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Abstract

It is generally believed that submodular func-
tions—and the more general class of γ-weakly
submodular functions—may only be optimized
under the non-negativity assumption f(S) ≥ 0.
In this paper, we show that once the function is
expressed as the difference f = g − c, where g is
monotone, non-negative, and γ-weakly submod-
ular and c is non-negative modular, then strong
approximation guarantees may be obtained. We
present an algorithm for maximizing g − c under
a k-cardinality constraint which produces a ran-
dom feasible set S such that E [g(S)−c(S)] ≥
(1− e−γ−ε)g(OPT )−c(OPT ), whose running
time is O(nε log2 1

ε ), independent of k. We ex-
tend these results to the unconstrained setting by
describing an algorithm with the same approxi-
mation guarantees and faster O(nε log 1

ε ) runtime.
The main techniques underlying our algorithms
are two-fold: the use of a surrogate objective
which varies the relative importance between g
and c throughout the algorithm, and a geometric
sweep over possible γ values. Our algorithmic
guarantees are complemented by a hardness result
showing that no polynomial-time algorithm which
accesses g through a value oracle can do better.
We empirically demonstrate the success of our
algorithms by applying them to experimental de-
sign on the Boston Housing dataset and directed
vertex cover on the Email EU dataset.

1Department of Computer Science, Yale University, New
Haven, USA 2Department of Mathematics and Computer Sci-
ence, Open University of Israel, Raanana, Israel 3School of Math-
ematical Sciences, Queen Mary University of London, London,
UK 4Department of Electrical Engineering, Yale University, New
Haven, USA. Correspondence to: Christopher Harshaw <christo-
pher.harshaw@yale.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1. Introduction
From summarization and recommendation to clustering and
inference, many machine learning tasks are inherently dis-
crete. Submodularity is an attractive property when de-
signing discrete objective functions, as it encodes a natural
diminishing returns condition and also comes with an ex-
tensive literature on optimization techniques. Submodular
optimization techniques have been successfully applied in
a wide variety of machine learning tasks, including sen-
sor placement (Krause & Guestrin, 2005), document sum-
marization (Lin & Bilmes, 2011), speech subset selection
(Wei et al., 2013) influence maximization in social networks
(Kempe et al., 2003), information gathering (Golovin &
Krause, 2011), and graph-cut based image segmentation
(Boykov et al., 2001; Jegelka & Bilmes, 2011), to name a
few. However, in instances when the objective function is
not submodular, existing techniques for submodular opti-
mization many perform arbitrarily poorly, motivating the
need to study broader function classes. While several no-
tions of approximate submodularity have been studied, the
class of γ-weakly submodular functions have (arguably)
enjoyed the most practical success. For example, γ-weakly
submodular optimization techniques have been used in fea-
ture selection (Das & Kempe, 2011; Khanna et al., 2017),
anytime linear prediction (Hu et al., 2016), interpretation
of deep neural networks (Elenberg et al., 2017), and high
dimensional sparse regression (Elenberg et al., 2018).

Here, we study the constrained maximization problem

max
|S|≤k

g(S)− c(S) , (1)

where g is a non-negative monotone γ-weakly submodular
function and c is a non-negative modular function. Prob-
lem (1) has various interpretations which may extend the
current submodular framework to apply to more tasks in
machine learning. For instance, the modular cost c may be
added as a penalty to existing submodular maximization
problems to encode a cost for each element. Such a penalty
term may play the role of a regularizer or soft constraint in
a model. When g models the revenue of some collection
of products S and c models the cost of each item, then (1)
corresponds to maximizing profits.



Submodular Maximization beyond Non-negativity

While Problem 1 has promising modeling potential, existing
optimization techniques fail to provide nontrivial approxi-
mation guarantees. The main reason is that most existing
techniques require the objective function to take only non-
negative values, while g(S)− c(S) may take both positive
and negative values. Moreover, g(S)− c(S) might be non-
monotone, and thus, the definition of γ-weak submodularity
does not even apply to it when γ < 1.

Our Contributions We provide several fast algorithms
for solving Problem (1) as well as a matching hardness result
and experimental validation of our methods. In particular,

1. Algorithms. In the case where γ is known, we provide
a deterministic algorithm which uses O(nk) function
evaluations and returns a set S such that g(S)−c(S) ≥
(1− e−γ)g(OPT )− c(OPT ). If g is regarded as rev-
enue and c as a cost, then this guarantee intuitively
states that the algorithm will return a solution whose
total profit is at least as much as would be obtained
by paying the same cost as the optimal solution while
gaining at least (1− e−γ) as much revenue. We extend
this to a randomized variant which uses O(n log 1

ε )
function evaluations and has a similar approximation
guarantee in expectation, but with an ε additive loss
in the approximation factor. We also provide a ran-
domized algorithm for the unconstrained setting (when
k = n) which achieves the same 1− e−γ approxima-
tion factor in expectation using only O(n) function
evaluations. When γ is unknown, we give a meta-
algorithm for guessing γ that loses a δ additive factor
in the approximation ratio and increases the run time
by a multiplicative O( 1

δ log 1
δ ) factor.

2. Hardness of Approximation. To complement our al-
gorithms, we provide a matching hardness result which
shows that no algorithm which makes polynomially
many queries in the value oracle model may do better.
To the best of our knowledge, this is the first hardness
result of this kind for γ-weakly submodular functions.

3. Experimental Evaluation. We demonstrate the effec-
tiveness of our algorithm on experimental design on
the Boston Housing dataset and directed vertex cover
on the Email EU dataset, both with costs.

Prior Work The celebrated result of Nemhauser et al.
(1978) showed that the greedy algorithm achieves a (1−1/e)
approximation for maximizing a nonnegative monotone
submodular function subject to a cardinality constraint.
Das & Kempe (2011) showed the more general result
that the greedy algorithm achieves a (1 − e−γ) when g
is γ-weakly submodular. At the same time, an exten-
sive line of research has lead to the development of al-
gorithms to handle non-monotone submodular objectives

under more complicated constraints (see, e.g., (Buchbinder
& Feldman, 2016; Chekuri et al., 2014; Ene & Nguyen,
2016; Feldman et al., 2017; Lee et al., 2010; Sviridenko,
2004)). The (1 − 1/e) approximation was shown to be
optimal in the value oracle model (Nemhauser & Wolsey,
1978), but until this work, no stronger hardness result was
known for constrained γ-weakly submodular maximiza-
tion. The problem of maximizing g + ` for non-negative
monotone submodular g and an (arbitrary) modular func-
tion ` under cardinality constraints was first considered in
(Sviridenko et al., 2017), who gave a randomized poly-
nomial time algorithm which outputs a set S such that
g(S) + `(S) ≥ (1− 1/e)g(OPT ) + `(OPT ) where OPT
is the optimal set. This approximation was shown to be
optimal in the value oracle model via a reduction from sub-
modular maximization with bounded curvature. However,
the algorithm of Sviridenko et al. (2017) is of mainly theo-
retical interest, as it requires continuous optimization of the
multilinear extension and an expensive routine to guess the
contribution of OPT to the modular term, yielding it prac-
tically intractable. Feldman (2018) suggested using a sur-
rogate objective that varies with time, and showed that this
removes the need for the guessing step. However, the algo-
rithm of (Feldman, 2018) still requires expensive sampling
as it is based on the multilinear extension. Moreover, neither
of these approaches can currently handle γ-weakly submod-
ular functions, as optimization routines that go through their
multilinear extensions have not yet been developed.

Organization The remainder of the paper is organized as
follows. Preliminary definitions are given in Section 2. The
algorithms we present for solving Problem (1) are presented
in Section 3. The hardness result is stated in Section 4.
Applications, experimental set-up, and experimental results
are discussed in Section 5. Finally, we conclude with a
discussion in Section 6. Due to space considerations, most
of the proofs have been omitted from the main paper and
may be found in the supplementary material.

2. Preliminaries
Let Ω be a ground set of size n. For a real-valued set
function g : 2Ω → R, we write the marginal gain of adding
an element e to a set A as g(e | S) , g(S ∪ {e}) − g(S).
We say that g is monotone if g(A) ≤ g(B) for all A ⊆ B.
We say that g is submodular if for all sets A ⊆ B ⊆ Ω and
element e /∈ B,

g(e | A) ≥ g(e | B) . (2)

When g is interpreted as a utility function, (2) encodes
a natural diminishing returns condition in the sense that
the marginal gain of adding an element decreases as the
current set grows larger. An equivalent definition is that∑
e∈B g(e | A) ≥ g(A ∪B)− g(A), which allows for the
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following natural extension. A monotone set function g is
γ-weakly submodular for γ ∈ (0, 1] if∑

e∈B\A

g(e | A) ≥ γ (g(A ∪B)− g(A)) (3)

holds for all A ⊆ B. Here, γ is referred to as the submod-
ularity ratio. Intuitively, such a function g may not have
strictly diminishing returns, but the increase in the returns is
bounded by the marginals. Note that g is submodular if and
only if it is γ-weakly submodular with γ = 1. A real-valued
set function c : 2Ω → R is modular if (2) holds with equal-
ity. A modular function may always be written in terms of
coefficients as c(S) =

∑
e∈S ce and is non-negative if and

only if all of its coefficients are non-negative.

Our algorithms are specified in the value oracle model,
namely under the assumption that there is an oracle that,
given a set S ⊆ Ω, returns the value g(S). As is standard,
we analyze the run time complexity of these algorithms in
terms of the number of function evaluations they require.

3. Algorithms
In this section, we present a suite of fast algorithms for
solving Problem 1. The main idea behind each of these algo-
rithms is to optimize a surrogate objective, which changes
throughout the algorithm, preventing us from getting stuck
in poor local optima. Further computational speed ups are
obtained by randomized sub-sampling of the ground set.1

The first algorithms we present assume knowledge of the
weak submodularity parameter γ. However, γ is rarely
known in practice (unless it is equal to 1), and thus, we
show in Section 3.4 how to adapt these algorithms for the
case of unknown γ.

To motivate the distorted objective we use, let us describe a
way in which the greedy algorithm may fail. Suppose there
is a “bad element” b ∈ Ω which has the highest overall gain,
g(b)− cb and so is added to the solution set; however, once
added, the marginal gain of all remaining elements drops
below the corresponding costs, and so the greedy algorithm
terminates. This outcome is suboptimal when there are
other elements e that, although their overall marginal gain
g(e | S)− ce is lower, have much higher ratio between the
marginal utility g(e | S) and the cost ce (see Appendix A
for an explicit construction).

To avoid this type of situation, we design a distorted objec-
tive which initially places higher relative importance on the
modular cost term c, and gradually increases the relative
importance of the utility g as the algorithm progresses. Our
analysis relies on two functions: Φ, the distorted objective,

1We note that these two techniques can be traced back to the
works of (Feldman, 2018) and (Mirzasoleiman et al., 2015), re-
spectively.

Algorithm 1 DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k
Initialize S0 ← ∅
for i = 0 to k − 1 do
ei ← arg maxe∈Ω

{(
1− γ

k

)k−(i+1)
g(e | Si)− ce

}
if
(
1− γ

k

)k−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

and Ψ, an important quantity in analyzing the trajectory
of Φ. Let k denote the cardinality constraint, then for any
iteration i = 0, . . . , k − 1 of our algorithm and any set T ,
we define

Φi(T ) ,
(

1− γ

k

)k−i
g(T )− c(T ) .

Additionally, for any i = 0, . . . , k, a set T ⊆ Ω, and an
element e ∈ Ω, let

Ψi(T, e) , max

{
0,
(

1− γ

k

)k−(i+1)

g(e | T )− ce
}

.

Most proofs in this section are deferred to Appendix B.

3.1. Distorted Greedy

Our first algorithm, DISTORTED GREEDY, is presented as
Algorithm 1. At each iteration, this algorithm chooses an el-
ement ei maximizing the increase in the distorted objective.
The algorithm then only accepts ei if it positively contributes
to the distorted objective. The analysis consists mainly of
two lemmas. First, Lemma 1 shows that the marginal gain
in the distorted objective is lower bounded by a term involv-
ing Ψ. This fact relies on the non-negativity of c and the
rejection step in the algorithm.
Lemma 1. In each iteration of DISTORTED GREEDY,

Φi+1(Si+1)− Φi(Si)

= Ψi(Si, ei) +
γ

k

(
1− γ

k

)k−(i+1)

g(Si) .

The second lemma shows that the marginal gain in the dis-
torted objective is sufficiently large to ensure the desired
approximation guarantees. This fact relies on the mono-
tonicity and γ-weak submodularity of g.
Lemma 2. In each iteration of DISTORTED GREEDY,

Ψi(Si, ei) ≥
γ

k

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]

− 1

k
c(OPT ) .

Using these two lemmas, we present an approximation guar-
antee for DISTORTED GREEDY.
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Theorem 3. DISTORTED GREEDY makesO(nk) eval-
uations of g and returns a set R of size at most k with

g(R)− c(R) ≥
(
1− e−γ

)
g(OPT )− c(OPT ) .

Proof. Since c is modular and g is non-negative, the defini-
tion of Φ gives

Φ0(S0) =
(

1− γ

k

)k
g(∅)− c(∅) ≥ 0

and

Φk (Sk) =
(

1− γ

k

)0

g(Sk)− c(Sk) = g(Sk)− c(Sk) .

Using this and the fact that the returned set R is in fact Sk,
we get

g(R)− c(R) ≥ Φk(Sk)− Φ0(S0) (4)

=

k−1∑
i=0

Φi+1(Si+1)− Φi(Si) .

Applying Lemmas 1 and 2, respectively, we have

Φi+1(Si+1)− Φi(Si)

= Ψi(Si, ei) +
γ

k

(
1− γ

k

)k−(i+1)

g(Si)

≥ γ

k

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]

− 1

k
c(OPT ) +

γ

k

(
1− γ

k

)k−(i+1)

g(Si)

=
γ

k

(
1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT ) .

Finally, plugging this bound into (4) yields

g(R)− c(R)

≥
k−1∑
i=0

[
γ

k

(
1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT )

]

=

[
γ

k

k−1∑
i=0

(
1− γ

k

)i]
g(OPT )− c(OPT )

=

(
1−

(
1− γ

k

)k)
g(OPT )− c(OPT )

≥
(
1− e−γ

)
g(OPT )− c(OPT ) .

3.2. Stochastic Distorted Greedy

Our second algorithm, STOCHASTIC DISTORTED GREEDY,
is presented as Algorithm 2. It uses the same distorted
objective as DISTORTED GREEDY, but enjoys an asymptoti-
cally faster run time due to sampling techniques of (Mirza-
soleiman et al., 2015). Instead of optimizing over the en-
tire ground set at each iteration, STOCHASTIC DISTORTED

Algorithm 2 STOCHASTIC DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k, error ε
Initialize S0 ← ∅, s← dnk log( 1

ε )e
for i = 0 to k − 1 do
Bi ← sample s elements uniformly & ind. from Ω

ei ← arg maxe∈Bi
{(

1− γ
k

)k−(i+1)
g(e | Si)− ce

}
if
(
1− γ

k

)k−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

GREEDY optimizes over a random sample Bi ⊆ Ω of size
O
(
n
k log 1

ε

)
. This sampling procedure ensures that suffi-

cient potential gain occurs in expectation, which is true for
the following reason. If the sample size is sufficiently large,
then Bi contains at least one element of OPT with high
probability. Conditioned on this (high probability) event,
choosing the element with the maximum potential gain is at
least as good as choosing an average element from OPT .

Lemma 4. In each step of STOCHASTIC DISTORTED
GREEDY,

E [Ψi(Si, ei)] ≥ (1− ε)
(
γ

k

(
1− γ

k

)k−(i+1) [
g(OPT )

− E [g(Si)]
]
− 1

k
c(OPT )

)
.

Theorem 5. STOCHASTIC DISTORTED GREEDY uses
O(n log 1

ε ) evaluations of g and returns a set R with

E [g(R)−c(R)] ≥
(
1− e−γ − ε

)
g(OPT )−c(OPT ) .

3.3. Unconstrained Distorted Greedy

In this section, we present UNCONSTRAINED DISTORTED
GREEDY, an algorithm for the unconstrained setting (i.e.,
k = n), listed as Algorithm 3. UNCONSTRAINED DIS-
TORTED GREEDY samples a single random element at each
iteration, adding it to the current solution if the potential
gain is sufficiently large. Note that this algorithm is faster
than the previous two, as it requires only O(n) evaluations
of g. As before, the algorithm relies on the distorted objec-
tive and the heart of the analysis is showing that the potential
increase is sufficiently large in each iteration.

Lemma 6. In each step of UNCONSTRAINED DISTORTED
GREEDY,

E [Ψi(Si, ei)] ≥
γ

n

(
1− γ

n

)n−(i+1) [
g(OPT )

− E [g(Si)]
]
− 1

n
c(OPT ) .

In the same way that Theorem 3 follows from Lemma 2,
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Algorithm 3 UNCONSTRAINED DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k
Initialize S0 ← ∅
for i = 0 to n− 1 do
ei ← sample uniformly from Ω

if
(
1− γ

n

)n−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

the next theorem follows from Lemma 6 (and therefore, we
omit its proof also from the appendix).

Theorem 7. UNCONSTRAINED DISTORTED GREEDY
requires O(n) function evaluations and outputs a set
R such that

E [g(R)− c(R)] ≥ (1− e−γ)g(OPT )− c(OPT ) .

3.4. Guessing Gamma: A Geometric Sweep

The previously described algorithms required knowledge of
the submodularity ratio γ. However, it is very rare that the
precise value of γ is known in practice—unless g is submod-
ular, in which case γ = 1. Oftentimes, γ is data dependent
and only a crude lower bound L ≤ γ is known. In this sec-
tion, we describe a meta algorithm that “guesses” the value
of γ. γ-SWEEP, listed as Algorithm 4, runs a maximization
algorithm A as a subroutine with a geometrically decreas-
ing sequence of “guesses” γ(k) for k = 0, 1, . . . , d 1

δ log 1
δ e.

The best set obtained by this procedure is guaranteed to
have nearly as good approximation guarantees as when the
true submodularity ratio γ is known exactly. Moreover,
fewer guesses are required if a good lower bound L ≤ γ
is known, which is true for several problems of interest.
In the following theorem, we assume that A(g, γ, c, k, ε)
is an algorithm which returns a set S with |S| ≤ k
and E [g(S)− c(S)] ≥ (1− e−γ − ε) g(OPT )− c(OPT )
when g is γ-weakly submodular, and L ≤ γ is known (one
may always use L = 0).

Algorithm 4 γ-SWEEP

Input: utility g, cost c, alg. A, lower bound L, δ ∈ (0, 1)

S−1 ← ∅, T ←
⌈

1
δ ln

(
1

max{δ,L}

)⌉
for r = 0 to T do
γr ← (1− δ)r
Sr ← A(g, γr, c, k, δ)

end for
R← arg maxr=−1,...,T {g(Sr)− c(Sr)}

Theorem 8. γ-SWEEP requires at most O
(

1
δ log 1

δ

)
calls to A and returns a set R with

E [g(R)− c(R)] ≥
(
1− e−γ −O(δ)

)
g(OPT )

− c(OPT ) .

In our experiments, we see that STOCHASTIC DISTORTED
GREEDY combined with the γ-SWEEP outperforms the DIS-
TORTED GREEDY with γ-SWEEP, especially for larger val-
ues of k. Here, we provide some experimental evidence
and explanation for why this may be occurring. Figure 1
shows the objective value of the sets {Sr}Tr=0 produced
by STOCHASTIC DISTORTED GREEDY and DISTORTED
GREEDY during the γ-SWEEP for cardinality constraints
k = 5, 10, and 20. Both subroutines return the highest objec-
tive value for similar ranges of γ. However, the STOCHAS-
TIC DISTORTED GREEDY subroutine appears to be better
in two ways. First, the average objective value is usually
larger, meaning that an individual run of STOCHASTIC DIS-
TORTED GREEDY is returning a higher quality set than DIS-
TORTED GREEDY. This is likely due to the sub-sampling
of the ground set, which might help avoiding the picking of
a single “bad element”, if one exists. Second, the variation
in STOCHASTIC DISTORTED GREEDY leads to a higher
chance of producing a good solution. For many values of
γ, the DISTORTED GREEDY subroutine returns a set of the
same value; thus, the extra guesses of γ are not particularly
helpful. On the other hand, the variation within STOCHAS-
TIC DISTORTED GREEDY subroutine means that these extra
guesses are not wasted; in fact, they allow a higher chance
of producing a set with good value. Figure 1 also shows
that the objective function throughout the sweep is fairly
well-behaved, suggesting the possibility of early stopping
heuristics. However, that is outside the scope of this paper.

4. Hardness Result
In this section, we give a hardness result which comple-
ments our algorithmic guarantees. The hardness result
shows that—in the case where c = 0—no algorithm making
polynomially many queries to g can achieve a better approx-
imation ratio than 1− e−γ . Although this was known in the
case when γ = 1 (i.e., g is submodular), the more general
result for γ < 1 was unknown until this work.

Theorem 9. For every two constants ε > 0 and
γ ∈ (0, 1], no polynomial time algorithm achieves
(1− e−γ + ε)-approximation for the problem of maxi-
mizing a non-negative monotone γ-weakly submodular
function subject to a cardinality constraint in the value
oracle model.

As is usual in hardness proofs for submodular functions,
the proof is based on constructing a family of γ-weakly
submodular functions on which any deterministic algorithm
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Figure 1: Results of the γ-SWEEP with DISTORTED GREEDY (DG) and STOCHASTIC DISTORTED GREEDY (SDG) as
subroutines. For STOCHASTIC DISTORTED GREEDY, mean values with standard deviation bars are reported over 20 trials.

will perform poorly in expectation, and then applying Yao’s
principle. We defer details to Appendix C.

5. Experiments
To demonstrate the effectiveness of our proposed algo-
rithms, we run experiments on two applications: Bayesian
A-optimal design with costs and directed vertex cover with
costs. The code was written using the Julia programming
language, version 1.0.2. Experiments were run on a 2015
MacBook Pro with 3.1 GHz Intel Core i7 and 8 GB DDR3
SDRAM and the timing was reported using the @timed
feature in Julia. 2

5.1. Bayesian A-Optimal Design

We first describe the problem of BayesianA-Optimal design.
Suppose that θ ∈ Rd is an unknown parameter vector that
we wish to estimate from noisy linear measurements using
least squares regression. Our goal is to choose a set S of
linear measurements (the so-called experiments) which have
low cost and also maximally reduce the variance of our es-
timate θ̂. More precisely, let x1, x2, . . . xn ∈ Rd be a fixed
set of measurement vectors, and let X = [x1, x2, . . . xn] be
the corresponding d×nmatrix. Given a set of measurement
vectors S ⊆ [n], we may run an experiment and obtain the
noisy linear observation, yS = XT

S θ + ζS , where ζS is nor-
mal i.i.d. noise, i.e., ζ1, . . . , ζn ∼ N(0, σ2). We estimate
θ using the least squares estimator θ̂ = (XSX

T
S )−1XT

S yS .
Assuming a normal Bayesian prior distribution on the un-
known parameter, θ ∼ N(0,Σ), the sum of the variance
of the coefficients given the measurement set S is r(S) =

Tr
(
Σ−1 + 1

σ2XSX
T
S

)−1
. We define g(S) = r(∅)− r(S)

to be the reduction in variance produced by experiment set
S. Bian et al. (2017) showed that g is γ-weakly submodular,
providing a lower bound for γ in the case where Σ = βI .
However, their bound relies rather unfavorably on the spec-

2Source code available at https://github.com/
crharshaw/submodular-minus-linear

tral norm of X , and does not extend to general Σ. Chamon
& Ribeiro (2017) showed that g satisfies the stronger con-
dition of γ-weak DR (Definition C.1), but their bound on
the submodularity ratio γ depends on the cardinality of the
sets. We give a tighter bound here, and the proof appears in
Appendix D.

Claim 10. g is a non-negative, monotone and γ-weakly
submodular function with

γ ≥
(

1 +
s2

σ2
λmax(Σ)

)−1

,

where s = maxi∈[n] ‖xi‖2.

Suppose that each experiment xi has an associated non-
negative cost ci. In this application, we seek to maximize
the “revenue” of the experiment,

g(S)−c(S) = Tr (Σ)−Tr
(

Σ−1 +
1

σ2
XSX

T
S

)−1

−c(S) ,

which trades off the utility of the experiments (i.e., the
variance reduction in the estimator) and their overall cost.

Unlike submodular functions, lazy evaluations (Minoux,
1978) of γ-weakly submodular g are generally not pos-
sible, as the marginal gains vary unpredictably. How-
ever, for specific functions, one can possibly speed up the
greedy search. For the utility g considered here, we im-
plemented a faster greedy search using the matrix inver-
sion lemma. The naive approach of computing g(e | S)
by constructing Σ−1 + XSX

T
S , explicitly computing its

inverse, and summing the diagonal elements is not only
expensive—inversion alone costs O(d3) arithmetic opera-
tions—but also memory-inefficient. Instead, one can use
the matrix inversion lemma to show that

g(e | S) =
‖ze‖2

σ2 + 〈xe, ze〉
,

where ze = M−1
S xe and MS = Σ−1 +XSX

T
S . Moreover,

M−1
S may be stored and updated directly without any matrix

https://github.com/crharshaw/submodular-minus-linear
https://github.com/crharshaw/submodular-minus-linear
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(a) (b)

(c) (d)

Figure 2: An algorithmic performance comparison for Bayesian A-Optimal design on the Boston Housing dataset. We report
values for stochastic algorithms with mean and standard deviation bars, over 20 trials. (2a) objective values, varying the
cardinality k, for a fixed cost penalty α = 0.8. (2b) runtime for a fixed cardinality k = 15. (2c) objective values, varying the
cost penalty α for a fixed cardinality k = 15. (2d) objective values, varying the cost penalty α in an unconstrained setting.

inversion. In this way, marginal gains g(e | S) may be
queried using only matrix-vector multiplication with a fixed
M−1
S and inner product computations, which requiresO(d2)

arithmetic operations and is more memory efficient. More
details are given in Appendix D.

For this experiment, we used the Boston Housing dataset
(Jr. & Rubenfield, 1978), a standard benchmark dataset
containing d = 14 attributes of n = 506 Boston homes,
including average number of rooms per dwelling, proximity
to the Charles River, and crime rate per capita. We prepro-
cessed the data by normalizing the features to have a zero
mean and a standard deviation of 1. As there is no specified
cost per measurement, we assigned costs proportionally to
initial marginal gains in utility; that is, ce = αg(e) for some
α ∈ [0, 1]. We set σ = 1/

√
d, and randomly generated

a normal prior with covariance Σ = ADAT , where A is
randomly chosen as Ai,j ∼ N(0, 1) and D is diagonal with
Di,i = (i/d)2. We choose not to use Σ = βI , as we found
this causes g to be nearly modular along solution paths,
yielding it an easy problem instance for all algorithms and
not a suitable benchmark.

In our first experiment, we fixed the cost penalty α = 0.8,
and ran the algorithms for varying cardinality constraints
from k = 1 to k = 15. We ran the greedy algorithm, DIS-

TORTED GREEDY with γ-SWEEP (setting δ = 0.1), and
two instances of STOCHASTIC DISTORTED GREEDY with
γ-SWEEP (with δ = ε = 0.1 and δ = ε = 0.05). All γ-
SWEEP runs used L = 0. In Figure 2a, one can observe that
the marginal gain obtained by the greedy algorithm is not
non-increasing (at least for the first few elements), which is
a result of the fact that g is weakly submodular with γ < 1.
For small values of k, all algorithms produce comparable so-
lutions; however, the greedy algorithm gets stuck in a local
maximum of size k = 7, while our algorithms are able to
produce larger solutions with higher objective value. More-
over, γ-SWEEP with STOCHASTIC DISTORTED GREEDY
performs better than γ-SWEEP with DISTORTED GREEDY
for larger values of k, for reasons discussed in Section 3.4.
Figure 2b shows CPU times of each algorithm run with the
single cardinality constraint k = 20. We see that the greedy
algorithm runs faster than our algorithms. This difference in
the runtime is a result of both the added complexity of the
γ-SWEEP procedure, and that greedy terminates early, when
a local maximum is reached. Figure 2b also shows that the
sub-sampling step in STOCHASTIC DISTORTED GREEDY
results in a faster runtime than DISTORTED GREEDY, as
predicted by the theory. We did not display the number of
function evaluations, as it exhibits nearly identical trends to
the actual CPU run time. In our next experiment, we fixed
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the cardinality k = 15 and varied the cost penalty α ∈ [0, 1].
Figure 2c shows that all algorithm return similar solutions
for α = 0 and α = 1, which are the cases in which either
c = 0 or the function g− c is non-positive, respectively. For
all other values of α, our algorithms yield improvements
over greedy. In our final experiment, we varied the cost
penalty α ∈ [0, 1], comparing the output of greedy and
γ-SWEEP with UNCONSTRAINED DISTORTED GREEDY
for the unconstrained setting. Figure 2d shows that greedy
outperforms our algorithm in this instance, which can occur,
especially in the absence of “bad elements” discussed in
Section 3.

5.2. Directed Vertex Cover with Costs

The second experiment is directed vertex cover with costs.
Let G = (V,E) be a directed graph and let w : V → R
be a weight function on the vertices. For a vertex set S ⊆
V , let N(S) denote the set of vertices which are pointed
to by S, N(S) , {v ∈ V | (u, v) ∈ E for some u ∈ S}.
The weighted directed vertex cover function is g(S) =∑

u∈N(S)∪S wu. We also assume that each vertex v ∈
V has an associated nonnegative cost cv. Our goal is to
maximize the resulting revenue,

g(S)− c(S) =
∑

u∈N(S)∪S

wu −
∑
u∈S

cu .

Because g is submodular, we can forgo the γ-SWEEP routine
and apply our algorithms directly with γ = 1. Moreover,
we implement lazy evaluations of g in our code.

For our experiments, we use the EU Email Core network,
a directed graph generated using email data from a large
European research institution (Yin et al., 2017; Leskovec
et al., 2007). The graph has 1k nodes and 25k directed edges,
where nodes represent people and a directed edge from u to
v means that an email was sent from u to v. We assign each
node a weight of 1. Additionally, as there are no costs in the
dataset, we assign costs in the following manner. For a fixed
q, we set c(v) = 1 + max{d(v)− q, 0}, where d(v) is the
out-degree of v. Thus, all vertices with out-degree larger
than q have the same initial marginal gain g(v)− c(v) = q.

In our first experiment, we fixed the cost factor q = 6, and
ran the algorithms for varying cardinality constraints from
k = 1 to k = 130. We see in Figure 3a that our meth-
ods outperform greedy. DISTORTED GREEDY achieves
the highest objective value for each cardinality constraint,
while STOCHASTIC DISTORTED GREEDY achieves higher
objective values as the accuracy parameter ε is decreased.
Figure 3b shows the number of function evaluations made by
the algorithms when k = 130. We observe that STOCHAS-
TIC DISTORTED GREEDY requires much fewer function
evaluations, even when lazy evaluations are implemented.3

3We do not report CPU time, which does not reflect function

(a)

(b)

(c)

Figure 3: A performance comparison for directed vertex
cover on the EU Email Core network. We report values for
stochastic algorithms with mean and standard deviation bars,
over 20 trials. (3a) objective values, varying the cardinality
k, for a fixed cost factor q = 6. (3b) g evaluations for a
fixed cardinality k = 130. (3c) objective values, varying
the cost factor q in an unconstrained setting.

Finally, we ran greedy and UNCONSTRAINED DISTORTED
GREEDY while varying the cost factor q from 1 to 12, and
we note that in this setting (as can be seen in Figure 3c) our
algorithm performs similarly to the greedy algorithm.

6. Conclusion
We presented a suite of fast algorithms for maximizing the
difference between a non-negative monotone γ-weakly sub-
modular g and a non-negative modular c in both the cardi-
nality constrained and unconstrained settings. Moreover, we
gave a matching hardness result showing that no algorithm
can do better with only polynomially many oracle queries
to g. Finally, we experimentally validated our algorithms on
Bayesian A-Optimality and directed vertex cover with costs,
demonstrating that they outperform the greedy heuristic.

evaluations here. This is due to the lazy evaluation implementation.
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A. Greedy Performs Arbitrarily Poorly
In this section, we describe an instance of Problem (1) where the greedy algorithm performs arbitrarily poorly. More
specifically, the greedy algorithm does not achieve any constant factor approximation. Let G be a graph with n vertices and
let b ∈ V be a “bad vertex”. The graph G includes a single directed edge (b, e) for every vertex e ∈ V \ {b}, and no other
edges (i.e., G is a directed star with b in the center). Let g be the unweighted directed vertex cover function. Note that

g({e}) =

{
1 if e 6= b ,
n if e = b .

Fix some ε > 0, and let us define the nonnegative costs coefficients as

ce =

{
1/2 if e 6= b ,
n− (1/2 + ε) if e = b .

The initial marginal gain of a vertex e is now given by

g({e})− ce =

{
1/2 if e 6= b ,
1/2 + ε if e = b .

Thus, the greedy algorithm chooses the “bad element” b ∈ V in the first iteration. Note that after b is chosen, the greedy
algorithm terminates, as g(e | {b}) = 0 and ce > 0 for all remaining vertices e. However, for any set S of vertices which
does not contain b, we have that

g(S)− c(S) = |S| − 1

2
|S| = 1

2
|S| .

Thus, for any k < n, the competitive ratio of greedy subject to a k cardinality constraint is at most

1/2− ε
k/2

=
1− ε
k

= O

(
1

k

)
.

B. Algorithm Proofs Omitted From the Main Body
B.1. Distorted Greedy

Proof of Lemma 1. By expanding the definition of Φ and rearranging, we get

Φi+1(Si+1)− Φi(Si) =
(

1− γ

k

)k−(i+1)

g(Si+1)− c(Si+1)−
(

1− γ

k

)k−i
g(Si) + c(Si)

=
(

1− γ

k

)k−(i+1)

g(Si+1)− c(Si+1)−
(

1− γ

k

)k−(i+1) (
1− γ

k

)
g(Si) + c(Si)

=
(

1− γ

k

)k−(i+1)

[g(Si+1)− g(Si)]− [c(Si+1)− c(Si)] +
γ

k

(
1− γ

k

)k−(i+1)

g(Si) .

Now let us consider two cases. First, suppose that the if statement in DISTORTED GREEDY passes, which means that
Ψi(Si, ei) =

(
1− γ

k

)k−(i+1)
g(ei | Si)− cei > 0 and that ei is added to the solution set. By the non-negativity of c, we

can deduce in this case that ei /∈ Si, and thus, g(Si+1)− g(Si) = g(ei | Si) and c(Si+1)− c(Si) = cei . Hence,

Φi+1(Si+1)− Φi(Si) =
(

1− γ

k

)k−(i+1)

g(ei | Si)− cei +
γ

k

(
1− γ

k

)k−(i+1)

g(Si)

= Ψi(Si, ei) +
γ

k

(
1− γ

k

)k−(i+1)

g(Si) .

Next, suppose that the if statement in DISTORTED GREEDY does not pass, which means that Ψi(Si, ei) = 0 ≥(
1− γ

k

)k−(i+1)
g(ei | Si) − cei and the algorithm does not add ei to its solution. In particular, Si+1 = Si, and thus,

g(Si+1)− g(Si) = 0 and c(Si+1)− c(Si) = 0. In this case,

Φi+1(Si+1)− Φi(Si) = 0 +
γ

k

(
1− γ

k

)k−(i+1)

g(Si) = Ψi(Si, ei) +
γ

k

(
1− γ

k

)k−(i+1)

g(Si) .
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Proof of Lemma 2. Observe that

k ·Ψi(Si, ei) = k ·max
e∈Ω

{
0,
(

1− γ

k

)k−(i+1)

g(e | Si)− ce
}

(definitions of Ψ and ei)

≥ |OPT | ·max
e∈Ω

{
0,
(

1− γ

k

)k−(i+1)

g(e | Si)− ce
}

(|OPT | ≤ k)

≥ |OPT | · max
e∈OPT

{(
1− γ

k

)k−(i+1)

g(e | Si)− ce
}

(restricting maximization)

≥
∑

e∈OPT

[(
1− γ

k

)k−(i+1)

g(e | Si)− ce
]

(averaging argument)

=
(

1− γ

k

)k−(i+1) ∑
e∈OPT

g(e | Si)− c(OPT )

≥ γ
(

1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]− c(OPT ) . (γ-weak submodularity)

B.2. Stochastic Distorted Greedy

Lemma 11. In each step 0 ≤ i ≤ k − 1 of STOCHASTIC DISTORTED GREEDY,

Pr [Bi ∩OPT 6= ∅] ≥ (1− ε) |OPT |
k

.

Proof.

Pr [Bi ∩OPT = ∅] ≤
(

1− |OPT |
n

)s
≤ e−s

|OPT|
n = e−

sk
n
|OPT|
k ,

where we used the known inequality 1− x ≤ e−x. Thus,

Pr [Bi ∩OPT 6= ∅] ≥ 1− e− skn
|OPT|
k ≥

(
1− e− skn

) |OPT |
k

≥ (1− ε) |OPT |
k

,

where the second inequality follows from 1− e−ax ≥ (1− e−a)x for x ∈ [0, 1], and the last inequality follows from the
choice of sample size s = dnk log 1

ε e.

Conditioned on the fact that at least one element of OPT was sampled, the following lemma shows that sufficient potential
gain is made.

Lemma 12. In each step 0 ≤ i ≤ k − 1 of STOCHASTIC DISTORTED GREEDY,

Eei [Ψi(Si, ei) | Si, Bi ∩OPT 6= ∅] ≥ γ

|OPT |

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]−
1

|OPT |
c(OPT ) .

Proof. Throughout the proof, all expectations are conditioned on the current set Si and the event that Bi ∩OPT 6= ∅, as in
the statement of the lemma. For convenience, we drop the notations of these conditionals from the calculations below.

Eei [Ψi(Si, ei)] = E
[
max
e∈Bi

Ψi(Si, ei)

]
(definition of ei)

≥ E
[

max
e∈Bi∩OPT

Ψi(Si, ei)

]
(restricting max)

≥ E
[

max
e∈Bi∩OPT

{(
1− γ

k

)k−(i+1)

g(e | Si)− ce
}]

. (definition of Ψ)

We now note that Bi ∩OPT is a subset of OPT that contains every element of OPT with the same probability. Moreover,
this is true also conditioned on Bi∩OPT 6= ∅. Thus, picking the best element from Bi∩OPT (when this set is not-empty)
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achieves gain at least as large as picking a random element from Bi ∩OPT , which is identical to picking a random element
from OPT . Plugging this observation into the previous inequality, we get

Eei [Ψi(Si, ei)] ≥
1

|OPT |
∑

e∈OPT

[(
1− γ

k

)k−(i+1)

g(e | Si)− ce
]

=
1

|OPT |

(
1− γ

k

)k−(i+1) ∑
e∈OPT

g(e | Si)−
1

|OPT |
c(OPT )

≥ γ

|OPT |

(
1− γ

k

)k−(i+1)

[g(OPT ∪ Si)− g(Si)]−
1

|OPT |
c(OPT )

≥ γ

|OPT |

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]−
1

|OPT |
c(OPT ) ,

where the last two inequalities follows from the γ-weak submodularity and monotonicity of g, respectively.

Using the last two lemmas, we can now prove the claims from the main paper.

Proof of Lemma 4. By the law of iterated expectation and the non-negativity of Ψ,

Eei [Ψi(Si, ei) | Si] = Eei [Ψi(Si, ei) | Si, Bi ∩OPT 6= ∅] Pr [Bi ∩OPT 6= ∅]

+ Eei [Ψi(Si, ei) | Si, Bi ∩OPT = ∅] Pr [Bi ∩OPT = ∅]

≥ Eei [Ψi(Si, ei) | Si, Bi ∩OPT 6= ∅] Pr [Bi ∩OPT 6= ∅]

≥
(

γ

|OPT |

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]−
1

|OPT |
c(OPT )

)(
(1− ε) |OPT |

k

)
= (1− ε)

(
γ

k

(
1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]−
1

k
c(OPT )

)
,

where the second inequality holds by Lemmas 11 and 12. The lemma now follows since the law of iterated expectations also
implies E [Ψi(Si, ei)] = ESi [Eei [Ψi(Si, ei) | Si]].

Proof of Theorem 5. As discussed in the proof of Theorem 3, we have that

E [g(R)− c(R)] ≥ E [Φk(Sk)− Φ0(S0)] =

k−1∑
i=0

E [Φi+1(Si+1)− Φi(Si)] , (5)

and so it is enough to lower bound each term in the rightmost side. To this end, we apply Lemma 1 and Lemma 4 to obtain

E [Φi+1(Si+1)− Φi(Si)] ≥ E [Ψi(Si, ei)] +
γ

k

(
1− γ

k

)k−(i+1)

E [g(Si)]

≥ (1− ε)
(
γ

k

(
1− γ

k

)k−(i+1)

[g(OPT )− E [g(Si)]] +
1

k
c(OPT )

)
+
γ

k

(
1− γ

k

)k−(i+1)

E [g(Si)]

= (1− ε)
(
γ

k

(
1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT )

)
+ ε · γ

k

(
1− γ

k

)k−(i+1)

E [g(Si)]

≥ (1− ε)
(
γ

k

(
1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT )

)
,

where the last inequality followed from non-negativity of g. Plugging this bound into (5) yields

E [g(R)− c(R)] ≥ (1− ε)
k−1∑
i=0

[
γ

k

(
1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT )

]

= (1− ε)

[
γ

k

k−1∑
i=0

(
1− γ

k

)i]
g(OPT )− (1− ε)c(OPT )

≥ (1− ε)
(
1− e−γ

)
g(OPT )− c(OPT ) (non-negativity of g and c )

=
(
1− e−γ − αε

)
g(OPT )− c(OPT ) ,
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where α = 1− e−γ ≤ 0.65.

To bound the number of function evaluations, observe that STOCHASTIC DISTORTED GREEDY has k rounds, each requiring
s = dnk log 1

ε e function evaluations. Thus, the total number of function evaluations is k × dnk log 1
ε e = O(n log 1

ε ).

B.3. Unconstrained Distorted Greedy

Proof of Lemma 6. We begin by analyzing the conditional expectation

Eei [Ψi(Si, ei) | Si] =
1

n

∑
e∈Ω

Ψi(Si, e)

≥ 1

n

∑
e∈OPT

Ψi(Si, e) (non-negativity of Ψ)

=
1

n

∑
e∈OPT

max

{
0,
(

1− γ

n

)n−(i+1)

g(e | Si)− ce
}

(by definition of Ψ)

≥ 1

n

∑
e∈OPT

{(
1− γ

n

)n−(i+1)

g(e | Si)− ce
}

=
1

n

(
1− γ

n

)n−(i+1) ∑
e∈OPT

g(e | Si)−
1

n
c(OPT ) (linearity of c)

≥ γ

n

(
1− γ

n

)n−(i+1)

[g(OPT ∪ Si)− g(Si)]−
1

n
c(OPT ) (γ-weak submodularity of g)

γ

n

(
1− γ

n

)n−(i+1)

[g(OPT )− g(Si)]−
1

n
c(OPT ) (monotonicity of g) .

The lemma now follows by the law of iterated expectations.

B.4. Guessing Gamma: A Geometric Sweep

Proof of Theorem 8. We consider two cases. First, suppose that γ < δ. Under this assumption, we have

1− e−γ − δ < 1− e−δ − δ ≤ δ − δ = 0 ,

where the second inequality used the fact that 1− e−x ≤ x. Thus,

g(∅) + `(∅) ≥ 0 ≥ (1− e−γ − δ)g(OPT )− c(OPT ) ,

where the first inequality follows from non-negativity of g, and the second inequality follows from non-negativity of both c
and g. Because Algorithm 4 sets S(−1) = ∅ and R is chosen to be the best solution,

g(R) + `(R) ≥ g(∅)− c(∅) ≥
(
1− e−γ − δ

)
g(OPT )− c(OPT ) .

For the second case, suppose that γ ≥ δ. Recall that γ ≥ L by assumption, and thus, γ ≥ B , max{δ, L}. Now, we need

to show that (1− δ)T ≤ B. This is equivalent to
(

1
1−δ

)T
≥ 1

B , and by taking ln, this is equivalent to T ≥ ln 1
B

ln 1
1−δ

. This is

true since the inequality δ ≤ ln
(

1
1−δ

)
, which holds for all δ ∈ (0, 1), implies

T =

⌈
1

δ
ln

1

B

⌉
≥ 1

δ
ln

1

B
≥

ln 1
B

ln 1
1−δ

.

Hence, we have proved that (1 − δ)T ≤ B ≤ γ, which implies that there exists t ∈ {0, 1, . . . , T} such that γ ≥ γ(t) ≥
(1− δ)γ. For notational convenience, we write γ̂ = γ(t). Because g is γ-weakly submodular and γ ≥ γ̂, g is also γ̂-weakly
submodular. Therefore, by assumption, the algorithm A returns a set S(t) which satisfies

E
[
g(S(t)) + `(S(t))

]
≥
(
1− e−γ̂ − δ

)
g(OPT )− c(OPT ) .
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From the convexity of ex, we have eδ ≤ (1− δ)e0 + δe1 = 1 + (e− 1)δ for all δ ∈ [0, 1]. Using this inequality, and the
fact that γ̂ ≥ (1− δ)γ, we get

1− e−γ̂ ≥ 1− e−(1−δ)γ ≥ 1− e−γeδ ≥ 1− e−γ(1 + (e− 1)δ) = 1− e−γ − e−γ(e− 1)δ ≥ 1− e−γ − βδ

We remark that β = e− 1 ≈ 1.72. Thus, by non-negativity of g and because the output set R was chosen as the set with
highest value,

E [g(R)− c(R)] ≥ E
[
g(S(t))− c(S(t))

]
≥
(
1− e−γ − (βδ + δ)

)
g(OPT )− c(OPT ) .

C. Impossibility for Weakly Submodular Functions
It turns out that, instead of proving Theorem 9, it is easier to prove a stronger theorem given below as Theorem 13. However,
before we can present Theorem 13, we need the following definition (this definition is related to a notion called the DR-ratio
defined by Kuhnle et al. (2018) for functions over the integer lattice).
Definition C.1. A function f : 2N → R is γ-weakly DR if for every two sets A ⊆ B ⊆ N and element u ∈ N \B it holds
that f(u | A) ≥ γ · f(u | B).

Theorem 13. For every two constants ε > 0 and γ ∈ (0, 1], no polynomial time algorithm achieves (1 − e−γ + ε)-
approximation for the problem of maximizing a non-negative monotone γ-weakly DR function subject to a cardinality
constraint in the value oracle model.

The following observation shows that every instance of the problem considered by Theorem 13 is also an instance of the
problem considered by Theorem 9, and therefore, Theorem 13 indeed implies Theorem 9.
Observation 14. A monotone γ-weakly DR set function f : 2N → R≥0 is also γ-weakly submodular.

Proof. Consider arbitrary sets A ⊆ B ⊆ N , and let us denote the elements of the set B \A by u1, u2, . . . , u|B\A| in a fixed
arbitrary order. Then,

f(B | A) =

|B\A|∑
i=1

f(ui | A ∪ {u1, u2, . . . , ui−1}) ≥ γ ·
|B\A|∑
i=1

f(ui | A) .

The following proposition is the main technical component used in the proof of Theorem 13. To facilitate the reading, we
defer its proof to Section C.1.
Proposition 15. For every value ε′ ∈ (0, 1/6), value γ ∈ (0, 1] and integer k ≥ 1/ε′, there exists a ground set N of size
d3k/ε′e and a set function fT : 2N → R≥0 for every set T ⊆ N of size at most k such that

(P1) fT is non-negtive monotone and γ-weakly DR.
(P2) fT (S) ≤ 1 for every set S ⊆ N , and the inequality holds as an equality for S = T when the size of T is exactly k.
(P3) f∅(S) ≤ 1− e−γ + 12ε′ for every set S of size at most k.
(P4) fT (S) = f∅(S) when |S| ≥ 3k − g or |S ∩ T | ≤ g, where g = dε′k + 3k2/|N |e.

At this point, let us consider some γ value and set ε′ = ε/20. Note that Theorem 13 is trivial for ε > 1, and thus, we may
assume ε′ ∈ (0, 1/6), which implies that there exists a large enough integer k for which γ, ε′ and k obey all the requirements
of Proposition 15. From this point on we consider the ground set N and the functions fT whose existence is guaranteed by
Proposition 15 for these values of γ, ε′ and k. Let T̃ be a random subset ofN of size k (such subsets exist because |N | > k).
Intuitively, in the rest of this section we prove Theorem 13 by showing that the problem max{fT̃ (S) | S ⊆ N , |S| ≤ k} is
hard in expectation for every algorithm.

Property (P2) of Proposition 15 shows that the optimal solution for the problem max{fT̃ (S) | S ⊆ N , |S| ≤ k} is T̃ . Thus,
an algorithm expecting to get a good approximation ratio for this problem should extract information about the random set
T̃ . The question is on what sets should the algorithm evaluate fT̃ to get such information. Property (P4) of the proposition
shows that the algorithm cannot get much information about T̃ when querying fT̃ on a set S that is either too large or has a
too small intersection with T̃ . Thus, the only way in which the algorithm can get a significant amount of information about
T̃ is by evaluating fT̃ on a set S that is small and not too likely to have a small intersection with T̃ . Lemma 17 shows that
such sets do not exist. However, before we can prove Lemma 17, we need the following known lemma.
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Lemma 16 (Proved by Skala (2013) based on results of (Chvátal, 1979; Hoeffding, 1963)). Consider a population of N
balls, out of which M are white. Given a hypergeometric variable X measuring the number of white balls obtained by
drawing uniformly at random n balls from this population, it holds for every t ≥ 0 that Pr[X ≥ nM/N + tn] ≤ e−2t2n.

Lemma 17. For every set S ⊆ N whose size is less than 3k − g, Pr[|S ∩ T̃ | ≤ g] ≥ 1− e−Ω(ε3|N |).

Proof. The distribution of |S ∩ T̃ | is hypergeometric. More specifically, it is equivalent to drawing k balls from a population
of |N | balls, of which only |S| are white. Thus, by Lemma 16, for every t ≥ 0 we have

Pr[|S ∩ T̃ | ≥ k|S|/|N |+ tk] ≤ e−2t2k .

Setting t = ε′ and observing that |S| ≤ 3k − g ≤ 3k, the last inequality yields

Pr[|S ∩ T̃ | ≥ 3k2/|N |+ ε′k] ≤ exp
(
−2(ε′)2k

)
= exp

(
−ε

2k

200

)
.

The lemma now follows since g ≥ 3k2/|N |+ ε′k, and (by the definition of N )

k ≥ ε′(|N | − 1)

3
=
ε(|N | − 1)

60
= Ω(ε|N |) .

Corollary 18. For every set S ⊆ N , Pr[f∅(S) = fT̃ (S)] ≥ 1− e−Ω(ε3|N |).

Proof. If |S| ≥ 3k− g, then the corollary follows from Property (P4) of Proposition 15. Otherwise, it follows by combining
this property with Lemma 17.

Using the above results, we are now ready to prove an hardness result for deterministic algorithms.

Lemma 19. Consider an arbitrary deterministic algorithm ALG for the problem max{f(S) | S ⊆ N , |S| ≤ k} whose
time complexity is bounded by some polynomial function C(|N |). Then, there is a large enough value k that depends only
on C(·) and ε such that, given the random instance max{fT̃ (S) | S ⊆ N , |S| ≤ k} of the above problem, the expected
value of the output set of ALG is no better than 1− e−γ + ε.

Proof. Let S1, S2, . . . , S` be the sets on which ALG evaluate f∅ when it is given the instance max{f∅(S) | S ⊆ N , |S| ≤
k}, and S`+1 be its output set given this instance. Let E be the event that f∅(Si) = fT̃ (Si) for every 1 ≤ i ≤ `+ 1. By
combining Corollary 18 with the union bound, we get that

Pr[E ] ≥ 1− (`+ 1) · e−Ω(ε3|N |) ≥ 1− [C(|N |) + 1] · e−Ω(ε3|N |)) ,

where the second inequality holds since the time complexity of an algorithm upper bounds the number of sets on which
it may evaluate f∅. Since C(|N |) is a polynomial function, by making k large enough, we can make N large enough to
guarantee that C(|N |) · e−Ω(ε3|N |) ≤ ε/20, and thus, Pr[E ] ≥ 1− ε/20.

When the event E happens, the values that ALG gets when evaluating fT̃ on the sets S1, S2, . . . , S` is equal to the values
that it would have got if the objective function was f∅. Thus, in this case ALG follows the same execution path as when it
gets f∅, and outputs S`+1 whose value is

fT̃ (S`+1) = f∅(S`+1) ≤ 1− e−γ + 12ε′ = 1− e−γ + 3ε/5 ,

where the inequality holds by Property (P3) of Proposition 15 since the output set S`+1 must be a feasible set, and thus,
of size at most k. When the event E does not happen, we can still upper bound the value of the output set of ALG by 1
using Property (P2) of the same proposition. Thus, if we denote by R the output set of ALG, then, by the law of iterated
expectations,

E[fT̃ (R)] = Pr[E ] · E[fT̃ (S`+1) | E ] + Pr[¬E ] · E[fT̃ (R) | ¬E ]

≤ 1 · (1− e−γ + 3ε/5) + (ε/20) · 1 = 1− e−γ + 13ε/20 ≤ 1− e−γ + ε .
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Lemma 19 shows that there is a single distribution of instances which is hard for every deterministic algorithm whose
time complexity is bounded by a polynomial function C(|N |). Since a randomized algorithm whose time complexity is
bounded by C(|N |) is a distribution over deterministic algorithms of this kind, by Yao’s principle, Lemma 19 yields the
next corollary.
Corollary 20. Consider an arbitrary algorithmALG for the problem max{f(S) | S ⊆ N , |S| ≤ k} whose time complexity
is bounded by some polynomial function C(|N |). Then, there is a large enough value k that depends only on C(·) such that,
for some set T ⊆ N of size k, given the instance max{fT (S) | S ⊆ N , |S| ≤ k} of the above problem, the expected value
of the output set of ALG is no better than 1− e−γ + ε.

Theorem 13 now follows from Corollary 20 because Property (P2) shows that the optimal solution for the instance
max{fT (S) | S ⊆ N , |S| ≤ k} mentioned by this corollary has a value of 1, and Property (P1) of the same proposition
shows that this instance is an instance of the problem of maximizing a non-negative monotone γ-weakly-DR function
subject to a cardinality constraint.

C.1. Proof of Proposition 15

In this section we prove Proposition 15. We begin the proof by defining the function fT whose existence is guaranteed
by the proposition. To define fT , we first need to define the following four helper functions. Note that in fT,2 we use the
notation [x]+ to denote the maximum between x and 0.

• tT (S) , |S \ T |+ min{g, |S ∩ T |} • fT,1(S) ,

(
1− γ

k − g

)min{tT (S),k}

• fT,2(S) , 1− min{[tT (S)− k]+, k − g}
k − g

• fT,3(S) , 1− min{|S| − tT (S), k − g}
k − g

.

Using these helper functions, we can now define fT for every set S ⊆ N by

fT (S) , 1− fT,1(S) · fT,2(S) · fT,3(S) .

In the rest of this section we show that the function fT constructed this way obeys all the properties guaranteed by
Proposition 15. We begin with the following technical observation that comes handy in some of our proofs.
Observation 21. g ≤ 2ε′k + 1 ≤ min{k − 2, 3ε′k}.

Proof. The second inequality of the observation follows immediately from the assumptions of Proposition 15 regarding
k and ε′ (i.e., the assumptions that k ≥ 1/ε′ and ε′ ∈ (0, 1/6)). Thus, we only need to prove the first inequality. Since
|N | ≥ 3k/ε′,

g =

⌈
ε′k +

3k2

|N |

⌉
≤ ε′k +

3k2

3k/ε′
+ 1 = 2ε′k + 1 .

The next three lemmata prove together Property (P1) of Proposition 15.
Lemma 22. The outputs of the functions fT,1, fT,2 and fT,3 are always within the range [0, 1], and thus, fT is non-negative.

Proof. We prove the lemma for every one of the functions fT,1, fT,2 and fT,3 separately.

• Let b = 1−γ/(k−g). One can observe that fT,1 is defined as b to the power of min{tT (S), k}. Thus, to show that the
value of fT,1 always belongs to the range [0, 1], it suffices to prove that b ∈ (0, 1] and min{tT (S), k} is non-negative.
The first of these claims holds since γ ∈ (0, 1] by assumption and k − g ≥ 2 by Observation 21, and the second claim
can be verified by looking at the definition of tT (S) and noting that g must be positive.

• Since k − g ≥ 0 by Observation 21, min{[tT (S)− k]+, k − g} ∈ [0, k − g]. Plugging this result into the definition of
fT,2 yields that the value of fT,2 always belongs to [0, 1].

• Note that the definition of tT (S) implies tT (S) ≤ |S|. Together with the inequality k − g ≥ 0, which holds by
Observation 21, this guarantees min{|S| − tT (S), k − g} ∈ [0, k − g]. Plugging this result into the definition of fT,3
yields that the value of fT,3 always belongs to [0, 1].
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We say that a set function h : 2N → R is monotonically decreasing if f(A) ≥ f(B) for every two sets A ⊆ B ⊆ N .

Lemma 23. The functions fT and |S| − tT (S) are monotone and the functions fT,1, fT,2 and fT,3 are monotonically
decreasing.

Proof. It immediately follows from the definition of tT (S) that it is monotone. Additionally, |S| − tT (S) is a monotone
function since it is equal to

|S| − tT (S) = |S ∩ T | −min{g, |S ∩ T |} = [|S ∩ T | − g]+ .

Plugging these observations into the definitions of fT,1, fT,2 and fT,3 yields that these three functions are all monotonically
decreasing. Since these three functions are also non-negative by Lemma 22, this implies that fT,1(S) · fT,2(S) · fT,3(S) is
also a monotonically decreasing function, and thus, fT is a monotone function since it is equal to 1 minus this product.

Lemma 24. fT is γ-weakly-DR.

Proof. Consider arbitrary setsA ⊆ B ⊆ N , and fix an element u ∈ N \B. We need to show that fT (u | A) ≥ γ ·fT (u | B),
which we do by considering three cases.

The first case is when tT (A ∪ {u}) = tT (A) + 1 and tT (B ∪ {u}) = tT (B) + 1. Note that for every set S for which
tT (S ∪ {u}) = tT (S) + 1 and tT (S) < k we have

fT (u | S) = fT,1(S) · fT,2(S) · fT,3(S)− fT,1(S ∪ {u}) · fT,2(S ∪ {u}) · fT,3(S ∪ {u}) (6)

= fT,1(S) · fT,3(S)−
(

1− γ

k − g

)
· fT,1(S) · fT,3(S) =

γ

k − g
· fT,1(S) · fT,3(S) ,

and for every set S for which tT (S + u) = tT (S) + 1 and tT (S) ≥ k we have

fT (u | S) = fT,1(S) · fT,2(S) · fT,3(S)− fT,1(S ∪ {u}) · fT,2(S ∪ {u}) · fT,3(S ∪ {u}) (7)

= fT,1(S) · fT,2(S) · fT,3(S)− fT,1(S) ·
[
fT,2(S)− min{[(k − g)− (tT (S)− k)]+, 1}

k − g

]
· fT,3(S)

=
min{[(k − g)− (tT (S)− k)]+, 1}

k − g
· fT,1(S) · fT,3(S) ≤ 1

k − g
· fT,1(S) · fT,3(S) ,

where the last inequality holds since fT,1 and fT,3 are non-negative by Lemma 22. Since f1 and f3 are monotonically
decreasing functions (by Lemma 23), the above inequalities show fT (u | A) ≥ γ · fT (u | B) whenever tT (A) < k—if
tT (B) < k, then the inequalities in fact show fT (u | A) ≥ fT (u | B), but this implies fT (u | A) ≥ γ · fT (u | B)
because fT is monotone and γ ∈ (0, 1]. It remains to consider the option t(A) ≥ k. Note that when this happens, we
also have tT (B) ≥ k because tT (S) is a monotone function. Thus, fT (u | A) ≥ fT (u | B) because fT,1, fT,3 and
min{[(k − g)− (tT (S)− k)]+, 1} are all non-negative monotone decreasing functions, and like in the above, this implies
fT (u | A) ≥ γ · fT (u | B).

The second case we consider is when tT (A ∪ {u}) = tT (A). Note that in this case we also have tT (B ∪ {u}) = tT (B)
because the equality tT (A ∪ {u}) = tT (A) implies g = min{|A ∩ T |, g} ≤ min{|B ∩ T |, g} ≤ g, which implies in its
turn min{|B ∩ T |, g} = g. For every set S for which tT (S ∪ {u}) = tT (S) and u 6∈ S we have

fT (u | S) = fT,1(S) · fT,2(S) · fT,3(S)− fT,1(S ∪ {u}) · fT,2(S ∪ {u}) · fT,3(S ∪ {u}) (8)

= fT,1(S) · fT,2(S) · fT,3(S)− fT,1(S) · fT,2(S) ·
[
fT,3(S)− min{[(k − g)− (|S| − tT (S))]+, 1}

k − g

]
= fT,1(S) · fT,2(S) · min{[(k − g)− (|S| − tT (S))]+, 1}

k − g
.

Recall now that fT,1 and fT,3 are non-negative and monotonically decreasing functions by Lemmata 22 and 23. We
additionally observe that the function min{[(k−g)− (|S|− tT (S)]+, 1} also has these properties because Lemma 23 shows
that |S| − t(S) is monotone. Combining these facts, we get that the expression we obtained for f(u | S) is a monotonically
decreasing function of S. Thus, f(u | A) ≥ f(u | B), which implies f(u | A) ≥ γ · f(u | B).



Submodular Maximization beyond Non-negativity

The last case we need to consider is the case that tT (A ∪ {u}) = tT (A) + 1 and tT (B ∪ {u}) = tT (B). The fact that
tT (B ∪ {u}) = tT (B) implies that u ∈ T , and therefore, the fact that t(A∪ {u}) = t(A) + 1 implies that |A∩ T | < g and
tT (A) = |A|, which induces in its turn fT,3(A) = 1. There are now a few sub-cases to consider. If tT (A) < k, then

fT (u | A) =
γ

k − g
· fT,1(A) ≥ γ · fT,1(B) · fT,2(B) · min{[(k − g)− (|B| − tT (B))]+, 1}

k − g
= γ · fT (u | B) ,

where the first equality holds by Equation (6), the last equality holds by Equation (8), and the inequality holds since
min{[(k − g) − (|B| − tT (B))]+, 1} ∈ [0, 1], fT,1(A) ≥ fT,1(B) ≥ 0 by Lemmata 22 and 23 and fT,2(B) ∈ [0, 1] by
Lemma 22 . The second sub-case we need to consider is when k ≤ t(A) ≤ 2k − g − 1. In this case

fT (u | A) =
min{[(k − g)− (tT (A)− k)]+, 1}

k − g
· fT,1(A) =

1

k − g
· fT,1(A) ≥ γ

k − g
· fT,1(B)

≥ γ ·min{[(k − g)− (|B| − tT (B))]+, 1}
k − g

· fT,1(B) · fT,2(B) = γ · fT (u | B) ,

where the first equality holds by Equation (7) and the second equality holds by Equation (8). The first inequality holds
since γ ∈ (0, 1] and fT,1 is non-negative and monotonicity decreasing, and the second inequality holds since min{[(k −
g)− (|B| − tT (B))]+, 1} and fT,2(B) are both values in the range [0, 1] and γ · fT,1(B)/(k− g) is non-negative. The final
sub-case we consider is the case in which tT (A) ≥ 2k − g − 1. Since |T ∩A| < g (but |T ∩B| ≥ g), in this sub-case we
must have tT (B) ≥ 2k − g, which implies fT,2(B) = 0, and thus,

fT (u | B) = fT,1(B) · fT,2(B) · min{[(k − g)− (|B| − tT (B))]+, 1}
k − g

= 0 ≤ fT (u | A) ,

where the equality holds by Equation (8), and the inequality follows from the monotonicity of fT .

This completes the proof of Property (P1) of Proposition 15. The next lemma proves Property (P2) of this proposition.

Lemma 25. fT (S) ≤ 1 for every set S ⊆ N , and the inequality holds as an equality for S = T when the size of T is
exactly k.

Proof. Since fT,1, fT,2 and fT,3 all output only values within the range [0, 1] by Lemma 22, fT (S) = 1 − fT,1(S) ·
fT,2(S) · fT,3(S) ≤ 1. Additionally, since g ≤ k by Observation 21, tT (T ) = g when |T | = k. Hence, for such T ,

fT,3(T ) = 1− min{k − g, k − g}
k − g

= 0 ,

which implies, fT (T ) = 1− fT,1(T ) · fT,2(T ) · fT,3(T ) = 1.

The next lemma proves Property (P3) of Proposition 15.

Lemma 26. f∅(S) ≤ 1− e−γ + 8ε′ for every set S obeying |S| ≤ k.

Proof. Consider an arbitrary set S obeying |S| ≤ k. Note that for such a set we have t∅(S) = |S| ≤ k. Hence,

f∅,2(S) = f∅,3(S) = 1− min{0, k − g}
k − g

= 1 .

Hence,

f∅(S) = 1− f∅,1(S) · f∅,2(S) · f∅,3(S) = 1− f∅,1(S) = 1−
(

1− γ

k − g

)|S|
≤ 1−

(
1− γ

k − g

)k
. (9)

To prove the lemma, we need to upper bound the rightmost side of the last inequality. Towards this goal, observe that(
1− γ

k − g

)k
≥
(

1− γ

k − 3ε′k

)k
=

(
1− γ

k − 3ε′k

)k−3ε′k

·
(

1− γ

k − 3ε′k

)3ε′k

, (10)
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where the first inequality holds since g ≤ 3ε′k by Observation 21. Let us now lower bound the two factors in the product on
the rightmost side. First,

(
1− γ

k − 3ε′k

)k−3ε′k

≥ e−γ
(

1− γ2

k − 3ε′k

)
≥ e−γ (1− 2ε′) ,

where the first inequality holds since the assumptions of Proposition 15 imply k−3ε′k ≥ k/2 ≥ 1, and the second inequality
holds since these assumptions include k ≥ 1/ε′ and γ ∈ (0, 1]. Additionally,

(
1− γ

k − 3ε′k

)3ε′k

≥
(

1− 2

k

)3ε′k

≥ 1− 2

k
· (3ε′k) = 1− 6ε′ ,

where the first inequality holds again since γ ∈ (0, 1] and k − 3ε′k ≥ k/2. Plugging the last two lower bounds into
Inequality (10) and combining with Inequality (9), we get

f∅(S) ≤ 1− e−γ(1− 2ε′) · (1− 6ε′) ≤ 1− e−γ · (1− 8ε′) ≤ 1− e−γ + 8ε′ .

To complete the proof of Proposition 15, it remains to prove Property (P4), which is done by the next two observations.

Observation 27. If |S ∩ T | ≤ g, then fT (S) = f∅(S).

Proof. The only place in the definition of fT (S) in which the set T is used is in the definition of tT (S). Thus, fT (S) =
fT ′(S) whenever tT (S) = tT ′(S). In particular, one can note that the condition |S ∩ T | ≤ g implies tT (S) = |S| = t∅(S),
and thus, fT and f∅ must agree on the set S.

Observation 28. The equality fT (S) = 1 holds for every set S of size at least 3k − g and set T of size at most k.

Proof. Note that tT (S) ≥ |S \ T | ≥ |S| − |T | ≥ (3k − g)− k = 2k − g. Thus,

fT,2(S) = 1− min{[tT (S)− k]+, k − g}
k − g

= 1− k − g
k − g

= 0 ,

which implies fT (S) = 1− fT,1(S) · fT,2(S) · fT,3(S) = 1.

D. Details for Bayesian A-Optimal Design
Throughout this section, we make use of the matrix inversion lemma (also known as Woodbury Matrix Identity, Sherman-
Morrison-Woodbury Formula) which is given below.

Lemma 29 (Woodbury). For matrices A, C, U , and V of the appropriate sizes,

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

In particular, for a matrix A, a vector x, and a number α, we have that(
A+

1

α
xxT

)−1

= A−1 − A−1xxTA−1

α+ xTA−1x

D.1. Improved Lower Bound on γ

Proof of Claim 10. Recall that

g(S) = Tr (Σ)− Tr
(

Σ−1 +
1

σ2
XSX

T
S

)−1

.
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Let A,B ⊆ Ω, and suppose without loss of generality that A and B are disjoint. Using Lemma 29, we show how to obtain a
formula for g(B ∪A)− g(A). Let MA = Σ−1 + 1

σ2XAX
T
A .

g(B ∪A)− g(A) = Tr

(
Σ−1 +

1

σ2
XAX

T
A

)−1

− Tr
(

Σ−1 +
1

σ2
XB∪AX

T
B∪A

)−1

(definition of g)

= Tr

(
Σ−1 +

1

σ2
XAX

T
A

)−1

− Tr
(

Σ−1 +
1

σ2
XAX

T
A +

1

σ2
XBX

T
B

)−1

= Tr (MA)
−1 − Tr

(
MA +

1

σ2
XBX

T
B

)−1

= Tr (MA)
−1 − Tr

(
M−1
A −M−1

A XB

(
σ2I +XT

BM
−1
A XB

)−1
XT
BM

−1
A

)
(Lemma 29)

= Tr
(
M−1
A XB

(
σ2I +XT

BM
−1
A XB

)−1
XT
BM

−1
A

)
(linearity of trace)

= Tr
((
σ2I +XT

BM
−1
A XB

)−1
XT
BM

−2
A XB

)
, (trace’s cyclic property)

where the identity matrix is of size |B|. From this formula, we can easily derive the marginal gain of a single element. In
this case, B = {e} and XB = xe, so the marginal gain is given by

g(e | A) =
xTeM

−2
A xe

σ2 + xTeM
−1
A xe

. (11)

Note that Σ−1 �MA (where � denotes the usual semidefinite ordering), and thus, MA is positive definite. Hence, M−1
A

and M−2
A are also positive definite, which means that their quadratic forms are non-negative. In particular, xTeM

−2
A xe ≥ 0

and xTeM
−1
A xe ≥ 0, which implies g(e | A) ≥ 0. Also note that g(∅) = 0. Combining this equality with the previous

inequality, we get that g is non-negative and monotone increasing.

Now we seek to show the lower bound on γ. Again, let A,B ⊆ Ω, and assume without loss of generality that A and B are
disjoint. We seek to lower bound the ratio ∑

e∈B g(e | A)

g(B ∪A)− g(A)
. (12)

Let s = maxe∈Ω ‖xe‖2. Observe that

σ2 + xTeM
−1
A xe = σ2 + ‖xe‖2

(
xTeM

−1
A xe

‖xe‖2

)
≤ σ2 + s2λmax

(
M−1
A

)
= σ2 + s2λmax (Σ) , (13)

where the first inequality follows from the Courant-Fischer theorem, i.e., the variational characterization of eigenvalues. The
second inequality is derived as follows: MA = Σ−1 + 1

σXAX
T
A and so MA � Σ−1. This means that M−1

A � Σ. Thus,
λmax(M−1

A ) ≤ λmax (Σ). Using this, we may obtain a lower bound on the numerator in (12).∑
e∈B

g(e | A) =
∑
e∈B

xTeM
−2
A xe

σ2 + xTeM
−1
A xe

(by (11))

=
∑
e∈B

Tr
(
xex

T
eM

−2
A

)
σ2 + xTeM

−1
A xe

(cyclic property of trace)

≥ 1

σ2 + s2λmin (MA)

∑
e∈B

Tr
(
xex

T
eM

−2
A

)
(by (13))

=
Tr
(
XBX

T
BM

−2
A

)
σ2 + s2λmin (MA)

(linearity of trace)

=
Tr
(
XT
BM

−2
A XB

)
σ2 + s2λmin (MA)

. (cyclic property of trace)

Now, we will bound the denominator of (12). We have already shown that

g(B ∪A)− g(A) = Tr
((
σ2I +XT

BM
−1
A XB

)−1
XT
BM

−2
A XB

)
.
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Additionally, we have shown that M−1
A is positive semidefinite, and thus, XT

BM
−1
A XB is also positive semidefinite. Hence,

σ2I � σ2I + XT
BM

−1
A XB . This implies that

(
σ2I +XT

BM
−1
A XB

)−1 �
(
σ2I
)−1

= 1
σ2 I . Finally, we have shown that

M−2
A is positive semidefinite, and therefore, we have that XT

BM
−2
A XB is also positive semidefinite. Thus,

g(B ∪A)− g(A) = Tr
((
σ2I +XT

BM
−1
A XB

)−1
XT
BM

−2
A XB

)
≤ 1

σ2
Tr
(
XT
BM

−2
A XB

)
.

Applying these bound on
∑
e∈B g(e | A) and g(A ∪B)− g(A), we obtain∑

e∈B g(e | A)

g(B ∪A)− g(A)
≥
(

σ2

σ2 + s2λmax(Σ)

)
Tr
(
XT
BM

−2
A XB

)
Tr
(
XT
BM

−2
A XB

) =

(
1 +

s2

σ2
λmax(Σ)

)−1

.

D.2. Faster Greedy Search Implementation

As discussed in Section 5.1, the Matrix Inversion lemma may be used to greatly speed up the greedy search in each algorithm.
The naive approach of computing

g(e | S) = Tr

(
Σ−1 +

1

σ2
XSX

T
S

)−1

− Tr
(

Σ−1 +
1

σ2
XS∪eX

T
S∪e

)−1

by constructing these matrices, explicitly computing inverses, and computing its trace is not only expensive (inversion alone
takes O(d3) time), but also not memory-efficient. Instead, one can use the simplified formula given in the proof of Claim 10
to compute g(e | S) quickly, namely that

g(e | S) =
xTeM

−2
S xe

σ2 + xTeM
−1
S xe

,

where MS = Σ−1 + 1
σ2XSX

T
S . In fact, M−1

S may be stored and updated directly in each iteration using the matrix inversion
lemma so that no matrix inversion are required. Note that M−1

∅ = Σ, which is an input parameter. By the matrix inversion
lemma,

M−1
S∪e = M−1

S −
M−1
S xex

T
eM

−1
S

σ2 + xTeM
−1
S xe

,

which takes O(d2) arithmetic operations. Once M−1
S is known explicitly, computing g(e | S) is simply matrix-vector

multiplication on a fixed matrix. We found that this greatly improved the efficiency of our code.


