Per-Decision Option Discounting

A. Proof of Theorem 1

Let us first introduce some relevant notation and definitions.
Let v be an arbitrary policy over options, and ¢ : § x O —
[0, 1] a coefficient function. It will be convenient to define
the following:

o

P (s|s) = (s, 0)p™ (5']s),

P¥q(s,0) o chn“ (8'|s) Z v

s’ o’

o'|s)q(s',0).

It will also be convenient to introduce the following opera-
tors for continuation and termination:

PUAlg(s,0) = Zplf; (1= p°(s))als',0),
PP Zpss B0 2 el 15)a(s', ).
That is: ¢ (“iota”) denotes the policy over options that

maintains the current (argument) option. Let ™ denote the
matrix of 7™ for all options. Using these notations we can
rewrite the Bellman operator over options for a discount ~:

Trq= I —yPU=P)7 o™ +4PPlg). (5

We are now ready to give our proof.

Proof. In order to preserve the appealing form of the option
equations, it will be convenient to renormalize the one-step
reward model 7™ to be in terms of ~p- We do this by setting
RS and Rf’h] to be the same:

o

R2, = (I = 5p=97) 1y
= (=) = RS

and solving for 2™

°

& = (L= AT = pptt 7

The Bellman operator can be rewritten similarly to (5):
THqE R+ Plg= (I — PO =1 (o7 4 o, Prabig),
where we slightly abuse notation by writing P'2* for

Do va(s)B°(s")p™ (s']s) Yoo v(0]s")q(s,0").  Let us
now derive the fixed point of 7;\":

qg=(I—7Pt"P)7
g =PI g = 2" 4, Py
2"+ (Prﬁ“q + P(I*B)Lq)

( p(PTA 4 PO ) o

Z (PP 4 P )tz”.

(2™ + 4, P PHq)

q

So B = PIBr 4 P=A) is the corresponding one-step
operator. Let us verify that it induces the new step-discount
and termination scheme. Let £°(s") = v4(s")3°(s') +1 —
B°(s"). We have:

Bq(s,0) = (P'PH + PO (s, 0)
=S (s s>(2u<o’|s’m(s’
x 87()a(s',0') + (1= B°(s)a(s',0))

)69 v’()
—Zp s'|s)e°(s (Zulsd()

1_ﬂo( ) I
W(](S a0)>

(X ntolls)
o)+ (1= ¢°(s)a(s',0) ).

Thus, we have a new termination scheme (°(s) =
%{i)(s), and combining £° with the step-discount -y, we

get our new step discount:
K(s,0,8") = 3pl°(s") =7 (va(s)B(s") + 1
=1 = B7(s") (L = va(s)).

This implies that we have a state-option-dependent contrac-
tion factor.

xq(s',0') +
= Zp”n(s' s)L
S/

x ¢7(s")q(s'
- B°(s)

o0
n(s,0) =Eg, g, ~pre lH v(Si, 0, Sit1)

=1

o0

= Esl,sz,...~pw° [H Tp

i=1

(1—=p8°(S:)(1 - Vd(si)))]

<.

The operator 7" is a contraction if 1(s,0) < 1. This is
trivially true if v, < 1. Otherwise, if v, = 1, in order for
n(s,0) <1, weneed 1 — 3°(S;)(1 —v4(S;)) < 1 for some
S; along the trajectory, which is the same as 5°(S;)(1 —
v4(S;)) > 0 and holds if Assumption 5.2 holds: if such
an S; is reachable by 7°, is terminating in the sense that
ﬁO(Si) > 0, and vd(Si) < 1. O]

B. Proof of Lemma 1

Throughout we will refer to the minimum and maximum du-
ration of options by d? . and d? .., where d° . = denotes the

min max? min
minimum, and d¢ .. the maximum duratlon of o between

any s and s’ in J° We will also write dmm = Hllnoeo d°

II’lln’
def
dmax = MaXeeco do,,, for minimum and maximum dura-

tions across options.

Before we proceed, let us show two helper bounds.
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Lemma 3. For each option o € O:
o d?nin
(B2 Cls) e < lvallve™

Proof. For each s and ', the transition model Pg(s'|s) <
~Ya(s )7 min the minimum duration. Taking a max over the
states s’ ylelds the result. O

Lemma 4. The value function is bounded.:

Tmax 1
lgr |l < -
= 1= [lvallvp

Proof. From the definition of ¢}:, Lemma 3 and the defini-
tion of the reward model R:

I lloe = (7 — P2 Rllo
1
< R
pue— TP N
1 Tmax
S Tl 1—
since [Pl < maxacs.oco [P2(1)] ]l 0

Recall the value functions w.r.t. the exact and approximate
transition models and some policy p: gh “r- PE)IR
and q“ g g PF) !R. We will show Lemma 1 in two
steps.

1) Bounding & ;,,, in terms of the one-step error. Sim-
ilarly to Lemma 4 from (Jiang et al., 2015), we can relate the
error in the value functions due to the approximate model
to the maximum one-step error:

Lemma 5. For any policy over options .

1
~ 1= |allypm
(s) + Plaft(s,0) — qf*(s,0)] -

@ —ar

X max
s,0

Proof. Consider the evolution

Gm(8,0)

We can bound the difference between successive estimates:

= R°(s )+PO Gm—1(s,0). (6)

qu - Qm—1||oo = ||7D(9F (Qm 1— Qm—2)||oo

| A

e PECI an-1 = gzl

”’de’Ypmm ||Qm71 - Qm72||007

due to Lemma 3 (which of course still applies to the approx-
imate model.) Thus

m—1
lgm — qoll < Z lak+1 — akllo
k=0
m—1
< g1 — qolloo Z (llyallygmin )=,
k=1

Since as m — 00, ¢, = q‘f‘, we have that ||q’f‘ — qolleo <

1
i 191

to q# , and from Eq. (6) for m = 1, we have our result. [

— qo|| - Finally, since go can be initialized

2) Bounding the one-step error with the Hoeffding’s
bound. Now let us bound the one-step error in terms of
the number of samples. The following Lemma is similar to
Lemma 2 from (Jiang et al., 2015).

Lemma 6. Let I/DE’ denote the modified transition model of

an option o estimated i.i.d. from n samples, and P} the
corresponding operator w.r.t. some policy over options [i.
Let F° denote the set of possible terminating states of an
option o. We have, with probability 1 —

_ ,ydmax)w + ,ydm;n Av)

ST
2n 1)

IR+ Plap — bl < ((7{5’“‘“

where Av = max,eo (maxsego Vi (s) —mingego v{f(s))

is the maximum variation of value in terminating states, and
_ : p

W = MaXyeo Milgego Yq(s)vh(s).

Proof. Let us fix s and o, and consider a sample Y of
Zs,ﬁ;’(s’\s)v(s’), where we write v(s) = vp(s) =
>, k(0]s)gf (s, 0) throughout. Because each ]3173(5’|s) is
an average of zeros and samples of (s’ )71’,3 , where D is
the random variable corresponding to option duration, we
have:

,Yzifmax SI/Iéi;lo ,Yd(s/)v(s/) S Y S fY;)irn]n Snleaé)% ’Yd( ) (S/) .
————/ —

o o
Umin Vmax

Now let X, = R°(s) + >, ]/3?(3’\5)1)(8’). We have that:

RO(s) 9 n < Xo < RO(5) + 0]

max*

Thus the range @ = Xin — Xmax of X is:

_ ~dmin,,0 d o
a = ’Ypmmvmax - 7pmaxvmin

dmin dmax dmin
= (7p — T )Uronin + Tp (Uﬁmx - ’Ufnin) .
—_———
Ave
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Then, since ]/31\9(3’|3) is sampled i.i.d., and ¢f(s,0) is the
average of R°(s) + > ., PR(s'|s)
Hoeffding’s bound:

vh(s’), we have by the

2nt?
CL2
2nt?

=2exp | — .
< ((’ngm - ,ygmax) Hlll‘l + ,ypmm AUO) >
= Po-

Pr(|Xso —E[Xso]| >t) <2exp <—

Using the union bound we have:

0]
Pr(|X —E[X]| > ) < S| Y po < [8]|0|pmax;

where

Pmax = MaxXpo
o

5 ( 2nt? )
= z€xp | — B K 9
((,ygmln _ ,ygmax)w + ,ygnun AU)Q

in which Awv is the maximum variation of terminal val-
ues over all options, and w = max,co Mmingego y4(s)v(s).
Solving for ¢ we have our result:

T —4eXp | — - .
|S| | o | ((,-ygmm _ ,ygmax )w + ,annn A,U)Q

2[s|0] ont?

log , :
g ((ypmim — pme)w + ypmin Av)?

. 215110
t = ((,y;lmm _ ,ygmax)w + ,y mmA,U) 2n log | (l‘ ‘

O

Lemma 1 then follows from combining Lemmas 5 and 6

C. Proof of Lemma 2

Proof. We have

= Plﬁ“bql“ PH q%

= Prar — Pral, + Pral —PY g
=PLgf —gb ) + (P —PE ).

= =Pp)"H(PE =Py )dy . (N

A

qr — ¢4

Let us now bound this expression. We will start with the
inner term first. Noticing that PTP#* = PBr~,; and from

the definitions of the operators, we can expand:

A || = [I(Pr —P% )ab |l
= || Pvaats, + PO Pl — (PP
+ fyT’P(l—B)/’PIL q’yr) ‘ ‘
< ||P*(pva = yr)dly, + PUO
(wPd, —Phat) |
= || PP (ypya — V)t + pA=p)
(%P{f ¢, —wPray + v Pray. — 1 PL q%) ‘
= |[PP"(vpya — o)t + PUP
((vp — )Pl + v (Pray, —PE b )) H
< lvallv — wlllqs‘TH + (v =) IPrab, |l
+ 7| Prak, —PL ab |l
< lvallve - %III%&H + (9 — e )vpmn g ||

+7- l(Pr = P4 )b |,

where the last inequality is due to Lemma 3. Let us simplify
the first coefficient:

=l = lllvallve — v + % — ¥l
< ’Yp(l - ||'YdH> + Y% =

vallve

Solving for [|(Py — P¥ )¢ ||, and by Lemma 4, we get:

1
[(PE —PL )y || < [ (vp(1 = lIvall) +vp — ¥»
+ (v = ) gk ||
rmax
< _ min
<a 7%)2((% ¥ ) (ymin + 1)+
Yp(1 = [|7all))-

Finally, from Eq. (7) and using the bound on P} from
Lemma 3:

— ) (ymin 4 1) 4 (1 — IIWH)
1 — |lyallygme

Tmax (,Y

O

D. Proof of Proposition 1
Proof. From Eq. (7):
= (I =Pp) " (Pr =P )l -
If the inner term is zero, the bias will be zero as well:
(PR — PL g (s,0) =0,
Prab, (s,0) = Pl d4 (s,0),

gestim
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and hence:
> P (s ls)vals,s) D p(ol|s)a (s, o)
S -y P;'i(sws) S 1)a (s, 0)-
This equality can be achieved, if for each option o:
Py (s's)va(s,s') Y u(o|s' )k (s',0)
- P (51 S o)) (s',0),
P (s'|s)va(s, s") = Py (s']s), O

W(Sa 8/) =



