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Abstract

A long-standing problem in optimization is
proving that RANDOMSHUFFLE, the without-
replacement version of SGD, converges faster
than (the usual) with-replacement SGD. Building
upon (Giirbiizbalaban et al., 2015b), we present
the first non-asymptotic results for this problem,
proving that after a reasonable number of epochs
RANDOMSHUFFLE converges faster than SGD.
Specifically, we prove that for strongly convex,
second-order smooth functions, the iterates of
RANDOMSHUFFLE converge to the optimal solu-
tion as O(1/7> + »°/13), where n is the number
of components in the objective, and 7 is number
of iterations. This result implies that after O(y/n)
epochs, RANDOMSHUFFLE is strictly better than
SGD (which converges as O(1/T)). The key step
toward showing this better dependence on 7' is the
introduction of n into the bound; and as our anal-
ysis shows, in general a dependence on n is un-
avoidable without further changes. To understand
how RANDOMSHUFFLE works in practice, we fur-
ther explore two valuable settings: data sparsity
and over-parameterization. For sparse data, RAN-
DOMSHUFFLE has the rate O (1/72), again strictly
better than SGD. Under a setting closely related
to over-parameterization, RANDOMSHUFFLE is
shown to converge faster than SGD after any arbi-
trary number of iterations. Finally, we extend the
analysis of RANDOMSHUFFLE to smooth convex
and some non-convex functions.
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1. Introduction

We focus on minimization of the finite-sum

F(z):= %Zfi (), (1.1
=1

where each f; : R? — R is smooth and convex, and the
sum F' is strongly convex. A classical approach to solv-
ing (1.1) is stochastic gradient descent (SGD). At each
iteration SGD independently samples an index ¢ uniformly
from {1,...,n}, and uses the (stochastic) gradient V f; to
compute its update. The stochasticity makes each iteration
of SGD cheap, and the uniformly independent sampling of ¢
makes V f; an unbiased estimator of the full gradient VF'.
These properties are central to SGD’s effectiveness in large
scale machine learning, and underlie much of its theoretical
analysis (see e.g., (Rakhlin et al., 2012; Bertsekas, 2011;
Bottou et al., 2016; Shalev-Shwartz and Ben-David, 2014)).

However, what is actually used in practice is the with-
out replacement version of SGD, henceforth called RAN-
DOMSHUFFLE. At each epoch RANDOMSHUFFLE samples
a random permutation of the n functions uniformly indepen-
dently (some implementations shuffle the data only once at
load, rather than at each epoch). Then, it performs SGD-
style updates by going through the n functions according to
the sampled permutation. By avoiding random sampling at
each iteration, RANDOMSHUFFLE can be computationally
more practical (Bottou, 2012); and empirically, it is known
to converge faster than SGD (Bottou, 2009).

Resolving this discrepancy between theory and practice of
SGD has been long an open problem. Recently, this prob-
lem has drawn renewed attention, with the goal of better
understanding RANDOMSHUFFLE. The key difficulty is
that without-replacement produces non-independent sam-
ples, which greatly complicates the analysis. Two extreme
case results are known: Shamir (2016) shows that RAN-
DOMSHUFFLE is not much worse than SGD, provided the
number of epochs is not too large; while Giirbiizbalaban
et al. (2015b) show that RANDOMSHUFFLE converges faster
than SGD asymptotically at the rate O( 7).

But it remains unclear what happens in between, i.e., after a
(reasonable) finite number of epochs are run. This regime is
the most compelling one to study, since in practice one runs
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neither one, nor infinitely many epochs. This background
motivates the central question of our paper:

Does RANDOMSHUFFLE converge faster than
SGD after a reasonable number of epochs?

We answer this question positively in this paper; our results
are more precisely summarized below.

1.1. Summary of results

We follow the common practice of reporting convergence
rates depending on 7', the number of calls to the (stochastic /
incremental) gradient oracle. For instance, SGD converges at
the rate (9(%) for solving (1.1), ignoring logarithmic terms
in the bound (Rakhlin et al., 2012). Our key observation for
RANDOMSHUFFLE is that one should include dependence
on n into the bound (see Section 3.3). This compromise
then leads to a better dependence on 7', which further shows
how RANDOMSHUFFLE beats SGD after a finite number of
epochs. Our main contributions are the following:

» Under moderate assumptions, we establish a conver-
gence rate of O(1/72 + »°/7*) for RANDOMSHUFFLE,
where n is the number of components in (1.1), and T
the total number of iterations (Thm. 1 and 2). From the
bounds we can calculate the number of epochs after
which RANDOMSHUFFLE is strictly better than SGD.

» We prove that a dependence on n is necessary for beat-
ing the SGD rate O(1/T). This tradeoff precludes the
possibility of proving a rate of the type O(1/7'+?) with
some § > 0 in the general case, and justifies our choice
of introducing n into the rate (Thm. 3).

» Assuming sparse data, a setting common in machine
learning, we further improve the convergence rate of
RANDOMSHUFFLE to O(1/7?). This rate is strictly
better than SGD, indicating RANDOMSHUFFLE’s ad-
vantage in such cases (Thm. 4).

» We consider a setting where variance vanishes at the
global minimum, which is closely related to the no-
tion of over-parameterization in recent literature. We
show that RANDOMSHUFFLE converges faster than
SGD after arbitrary number of iterations. (Thm. 5)

In Section 4, we discuss various aspects of our results in
detail, including explicit comparisons to SGD, the role of
condition numbers, as well as limitations. In Section 7,
we analyze RANDOMSHUFFLE to a class of non-convex
functions and convex functions.

1.2. Related work

Very Recently, Jain et al. (2019) obtained a convergence rate
of O(n/1?) for RANDOMSHUFFLE under strongly convex
setting without assuming Hessian smoothness. Their result

improves our result when the number of epochs is smaller
than xkn, with k being the condition number.

Recht and Ré (2012) conjectured a remarkable matrix AM-
GM inequality that underlies RANDOMSHUFFLE’S superi-
ority over SGD. While limited progress on this inequality
has been reported (Israel et al., 2016; Zhang, 2014), the full
conjecture is wide open. With the technique of transductive
Rademacher complexity, Shamir (2016) shows that SGD
is not worse than RANDOMSHUFFLE provided the num-
ber of iterations is not too large. Ying et al. (2018) show
that for a fixed step size, RANDOMSHUFFLE converges to a
distribution closer to optimal than SGD asymptotically.

Most closely related to our work, Giirbiizbalaban et al.
(2015b) prove that RANDOMSHUFFLE limits to a Oz )
rate for large T'. Their analysis is based on an epoch level
iteration, which “wraps up” the bias brought by without
replacement sampling into the error of a single epoch. How-
ever, their results are based on an asymptotic version of
Chung’s Lemma, and are therefore asymptotic. A precise
bound on the number of epochs after which their conver-
gence rates apply is not clear. Moreover, the constants
hidden in their bound are unclear and can be potentially
large. Building upon a similar approach, while introducing
new theory to explicitly control the constants, we establish
precise non-asymptotic results. A key challenge therein was
to reduce the dependence on n, which we overcome by a
few steps of carefully constructed AM-GM inequalities.

When the functions in (1.1) are visited in a deterministic
order (e.g., cyclic), the method turns into Incremental Gra-
dient Descent (IGD), which has a long history (Bertsekas,
2011). Kohonen (1974) shows that IGD converges to a limit
cycle under constant step size and quadratic functions. Con-
vergence to neighborhood of optimality for more general
functions is studied in several works, under the assump-
tion that step size is bounded away from zero (see for in-
stance (Solodov, 1998)). With properly diminishing step
size, Nedi¢ and Bertsekas (2001) show that an O(1/v/T) con-
vergence rate in terms of distance to optimal can be achieved
under strong convexity of the finite-sum. This rate is further
improved in (Giirbiizbalaban et al., 2015a) to O(1/7) under
a second order differentiability assumption.

In practice, RANDOMSHUFFLE has been proposed as a stan-
dard heuristic (Bottou, 2012). With numerical experiments,
Bottou (2009) notices an approximately O(1/72) conver-
gence rate of RANDOMSHUFFLE. Without-replacement
sampling also improves data-access efficiency in distributed
settings (Feng et al., 2012; Lee et al., 2015). The
permutation-sampling idea has also been embedded into
more complicated algorithms; see (De and Goldstein, 2016;
Defazio et al., 2014; Shamir, 2016) for variance-reduced
methods, and (Shalev-Shwartz and Zhang, 2013) for decom-
position methods.



Random Shuffling Beats SGD after Finite Epochs

Table 1. Comparison of convergence rates of SGD and RANDOMSHUFFLE. All functions considered are strongly convex except for the
Polyak-Lojasiewicz condition setting. We omit all the constants from the rate (for details on constants, please see Section 4). Under the
sparse setting (sparsity level p), we are not aware of specialized results corresponding to SGD.

Algorithm Quadratic Lipschitz Hessian ~ Sparse Data PL Condition
SGD O(1/7T) o1/T) O01/T) o(1/T)
RANDOMSHUFFLE  O(1/T? +n3/T3)  O(1/T? +n3/T%) O1/T? + p*n3/T3)  O(1)T?% +n3/T3)

Finally, we note a related but separate body of work on
coordinate descent, where a similar problem has been stud-
ied: when does random permutation over coordinates be-
have well? Giirbiizbalaban et al. (2017) give two kinds of
quadratic problems where cyclic coordinate descent beats
the with-replacement randomized one, which is a stronger
result indicating that random permutation also beats the
with-replacement method. However, such a deterministic
version of the algorithm suffers from poor worst case. In-
deed, in (Sun and Ye, 2016) a setting is analyzed where
cyclic coordinate descent can be much worse than both
with-replacement and random permutation versions. Lee
and Wright (2016) further analyze how the random permu-
tation version of coordinate descent avoids the slow con-
vergence of cyclic version. Wright and Lee (2017) propose
a more general class of quadratic functions where random
permutation outperforms cyclic coordinate descent.

2. Background and problem setup

For problem (1.1), we assume the finite sum function F'(x) :
R? — R is strongly convex, i.e.,

F(x) > Fy) + (VE(y),x —y) + 4 = — oIl

where 2,y € R?, and ;. > 0 is the strong convexity param-
eter. Furthermore, we assume each component function is
L-smooth, so that for ¢ = 1, ..., n, there exists a constant
L such that

IV fi(z) = Vi)l < Lz —yll. 2.0
Furthermore, we assume that the component functions are
second order differentiable with a Lipschitz continuous Hes-
sian. We use H;(z) to denote the Hessian of function f; at
x. Specifically, for each ¢ = 1,...,n, we assume that for
all z,y € R?, there exists a constant Lz such that

[1Hi(x) = Hi(y)|| < L [l =yl 22)

The norm is the spectral norm for matrices and ¢, norm for
vectors. We denote the unique minimizer of F(z) as z*,
the index set {1,--- ,n} as [n]. The complexity bound is
represented as O(-), with all logarithmic terms hidden. All
other parameters that might be hidden in the complexity
bounds will be clarified in corresponding sections.

2.1. The algorithms under study: SGD and
RANDOMSHUFFLE

For both SGD and RANDOMSHUFFLE, we use -y as the step
size, which is predetermined before the algorithms are run.
The sequences generated by both methods are denoted as
(wk)%_o; here x is the initial point and 7' is the total number
of iterations (i.e., number of stochastic gradients used).

SGD runs as follows: at each iteration 1 < k£ < T, it picks
an index s(k) independently uniformly from the index set
[n], and then performs the update

Tp = -1 — YV for)(Tr-1)- (SGp)
In contrast, RANDOMSHUFFLE runs as follows: for each
epoch ¢, it picks one permutation o(-) : [n] — [n] inde-
pendently uniformly from the set of all permutations of [n].
Then, it sequentially visits each of the component functions
of the finite-sum (1.1) and performs the update

zi, =)y — YV o, (#%_1), (RANDOMSHUFFLE)

for 1 < k < n. Here 2}, = T(t—1)n+k Tepresents the k-th
iterate within the ¢-th epoch. For two consecutive epochs
tand t + 1, one has 2" = z!; for the initial point one
has 2§ = zo. For convenience of analysis, we always
assume RANDOMSHUFFLE is run for an integer number of
epochs, i.e., T' = In for some [ € Z*. This is a reasonable
assumption given our main interest is when several epochs
of RANDOMSHUFFLE are run.

3. Convergence analysis

The goal of this section is to build theoretical analysis for
RANDOMSHUFFLE. Specifically, we answer the following
question: when can we show RANDOMSHUFFLE fo be better
than SGD? We begin by first analyzing quadratic functions
in Section 3.1, where the analysis benefits from having a
constant Hessian. Subsequently, in Section 3.2, we extend
our analysis to the general (smooth) strongly convex setting.
A key idea in our analysis is to make the convergence rate
bounds sensitive to n, the number of components in the
finite-sum (1.1). In Section 3.3, we discuss and justify the
necessity of introducing n into our convergence bound.



Random Shuffling Beats SGD after Finite Epochs

3.1. RANDOMSHUFFLE for quadratics

We first consider the quadratic instance of (1.1), where
filz) = 22" Az + bz, (3.1)

where 4; € R?*? i positive semi-definite, and b; € R,
‘We should notice often in analyzing strongly convex prob-
lems, the quadratic case presents a good example when tight
bounds are achieved.

1=1,...,n,

Quadratic functions have a constant Hessian function
H,(x) = A;, which eases our analysis. In particular, our
bound depends on the following constants: (i) strong con-
vexity parameter y, and component-wise Lipschitz constant
L; (ii) diameter bound ||z — z*|| < D (i.e., any iterate =
remains bounded; can be enforced by explicit projection
if needed); and (iii) bounded gradients ||V f;(z)|| < G for
each f; (1 < i < n), and any z satisfying (ii). We omit
these constants for clarity, but discuss the condition number
further in Section 4.

Our main result for RANDOMSHUFFLE is the following
theorem (omitting logarithmic terms):
Theorem 1. With f; defined by (3.1), let the condition num-

ber of problem (1.1) be k = L/u. So long as % >
6(1 + k)n, with step size v = 41;#, RANDOMSHUFFLE

achieves convergence rate:

3
Elar - "[%) < O + 1 )-

We prove this theorem based on the same idea
as (Giirbiizbalaban et al., 2015b), i.e., by establishing an
epoch-based recursion inequality. However, we no longer
think of n as a constant, but rather state it explicitly in
the bound and try to optimize the dependence on it. The
main challenge comes with controlling the dependence on
n, which is reduced to what appears in Theorem 1 as sev-
eral steps of a carefully designed AM-GM inequality. (See
equation (A.8) and (A.9) in supplementary material.)

We provide a proof sketch for Theorem 1 in Section 8,
deferring the involved technical details to the appendix.

In terms of sample complexity, Theorem 1 implies the fol-
lowing corollary:

Corollary 1. With f; defined by (3.1), the sample complex-
ity for RANDOMSHUFFLE fo achieve B||x1 — z*|°] is no
more than O(e’% + ne*%).

3.2. RANDOMSHUFFLE for strongly convex problems

Next, we consider the more general case where each compo-
nent function f; is convex and the sum F(z) = 1 3. f;(x)
is strongly convex. Surprisingly’, one can easily adapt the

"ntuitively, the change of Hessian over the domain can raise
challenges. However, our convergence rate here is quite similar to

methodology of the proof for Theorem 1 in this setting. To
this end, our analysis requires one further assumption that
each component function is twice differentiable, and its Hes-
sian satisfies the Lipschitz condition (2.2) with constant L.
Under these assumptions, we obtain the following result:
Theorem 2. Define constant

c= max{%(LHLD +3LuG),12(1 + 5)} .

8log T

T RAN-

T . .
So long as ToeT > Cn, with step size n =
DOMSHUFFLE achieves convergence rate:

3
Elar - o"[%) < O + 7 )-
Except for extra dependence on Lz and a mildly different
step size, this rate is essentially the same as that in quadratic
case. The proof for the result can be found in the supplement.
Due to the similar formulation, most of the consequences
noted in Section 3.1 also hold in this general setting.

3.3. Understanding the dependence on n

Since the motivation of building our convergence rate anal-
ysis is to show that RANDOMSHUFFLE behaves better than
SGD, we would definitely hope that our convergence bounds
have a better dependence on " compared to the O(%) bound
for SGD. In an ideal situation, one may hope for a rate of
the form O( 75 ) with some § > 0. One intuitive criticism
toward this goal is evident: if we allow T' < n, then by
setting n > T2, RANDOMSHUFFLE is essentially same as
SGD by the birthday paradox. Therefore, a O (7 ) bound
is unlikely to hold.

However, this argument is not rigorous when we require
a positive number of epochs to be run (at least one round
through all the data). To this end, we provide the following
result indicating the impossibility of obtaining O(7)
even when 7" > n is required.

Theorem 3. Given the information of u, L, G. Under the
assumption of constant step sizes, no step size choice for
RANDOMSHUFFLE leads to a convergence rate o (%) for
any T > n, if we do not allow n to appear in the bound.

The key idea to prove Theorem 3 is by constructing a spe-
cial instance of problem (1.1). In particular, the following
quadratic instance of (1.1) lays the foundation of our proof:?

fi(a) = {é(az —b)A(z —b)
' L(z +b)' A(z + b)

1 odd,
(3.2)

1 even.

quadratic case, with only mild dependence on Hessian Lipschitz
constant.

>The same setting is also used for the comparison of limiting
cycles of randomized/deterministic incremental gradient descent
methods, see for instance Example 1.5.6 of (Bertsekas, 1999).



Random Shuffling Beats SGD after Finite Epochs

Here (-)’ denotes the transpose of a vector, A € R4*4 is
some positive definite matrix, and b € R4 is some vec-
tor. Running RANDOMSHUFFLE on (3.2) leads to a close-
formed expression of RANDOMSHUFFLE’s error. Then by
setting T' = n (i.e., only running RANDOMSHUFFLE for
one epoch) and assuming a convergence rate of o (%), we
deduce a contradiction by properly setting A and b. The
detailed proof can be found in our supplementary document.
We directly have the following corollary:

Corollary 2. Given the information of i, L, G, under the
assumption T' > n and constant step size, there is no step
size choice that leads to a convergence rate O (ﬁ) for
any 6 > 0.

This result indicates that in order to achieve a better de-
pendence on 7" using constant step sizes, the bound should
either: (i) depend on n; (ii) make some stronger assumptions
on T being large enough (at least exclude 7' = n); or (iii)
leverage a more versatile step size schedule, which could
potentially be hard to design and analyze.

Although Theorem 3 shows that one may not hope (assum-
ing constant step sizes) for a better dependence on 1" for
RANDOMSHUFFLE without an extra n dependence, whether
the current dependence on n is optimal still requires further
discussion. In the special case n = T, numerical evidence
has shown that RANDOMSHUFFLE behaves at least as well
as SGD. However, our bound fails to even show RAN-
DOMSHUFFLE converges in this setting. Therefore, it is
reasonable to conjecture that a better dependence on n ex-
ists. In the following section, we improve the dependence on
n under a specific setting. But whether a better dependence
on n can be achieved in general remains open.

4. Discussion of results

We discuss below our results in more detail, including their
implications, strengths, and limitations.

Comparison with SGD: It is well-known that under strong
convexity SGD converges with a rate of O(7) (Rakhlin
etal., 2012). A direct comparison indicates the following
fact: RANDOMSHUFFLE is provably better than SGD after
O(y/n) epochs. This is an acceptable amount of epochs
for even some of the largest data sets in current machine
learning literature. To our knowledge, this is the first result
rigorously showing that RANDOMSHUFFLE behaves better
than SGD within a reasonable number of epochs. To some
extent, this result confirms the belief and observation that
RANDOMSHUFFLE is the “correct” choice in real life, at
least when the number of epochs is comparable with /n.

Deterministic variant: When the algorithm is run in a
deterministic fashion, i.e., the functions f; are visited in
a fixed order, better convergence rate than SGD can also
be achieved as T' becomes large. For instance, a result

in (Giirbiizbalaban et al., 2015a) translates into a O(;—i)
bound for the deterministic case. This directly implies the
same bound for RANDOMSHUFFLE, since random permuta-
tion always has the weaker worst case. But according to this
bound, at least n epochs are required for RANDOMSHUFFLE
to achieve an error smaller than SGD, which is not a realistic
number of epochs in most applications.

Comparison with GD: Another interesting viewpoint is
by comparing RANDOMSHUFFLE with Gradient Descent
(GD). One of the limitations of our result is that we do
not show a regime where RANDOMSHUFFLE can be better
than GD. By computing the average for each epoch and
running exact GD on (1.1), one can get a convergence rate
of the form O(e~ % ). This fact shows that our convergence
rate for RANDOMSHUFFLE is worse than GD. This comes
naturally from the epoch based recursion (8.1) in our proof
methodology, since for one epoch the sum of the gradients is
only shown to be no worse than a full gradient. It is true that
GD should behave better in long-term as the dependence
on n is negligible, and comparing with GD is not the major
goal for this paper. However, being worse than GD even
when T is relatively small indicates that the dependence on
n probably can still be improved. It may be worth investi-
gating whether RANDOMSHUFFLE can be better than both
SGD and GD in some regime. However, different techniques
may be required.

Epochs required: It is also a limitation that our bound only
holds after a certain number of epochs. Moreover, this num-
ber of epochs is dependent on  (e.g., O(k) epochs for the
quadratic case). This limits the interest of our result to cases
when the problem is not too ill-conditioned. Otherwise,
such a number of epochs will be unrealistic by itself. We are
currently not certain whether similar bounds can be proved
when allowing 7' to assume smaller values, or even after
only one epoch.

Dependence on «: It should be noticed that s can be large
sometimes. Therefore, it may be informative to view our
result in a k-dependent form. In particular, we still assume
D, L, Ly are constant, but no longer p.. We use the bound
G < max; |V f;(z*)|| + DL and assume max; ||V f;(x*)]|
is constant. Since x = £, we now have k = @(%L)
Our results translate into x-dependent sample complex-
ity O(kn + K272 + nkie 3 + nkie ) for quadratic
problems, and O(k2n + k22 + nkie 5 +nr2e 1) for
strongly convex ones.

At first sight, the dependence on & in the convergence rate
may seem relatively high. However, it is important to no-
tice that our sample complexity’s dependence on « is ac-
tually better than what is known for SGD. A O( ‘;ﬁi ) con-
vergence bound for SGD has long been known (Rakhlin
et al., 2012), which translates into a O(“—:), k-dependent

sample complexity in our notation. Although better «
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dependence has been shown for F(zp) — F(z*) < €
(see e.g., (Hazan and Kale, 2014)), the x? dependence is
still the best for E[||zp — 2*||°] < e as far as we know
(e.g., Nguyen et al. (2018)). Furthermore, according
to (Nemirovskii et al., 1983), the lower bound to achieve
F(z7)— F(x*) < € for strongly convex F' using stochastic
gradients is (%). Translating this into the sample com-
plexity to achieve E[||z7 — 2*||°] < e s likely to introduce
another k into the bound. Therefore, it is reasonable to
believe that O(K—:) is the best sample complexity one can
get for SGD (which is worse than RANDOMSHUFFLE), to
achieve E[||lzr — 2*||*] < e.

Assumptions on bounded iterates / gradients: Although
the bounded iterates / gradients assumptions may appear to
be strong, they are actually quite reasonable: unlike SGD,
RANDOMSHUFFLE with proper step size decreases the loss
function after one epoch no matter what the random permu-
tation is. The bounded iterates / gradients assumptions can
be therefore guaranteed by showing that RANDOMSHUF-
FLE is indeed a “descent” algorithm (after ensuring that the
initial sublevel set is bounded).

5. Sparse functions

In the literature on large-scale machine learning, sparsity
is a common feature of data. When the data are sparse,
each training data point has only a few non-zero features.
Under such a setting, each iteration of SGD only modifies a
few dimensions of the decision variables. Some commonly
occurring sparse problems include large-scale logistic re-
gression, matrix completion, and graph cuts.

Sparse data provides a prospective setting under which RAN-
DOMSHUFFLE might be powerful. Intuitively, when data are
sparse, with-replacement sampling used by SGD is likely
to miss some decision variables, while RANDOMSHUFFLE
is guaranteed to update all possible decision variables in
one epoch. In this section, we show some theoretical results
justifying such intuition.

Formally, a sparse finite-sum problem assumes the form

F@) = 3 filwe),

where e; (1 < i < n) denotes a small subset of {1,...,d}
and z., denotes the entries of the vector x indexed by e;.
Define the set F := {e; : 1 < i < n}. By representing each
subset ¢; C E with a node, and considering edges (e;, ;)
for all e; N e; # (), we get a graph with n nodes. Following
the notation in (Recht et al., 2011), we consider the sparsity
factor of the graph:

pax. {ej € E:e;Nej # 0}

pi= 5.1)
n

One obvious fact is % < p < 1. The statistic (5.1) indicates
how likely is it that two subsets of indices intersect, which
reflects the sparsity of the problem. For a problem with
strong sparsity, we may anticipate a relatively small value
for p. We summarize our result with the following theorem:

Theorem 4. Define constant
C= max{%(LHLD +3LuG),12(1 + %)} .

8logT
T

T . .
So long as ogT > Cn, with step size n =
DOMSHUFFLE achieves convergence rate:

, RAN-

. 1 p2n3
Elllr — 2" | < 0( 75 + 55 ).

Compared with Theorem 2, the bound in Theorem 4 depends
on the parameter p, so we can exploit sparsity to obtain a
faster convergence rate. The key to proving Theorem 4 lies

in constructing a tighter bound for the error term in the main
recursion (see §8) by including a discount due to sparsity.

Corollary 3. When p = O (L) and constant C defined

as in Theorem 4, so long as 10T > Cn, for step size

gT
n= 8 I;i T RANDOMSHUFELE achieves convergence rate

Ellzr - o"[7) < O( 7 )-

As shown in the above corollary, with sparsity factor p =
(’)(%) , the proven convergence rate of RANDOMSHUFFLE
is strictly better than the (9(%) rate of SGD. This result
follows the following intuition: when each dimension is
only touched by several functions, letting the algorithm to
visit every function would avoid missing certain dimensions.
For larger p, similar speedup can be observed. In fact, so
long as we have p = o(n~2), the proven bound is better
off than SGD. Such a result confirms the usage of RAN-
DOMSHUFFLE under sparse setting.

6. An example where RANDOMSHUFFLE
always converges faster

In this section, we study a specialized class of convex prob-
lems where RANDOMSHUFFLE always converges faster
than SGD, i.e., after any arbitrary number of iterations.

‘We build our example with the vanishing variance property:
V fi(z*) = 0 for the optimal point 2*. Moulines and Bach
(2011) show that when F'(z) is strongly convex, SGD con-
verges linearly in this setting. Notably, this setting is closely
related to the notion of over-parameterization in recent ma-
chine learning methods such as deep neural networks, as this
relationship has been addressed in (Ma et al., 2017). One
special case of this setting is when the variance of stochastic
gradients can be bounded by either norm of full gradient
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or the suboptimality of the loss. Many previous works are
built on these assumptions, such as (Tseng, 1998; Solodov,
1998; Schmidt and Roux, 2013; Vaswani et al., 2018).

We consider below a nontrivial subclass of strongly con-
vex problems coined valid problems. Given the constraint
defined by the strong convexity and Lipschitz-continuity
constants, we show that RANDOMSHUFFELE achieves better
worst case convergence rate among all valid problems.

Given n pairs of positive numbers (g1, L1), -+, (ftn, Ln)
such that 0 < u; < L;, a dimension d and a point z* €
R?, we say a d dimensional finite-sum function F(z) =
S, fi(z) is a valid problem if: each component f;(z)
is p;-strongly convex, the gradient of component f;(x) is
L;-Lipschitz continuous, and there is some x* minimizing
all components at the same time (which is equivalent to
vanishing componentwise gradient). A set of valid problems
P is characterized by n, (g1, L1),- -+, (fin, Ln ), d, and an
upper bound on initial distance: R > ||xg — z*||.

For a problem P € P, let random variable Xgg be the result
of running RANDOMSHUFFLE from initial point zq for T'
iterations with step size v on problem P. Similarly, let
Xsgp be the result of running SGD from initial point = for
T iterations with step size v on problem P.

For a fixed set P, we can compare the worst case conver-
gence of RANDOMSHUFFLE and SGD within this set:

Theorem 5. Given constants (p1,L1),- -, (ttn, Ln) such

that 0 < u; < L;, a dimension d, a point ©* € R? and an

upper bound of initial distance ||zo — z*|, < R. Let P be

the set of valid problems. For step size v < min{
1

2
Li+p; }
and any T > 1, there is

max E [HXRS — a:*||2} < maxE [HXSGD — LE*HQ] .
PeP PeP

This theorem indicates that RANDOMSHUFFLE has a better
worst-case convergence rate than SGD after an arbitrary
number of iterations under this noted setting. 3

7. Extensions

In this section, we provide some further extensions.

7.1. RANDOMSHUFFLE for nonconvex optimization

The first extension that we discuss is to nonconvex finite
sum problems. In particular, we study RANDOMSHUFFLE
applied to functions satisfying the Polyak-£ojasiewicz (PL)

3The inequality is true even if every component is only convex
but not necessarily strongly convex, i.e., ;t; = O for all . However,
there is no meaning of comparing worst case convergence in terms
of distance to a specific ™ in this case, since there can potentially
exist more than one global minimizer.

condition (also known as gradient dominated functions):
2 *
s IVE@)|” 2 p(F(x) - F*),  Va.

Here p1 > 0 is some real number, F'™* is the minimal function
value of F'(-). Strongly convexity is a special situation of
this condition with p being the strongly convex parameter.
One important implication of this condition is that every
stationary point is a global minimum. However function
F' can be non-convex under such setting. Also, it doesn’t
imply a unique minimum of the function.

This setting was proposed and analyzed in (Polyak, 1963),
where a linear convergence rate for GD was shown. Later,
many other optimization methods have been proven efficient
under this condition (see (Nesterov and Polyak, 2006) for
second order methods and (Reddi et al., 2016) for variance
reduced gradient methods). Notably, SGD converges at the
rate O(1/T) under this setting (see appendix for a proof).

Assume each component function f; being L Lipschitz
continuous, and the average function F'(x) satisfying the
Polyak-Lojasiewicz condition with some constant p. We
have the following extension of our previous result:

Theorem 6. Under the Polyak-Lojasiewicz condition, de-
fine condition number k. = L/u. So long as % > 16K2n,

2 I;i T RANDOMSHUFFLE achieves

with step size n =
convergence rate:

* n’
Ellar — 2" "] < O(2 + 3.

7.2. RANDOMSHUFFLE for convex problems

An important extension of RANDOMSHUFFLE is to the gen-
eral (smooth) convex case without assuming strong convex-
ity. There are no previous results on the convergence rate of
RANDOMSHUFFLE in this setting that show it to be faster
than SGD. The only result we are aware of is by Shamir
(2016), who shows RANDOMSHUFFLE is not worse than
SGD in the (smooth) convex setting. We extend our results
to the general convex case, and show a convergence rate that
is possibly faster than SGD in certain parameter regimes,
albeit only up to constant terms.

We take the viewpoint of gradients with errors, and denote
the difference between component gradient and full gradient
as the error:

VF(z) = Vfi(z) = e;(x).
Different assumptions bounding the error term e;(x) have
been studied in optimization literature. We assume that there

is a constant § that bound the norm of the gradient error:

lei(@)[| <6, Va.
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Here 7 is any index and z is any point in domain. Obviously,
§ < 2@, with G being the gradient norm bound as before.*
Theorem 7. Assume A = E#] &)V [ (x*) with i, j
uniformly drawn from |n [ } x* is an arbitrary minimizer of
F. Assume v = % Zl 1 x}) being the average of epoch

ending points of RANDOMSHUFFLE. Then with proper step
size, we have the bound

_ . 2D+/nD (JA|| + LuLD? + 2Ly DG)
F(z) — F(z") <
() - F(2") < i
O ()78 + (3)™).

Compared to the known convergence rate of O(PG/vT) for
SGD, we can see that RANDOMSHUFFLE and SGD share
the same asymptotic rate of O(1/vT). However, in certain
parameter space, the constant in front of 1/vT for RAN-
DOMSHUFFLE can be smaller than that of SGD.

8. Proof sketch of Theorem 1

In this section we provide a proof sketch for Theorem 1.
The central idea is to establish an inequality
(1—nvyai) ||as0 -z || —l—n’y as+n’ ’y as,

Efl|e5" —a"||"] <
8.1)

where z) and ;Ut_H are the beginning and final points of the
t-th epoch, respectively. Constant «; captures the speed of
convergence for the linear convergence part, while o and
a3 together bound the error introduced by randomness.

We start from the following equality for one epoch of RAN-
DOMSHUFFLE:

fo{"l — a:*H2 = ||xé — x*H2 — 2v(zh — 2, nVF(xp))
Af
—2y(zh — 2", R") +29* |nVF(b)||* +2¢* | R,
—_———
X X X

where random variable

F= 3 Vi (@) = Y Vo (ah)

denotes the gradient error of RANDOMSHUFFLE for epoch
t dependent on functions permutation oy (). The right hand
side of the equality can be thought as two parts: terms that
behave like full gradient descent (A} and A%) and terms that
capture the effects of random sampling (At and AY). The
main body of our analysis involves bounding each of these
terms separately.

4 Another common assumption is when the variance of the gra-
dient (i.e., E[||e;()||?]) is bounded. We made the more rigorous
assumption here for ease of a simpler analysis. However, there is at
most an extra /7 term difference between these two assumptions
due to the finite sum structure.

A key challenge toward building (8.1) is to bound E[A%],
where the expectation is over oy(-). It is not easy to directly
bound this term with v3C for some constant C'. Instead,
by introducing second-order information and several steps
of carefully designed AM-GM inequality, we obtain the
following bound for A%:

Lemma 1. Over the randomness of the permutation, we
have the inequality:

1
E[A%] < 2'yp (n—1) on —x H +~°n? HVF xé H2
P e (= 1) AL + 267 LG’
where A = E;z; H;(«*)V f; (x*) with i, uniformly

drawn from [n], and x* is the minimizer of sum function.
Furthermore, we have ||Al| < — L —LG.

We bound A% with standard inequality (Nesterov, 2013)

Al > 27”

Lu “n2

HVF )|+ S lzo —*||", (8.2
where the first term is further used to bound A and A%, and
the second term leads to the optimization gain a;; > 0. We
absorb A}, into vz term in (8.1), which finishes the build-up
of the recursion.

Finally, expanding the recursion (8.1) and substituting a
3

proper step-size leads to a bound of the form O (75 + 25).
The complete proof can be found in the supplement.

9. Conclusions

A long-standing problem in the theory of stochastic gradient
descent (SGD) is to prove that RANDOMSHUFFLE converges
faster than the usual with-replacement SGD. In this paper,
we provide the first non-asymptotic convergence rate analy-
sis for RANDOMSHUFFLE. We show in particular that after
O(4/n) epochs, RANDOMSHUFFLE behaves strictly better
than SGD under strong convexity and second-order differ-
entiability. The underlying introduction of dependence on
n into the bound plays an important role toward a better
dependence on 7. We further improve the dependence on
n for sparse data settings, showing RANDOMSHUFFLE’S
advantage in such situations.
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