E||«%, - x*Hz] +7%n* (D ||Al| + Ly LD? + 2Ly D*G)
+ 6723 L2 D6 + n*y*(12L4D? + 36 L252). (F.13)

Taking expectation of (F.13) and summing over all epochs, we have:

Ty [F(z) — F(z*)] < D?> +4*Tn(D ||A|| + Ly LD? + 2Ly D*G) + Ty*n?L?6 D5 + Ty*n3(12L*D? + 36 L25?).

(F.14)
Substituting the step size into (F.14), we have
1
D? Tn (||A LyLD? +2Lg DG Tn2L25\ 3 1
F(z) — F(z") < — max 16nL,\/ n(lAl+ Ln el ), r (Tn3LY)=
T D D
D\/nD (|A]+ LyLD? + 2Ly DG D(D?n%L2%8)3 i 52
4 DVAD AT+ LnlD? 303 DG) | 6D(D*2L20)} | nt (1), 36
VT T3 T% L
2D+/nD (|A[+ LyLD? + 2Ly DG)  7D(D2n2L25)3 i 3662 16D?nL
VT T3 Ti L T
Obviously, this result is of the form
2D D (||A LyLD? +2Ly DG 2 2
vnD (A + Ly +2Lg )+O<<n)36§+(n)4>
VT T T
O

G. Proof of Theorem 7

Proof. For both SGD and RANDOMSHUFFLE, we use s(7) to denote the index of component function picked in the ith
iteration. We have the following inequality

lze — 2| = ||w—1 — 2*| ] — 2y(me—1 — &, V sy (me—1)) + V2V ooy (@—1)|?
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= ||z — 2*| ] — 29(@i—1 — 2%, V sy (@i—1) — Vs (@) + V2|V foqy (@e-1) ]

IV fsy (xi-1) = Vifsy (@)I* Lyyhse)
<|wp_g —x*||2 =2 + i1 — %) + V2|V fan (ze—1)||?
l[2¢—1 I 7( Loty + fiote Ls(t)+us(t)H t—1 11%) + 711V foey (me—1)]
Lyypsry 9 2 2
— (1= 22ROy P (ot D)V i (e
( Ls(t)Jrus(t))H -1 I (Ls(t)+ﬂs(t) MV foy (@e—1)]
Loy 1s(e) 2 o P 2
<(A—=2y————+pu; —2y—" |2y — "
( 7Ls(t)+/-//s(t) Pst)Y 7Ls(t)+us(t))‘| t—1 I

= (1= 2yps() + 1371 — 2|
= (1= vps)?||lme—1 — *|°.

The first inequality is by Theorem 2.1.11 in (Nesterov, 2013), the second inequality is by the definition of strongly convexity.

So we have
T

E|lzr — 1> < B[] T(1 = a0 wemr — 27|
i=1

By the AM-GM inequality, we know the term ]E[]_[iT:1

Also, this bound is tight when we consider f;(z) = &

(1 — Ypus(1))?] for RANDOMSHUFFLE is no larger than that of SGD.
x — x*||?, which completes the proof.

O

H. SGD under Polyak-f.ojasiewicz condition

For the completeness of the paper, we include the following analysis of SGD under Polyak-t.ojasiewicz condition.

Theorem 1. For finite sum problem satisfying Polyak-tojasiewicz condition with parameter i, Lipschitz constant L, setting

step size
logT
Y= MT )
there is 1
F(zp)—F* < (’)(T)

Proof. We have the following one iteration for SGD with step size :

Ter1 = Tt — YV fopry (1) (H.1)
Given x;, there is randomness over index
E[F(xe11)] — F* < F(e) ~ v BU(VF (@), Vs @)] + 57 BV ) ) - F° (H2)
= F(0) = AVF (@), VE@)) + 5 B[V filen) ] - F° (H.3
< F(wy) — yu[F(x) — F*] + g’yQGQ ~ F* (H.4)
= (1 - 2)[Fla) — F] + 247G (H.5)

The first inequality is because
L
Fla) < F(y) + (o =y, VE@) + 5 o~ ol
The second inequality is because of the definition of PL condition.

Expanding over iterations leads to
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* * L
E[F(er) = F*] < (1= 2y)" [F(z0) = F'] + 5 TvG.
Setting v = Ii%T leads to a O(7:) convergence of F(zr) — F*. O
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