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Abstract

In order to solve complex problems an agent must
be able to reason over a sufficiently long hori-
zon. Temporal abstraction, commonly modeled
through options, offers the ability to reason at
many timescales, but the horizon length is still
determined by the discount factor of the under-
lying Markov Decision Process. We propose a
modification to the options framework that natu-
rally scales the agent’s horizon with option length.
We show that the proposed option-step discount
controls a bias-variance trade-off, with larger dis-
counts (counter-intuitively) leading to less estima-
tion variance.

1. Introduction
Reinforcement learning agents have to solve the problem
of reasoning about actions that improve long-term perfor-
mance. This objective can be formulated either in the
discounted setting (in which the agent optimizes the ex-
pectation of the discounted sum of rewards) or in the
average-reward setting (in which the agent optimizes the
average reward received per step over an infinite amount of
time) (Schwartz, 1993; Bertsekas & Tsitsiklis, 1996; Ma-
hadevan, 1996). Intuitively, if agents are to have a finite
lifetime (but of unknown duration), the discounted reward
framework is more appropriate. Indeed, an average reward
agent is content to wait arbitrarily long before collecting
rewards, so long as the average over the infinite horizon
is favorable. Discounting, on the other hand, causes the
agent to focus on collecting rewards early on – preferred
behavior if there is a chance of termination. Even in cases
where the average reward performance is the desired target,
it can be approximated arbitrarily well by using a discount
which approaches one (Tsitsiklis & Van Roy, 2002). We
will hence focus on the discounted setting in this paper.
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The discount factor γ itself is usually treated as something
in between a mathematical convenience and a meaningful
time horizon parameter. Indeed, the discounted return Gt =
Rt+1 + γRt+2 + γ2Rt+3 + . . . corresponds roughly to a
time horizon of 1

1−γ steps, and the convergence speed of
learning and planning algorithms is strongly related to this
quantity (Bertsekas & Tsitsiklis, 1996; Jiang et al., 2015).
While we wish for our agents to reason over long temporal
horizons, this coupling makes it challenging for that to be
efficient, and fairly low discounts are favored in practice.

Temporal abstraction is often considered key for reasoning
over long temporal horizons (Sutton et al., 1999). Indeed,
options induce reward and transition models that act as
higher-order analogues of those from the primitive-action
Markov Decision Process. However, the discount factor
remains an integral part of these models – there are in fact
clear parallels between options and multi-step temporal dif-
ference methods (Bacon & Precup, 2016; Harutyunyan et al.,
2018). As such, in the classical options framework, an op-
tion that takes one hundred steps incurs a discount of γ100

at termination, and the information about its outcome can
be significantly washed out. So, regardless of how sophisti-
cated the options are, the agent remains at the mercy of the
step-discount, and its high-level plan is unlikely to benefit
from the foresight brought by the options. The temporal
abstraction in the behavior offers little additional temporal
representation power in the model or the value function. The
aim of this work is to overcome this limitation. In particular:

• We generalize the options framework to better express
temporal abstraction. Namely, we (1) decouple the
step-discounts in the reward and transition models, and
(2) introduce per-decision discounting that augments
the transition model irrespectively of duration. This
simple generalization allows for options to extend the
agent’s horizon, a property which can be thought of as
“time dilation”.

• We analyze the properties of planning with the new
framework, and devise novel bias-variance bounds that
apply to the classical options framework as a special
case. Notably, we show that larger discounts in the
transition model can reduce the variance of estimating
values, which is contrary to the familiar intuitions about
e.g. multi-step returns.
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• We verify the shape of the bounds empirically on a
classical task. Our results imply that in addition to
extending the agent’s horizon, time dilation can be a
tool for better estimation of value functions.

The paper is organized as follows. After providing back-
ground and relevant notation, in Section 3 we motivate
and in Section 4 formally introduce time dilation. In Sec-
tion 5 we begin our analysis by deriving the equivalent
step-discounted problem and providing a convergence re-
sult. Section 6 analyzes the bias-variance trade-off of the
new framework in the approximate dynamic programming
setting. All proofs from these sections are in the appendix.
Finally, Section 7 provides supporting experimental results.

2. Background
A Markov Decision Process (MDP) is a tuple M =
(S,A, p, r), where S is the set of states, A the set of
discrete actions; p : S × A × S → [0, 1] represents
the environment dynamics, where p(s′|s, a) is the prob-
ability of transitioning to state s′ when a is taken in s;
r : S × A → [−rmax, rmax] is the reward function. A
policy π : S × A → [0, 1] induces a reward Markov
chain given by pπ(s′|s) =

∑
a∈A π(a|s)p(s′|s, a), and

rπ(s) =
∑
a∈A π(a|s)r(s, a).

The general goal of a reinforcement learning (RL) agent
is to find a policy that optimizes a cumulative measure
of reward (Sutton & Barto, 2017). One standard way to
define such a criterion is by using a scalar discount factor
γ ∈ (0, 1], which depreciates rewards received further in
the future. More formally, the agent will aim to optimize:

Eπ

[ ∞∑
i=0

γirπ(St+i)|St = s

]
,∀s ∈ S

Let q : S×A→ R be a generic action-value (or Q-) function
and define the one-step transition operator:

Pπq(s, a)
def
=
∑
s′∈S

∑
a′∈A

p(s′|s, a)π(a′|s′)q(s′, a′).

Using operator notation, the value of policy π under a dis-
count γ is given by: qπγ

def
=
∑∞
t=0 γ

t(Pπ)tr = r+γPπqπγ =
(I−γPπ)−1r,where the inverse always exists if γ < 1. The
corresponding one-step Bellman operator (Bellman, 1957)
can be applied to any q:

T πq(s, a)
def
= r(s, a) + γPπq(s, a),

and its repeated applications are guaranteed to produce
its fixed point qπγ (Puterman, 1994). Policy evaluation
is concerned with estimating this quantity for a fixed π,
while in control we seek the optimal policy π∗γ , whose

value q∗γ = maxπ q
π
γ . The state value function averages

qπγ w.r.t. the policy: vπγ (s) =
∑
a π(a|s)qπγ (s, a), and

v∗γ = maxπ v
π
γ .

The target of learning is often intended to be w.r.t. some
very long horizon, whose corresponding discount factor we
denote by γeval. Using a large discount factor can be ineffi-
cient during value function learning, and can pose problems
during planning with approximate models (e.g. (Jiang et al.,
2015; Lehnert et al., 2018)). Hence, in practice, γ used
during learning is often treated as a parameter with the hope
that it will lead to finding a good policy w.r.t. γeval. Sim-
ilarly to the notions from Jiang et al. (2015) and Lehnert
et al. (2018), we say that a discount γ is able to represent a
policy w.r.t. γ′ > γ if π∗γ = π∗γ′ .

The average-reward formulation aims to find the policy that
optimizes the following criterion:

max
π

Eπ

[
lim
T→∞

T∑
i=0

rπ(Si)

]
.

Tsitsiklis & Van Roy (2002) showed that both the expected
and the transient behavior of the average reward criterion
can be approximated arbitrarily well by a large enough γ.

An option o is a tuple (Io, βo, πo), with Io ⊆ S the initia-
tion set,1 πo the internal option policy, and βo : S→ [0, 1]
the termination condition, with βo(s) denoting the prob-
ability of option o terminating upon arriving in s (Sutton
et al., 1999). Given a discount factor γ, an option o has an
associated semi-MDP (Puterman, 1994) model given by:

P oγ (s′|s) def
= ED:s→s′|o

[
γDISt+D=s′ |St = s

]
= γpπ

o

(s′|s)βo(s′)

+ γ
∑
s′′

pπ
o

(s′′|s)(1− βo(s′′))P oγ (s′′|s′),

Roγ(s)
def
= ED:s|o

[
D−1∑
i=0

γirπ
o

(St+i)|St = s

]
= rπ

o

(s) + γ
∑
s′

pπ
o

(s′|s)(1− βo(s′))Roγ(s′),

where ED:s|o [·] and ED:s→s′|o [·] are the expectations of
the option o’s duration D from state s and the travel time
between state s and s′ in which o terminates, respectively,
and where we index relevant quantities with the appropriate
discount factor to make the dependence clear. For a finite
set of options, we denote the |S| × |O| matrix collecting all
Roγ by Rγ .

In the usual call-and-return model of option execution, an
option is run until completion (according to its termination
condition), upon which a new option choice is made (Precup

1For simplicity, we assume that Io = S, ∀o ∈ O.
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et al., 1998). This suggests the following analogues of Pπ
and T π for a policy over options µ and discount factor γ:

Pµγ q(s, o)
def
=
∑
s′

P oγ (s′|s)
∑
o′

µ(o′|s′)q(s′, o′),

T µγ q(s, o)
def
= Roγ(s) + Pµγ q(s, o). (1)

Finally, we will write ‖ · ‖ to denote the L∞ norm.

3. Motivation
In order to further understand the goal of our approach,
consider an agent placed in a deterministic environment
needing to choose between a closer, worse reward of z and a
farther, better reward of Z > z, with all other rewards being
zero. The rewarding states sz and sZ could be terminal goal
states, or could in fact allow the agent to continue on some
future path. Now, consider the role of the discount factor
γ in this decision. In order for the agent to pick the higher
reward, it would need to be the case that γKZ > γkz,where
K and k are the distances from sZ and sz to the agent’s

location. Thus, there is a minimum value of γ >
(
z
Z

) 1
K−k

required for the agent to display foresight (see Figure 1 for
an illustration). The average-reward framework can fix this
problem if the environment is a continuing task. However, if
the goal states are absorbing (the agent stays in these states
forever once it reaches them), then in fact all policies have
an average reward of 0 and there is no useful signal for the
agent to optimize. This illustrates that considering average
rewards does not handle the trade-off of the two subgoals
correctly in all cases.

Now, consider the same task, but with the choice being be-
tween two options (instead of primitive actions), going to
each of the respective goals. Ideally, scaling the primitive
time step should allow the agent to consistently exhibit fore-
sight and choose the larger reward (since we can assume
the primitive time step was a somewhat arbitrary choice
anyway). However, the agent will only keep its preference if
P o1
γ (sZ |s0)Z > P o2

γ (sz|s0)z, which still entirely depends
on γ.2 Hence, the policy over options remains tied criti-
cally to the magnitude of the discount factor applied at the
primitive time step.

4. Options with Time Dilation
The example from the previous section highlights the fact
that the option transition model is responsible for the effec-
tive discount. This leads us to propose two modifications to
the classical transition model, aimed to ensure that options

2To see this, note that γdmax ≤ ‖P oγ ‖ ≤ γdmin , where dmin

and dmax denote minimum and maximum duration of an option.

If γdmax <
(
z
Z

) 1
K−k , the agent will flip its choice of option.

Figure 1. The value of the actions that lead towards the two goals
plotted against the timestep distance towards these goals. The
lines plot the values of the left and right actions in the states to
the left and to the right of the agent, respectively, and the colors
correspond to two different discounts. The preferred action in the
current state thus depends on the discount: the red discounting
scheme of γ = 0.95 is too short-sighted to prefer the correct goal
sZ . Note that for any discount γ < 1, the distances k and K
can be proportionally increased (to k +H and K +H for some
H <∞) for γ to be insufficient to capture the correct ordering.

provide real temporal abstraction, which diminishes or elim-
inates completely the dependence on the primitive action
time step:

1. We allow “time dilation” in the transitions by using a
transition step-discount γop that is larger than the reward
step-discount γor , thus weakening the dependence on
option duration.

2. We add a per-decision state-dependent discount γod ,
thus reinforcing option-level reasoning over primitive-
action policies.

The inner γor has exactly the same interpretation as before,
but locally for each option. But when reasoning at the higher
level, the precise duration of each option matters less, and so
γop > γor , but the number of decisions steps among options
becomes relevant, and so γod need not be 1. We denote the
set of option discounts by Γo = {γor , γop , γod}. The new
option transition model is then given by:

P oΓ(s′|s) def
= γod(s, s′)ED:s→s′|o

[
(γop)DISt+D=s′ |St = s

]
.

Clearly, P oΓ = P oγ and consistent with Roγr if γop = γor =
γ and γod = I . Figure 2 plots a simple instance of the
coefficients induced by this manner of discounting on a fixed
stream of rewards. The two-timescale “spiky” structure is
due to the discrepancy between γop and γor : the returns within
an option are still discounted with γor , but upon termination,
γop is invoked.

We will show that γop imposes a bias-variance trade-off
on the complexity of estimating the transition model and
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Figure 2. The discounting coefficient applied to the reward at time
t under time dilation for various constant values of Γ and γp and
for random option durations (drawn from a Poisson distribution
with λ = 10). The spikes occur because the reward model (still
discounted with γ) controls the discounting inside the option, and
the transition model that at option decision points.

the value function, where the bias is w.r.t. a consistent
discounting scheme γop = γor . In the extreme, if γop = 1, all
of the variance of a given transition s, s′ associated with the
random variableD that determines the number of steps from
s to s′ is removed. This comes at the cost of introducing
bias in terms of the difference between γor and γop . The
additional option-level discount γod can help reduce this bias.
In fact, we show that there is a value of γod for which the
bias is zero, which occurs when γod captures P o in a certain
sense.

The new option model allows one to effectively redefine
the primitive resolution of the agent, simply by considering
γop = 1. This in turn provides options with the power to
represent policies over horizons that would otherwise be
too large to capture with a fixed step-discount. Indeed,
consider the example from above but with γop = 1. Then,
‖P oΓ‖ = ‖γod‖ becomes independent of the step-discount,
and able to represent the same policy over options regardless
of their length. This is a key motivation of our approach.

For notational simplicity, in the following we will take Γo to
be the same for all options, and denote the relevant discounts
simply by γr, γp and γd. All of the results trivially apply in
the general case. Furthermore, instead of the full γd matrix,
it is more practical to consider a diagonal γd that specifies
an option-level discount that only depends on the arrival
state s′, regardless of where the option started.3 This form
of γod lets us rewrite P oΓ in an intuitive way:

P oΓ(s′|s) = γd(s
′)βo(s′)

(
γpp

πo(s′|s)+

γ2
p

∑
s′′

pπ
o

(s′′|s)(1− βo(s′′))(pπ
o

(s′|s′′) + . . .)
)
.

3The same can be achieved by considering a full row-wise con-
stant matrix, but the diagonal form is more efficient and commonly
used, see e.g. (White, 2017; Yu & Bertsekas, 2012).

This equation makes it evident that γd controls the discount-
ing over the agent’s decision points (i.e. where the agent
chooses an option), while γp is the intra-option discount.
We return to the full matrix view briefly in Section 6.2.

5. Convergence Analysis
In this section we will derive an equivalence from the model
we propose to a step-discounted setting with consistent op-
tions (i.e. ones with γp = γr), and use it to prove expected
convergence under mild conditions. Our analysis both here
and in the next section is for policy evaluation given a fixed
policy over options µ, but our experiments test the control
setting, and illustrate the insights found in the theory. The
new option operators that we will work with are given by:

PµΓq(s, o) =
∑
s′

P oΓ(s′|s)
∑
o′

µ(o′|s′)q(s′, o′),

T µΓ q(s, o)
def
= Roγr (s) + PµΓq(s, o). (2)

with Roγr defined as before. We can show that T µΓ is a
contraction (i.e. converges asymptotically), so long as a
terminating state with a sub-unitary discount is reachable.

Assumption 5.1. Options are finite: dmax <∞.

This assumption is standard, and can be attained by stop-
ping options after some maximum number of steps, since
all option theory results hold for such semi-Markov termi-
nations (Sutton et al., 1999). We additionally require that
there is a chance for an option to terminate in a state whose
discount is less than one.

Assumption 5.2. For all o ∈ O and s ∈ S, ∃s′ that is
reachable by πo, s.t. βo(s′) > 0 and γod(s′) < 1, or γp < 1.

The following theorem proves that T µΓ is a contraction,
and derives the equivalent problem with a modified reward
model, termination scheme, and a generalized step-discount.

Theorem 1. If Assumptions 5.1 and 5.2 hold, the operator
T µΓ from Eq. (2) is a contraction. The fixed point of T µΓ is
equivalent to that of a κ-discounted options operator T µκ
from Eq. (1) for

κ(s, o, s′) = γp(1− βo(s′)(1− γd(s′))) ≤ γp,

w.r.t. modified reward and termination functions:

zπ
o

= (I − γpp(1−β)πo)(I − γrp(1−β)πo)−1rπ
o

ζo(s′) =
γd(s

′)βo(s′)

γd(s′)βo(s′) + 1− βo(s′)
,

where p(1−β)πo(s′|s) def
= (1− βo(s′))pπo(s′|s).

The proof is in Appendix A. This theorem implies that the
step discount is controlled by γd, γp, but also βo. This
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is appropriate, since βo controls the inner timescale of an
option. For example, if γp = 1 and γd(s′) = 0 for some s′,
the discount at s′ is 1− βo(s′) exactly.

On the other hand, the value of γd directly impacts the new,
implicitly induced termination scheme. For example, if
γd(s

′) = 0 and no bootstrapping occurs, then ζ accounts
for it by not permitting any termination. In general, any
γd(s

′) < 1 implies ζo(s′) < βo(s′), and hence the corre-
sponding induced options are longer. This highlights the
fact that our approach yields more effective temporal ab-
straction.

6. The Bias-Variance Tradeoff in the Option
Transition Model

We will now analyze the computational effects of time di-
lation. We will show that a larger discount in the transition
model can reduce estimation variance, at the cost of in-
troducing bias, as compared to the consistent discounting
scheme. The inter-option discount γd then helps control this
bias, with a particular shape of γd removing it altogether.

More specifically, we will show that varying γ in Pµγ from
Eq. (1), and more generally replacing Pµγr with PµΓ from
Eq. (2) induces a novel bias-variance tradeoff on the ap-
proximation error when PµΓ is estimated from samples.
Let qµγr = (I − Pµγr )

−1Rγr , q
µ
Γ = (I − PµΓ )−1Rγr , and

qµ
Γ̂

= (I − P̂µΓ )−1Rγr , where P̂µΓ is the approximate transi-
tion model estimated from samples. The approximate loss
has the following form:

E = ‖qµ
Γ̂
− qµγr‖ = ‖qµ

Γ̂
− qµΓ + qµΓ − q

µ
γr‖

≤ ‖qµ
Γ̂
− qµΓ‖︸ ︷︷ ︸
Eestim

+ ‖qµΓ − q
µ
γr‖︸ ︷︷ ︸

Etarg

, (3)

The first term Eestim is the estimation error that contains
the variance, while the second term Etarg is the bias in the
targets. We analyze them separately below.

6.1. Variance

It is widely known that larger discounts, like larger eligi-
bility traces, incur more variance (Jiang et al., 2015; Petrik
& Scherrer, 2009; Kearns & Singh, 2000). In the case of
options, somewhat counter-intuitively, larger transition dis-
counts γp may incur less estimation variance, when they are
sufficiently large. This becomes evident when considering
γp = 1, for which the variance in γDp due to the random
length of the trajectory is entirely removed. The reason
this seems at odds with our knowledge of the properties of
e.g. λ-returns is because the variance incurred by random
option duration is not present there. The following result
formalizes this intuition and hints at the type of problems in
which it is particularly relevant:

Figure 3. The numerator of Eq. (4) plotted against γp for ∆v = 0,
w = 1, dmax = 10 and different values of dmin. We see that there
is a decrease in variance near γp = 1. Note that the lower values
of γp that correspond to the other low-variance region may not be
sufficient to represent complex policies.

Lemma 1. Let dmin and dmax be the minimum and maxi-
mum option durations across the option set O. Let Fo denote
the set of possible terminating states of an option o. Let
each P oΓ be estimated from n i.i.d. samples, and let Roγr be
given. Then, for any policy µ, with probability 1− δ:

Eestim = ‖qµ
Γ̂
− qµΓ‖

≤
(γdmin
p − γdmax

p )w + γdmin
p ∆v

1− ‖γd‖γdmin
p

√
1

2n
log

2|S||O|
δ

, (4)

where

∆v = max
o∈O

(
max
s∈Fo

vµΓ(s)− min
s∈Fo

vµΓ(s)
)

is the maximum variation of value in terminating states, and
w = maxo∈O mins∈Fo γd(s)v

µ
Γ(s).

The lemma is proven in Appendix B. Intuitively, ∆v is a
measure of variability of an option’s qualitative outcome,
while w is a bound on that outcome together with its asso-
ciated discount. The shape of the bound depends on the
relationship between these two quantities. In particular, if
∆v, the variation in the values of final states, is not too large,
then Eestim is proportional to γdmin

p − γdmax
p , and monoton-

ically decreases with γp when γp is large (see Figure 3 for
example shapes). We will observe this behavior empirically
on a control task. This class of options corresponds to the
typical “goal-directed” options that terminate in a handful
of similar states. On the other hand if ∆v is large, heavier
discounting is needed to account for the difference, and
accounting for option duration becomes more important.

6.2. Bias

Now, let us turn to the error Etarg incurred by the discrep-
ancy in the targets.

Lemma 2. Let dmin and dmax be the minimum and max-
imum option durations across the option set O. Let µ be
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a policy over options and consider the difference in the
value of µ w.r.t. the option models {(Roγr , P

o
γr )}o∈O and

{(Roγr , P
o
Γ)}o∈O. We have:

Etarg = ‖qµΓ − q
µ
γr‖∞

≤
rmax

(
(γp − γr)(γdmin

p + 1) + γp(1− ‖γd‖)
)

(1− γr)2(1− ‖γd‖γdmin
p )

.

The lemma is proven in Appendix C. Consider the second
factor in the numerator of the bound. It is composed of
two terms, one that reflects the difference between γp and
γr, and another additive term that has to do with the inter-
option discount γd. If ‖γd‖ = 1, and there is no inter-option
discounting, this term vanishes, and the error reduces to
that incurred by the difference in the discounts. Otherwise,
there is some bias introduced by ‖γd‖ 6= 1, and some bias
introduced by γp 6= γr. Even though the worst-case bound
is additive, these biases can sometimes be “in opposite direc-
tions”, and reduce the overall error when compared to either
one in isolation. In fact, there is a value of γd that reduces
bias all the way to zero, even if γp 6= γr. The following
proposition derives a sufficient condition for this (proof in
Appendix D).

Proposition 1. If γod(s, s′) =
P oγr (s′|s)
P oγp (s′|s) , ∀s, s′ ∈ S, ∀o ∈ O,

there is no bias in the value function, for any γp. That is:
qµΓ = qµγr for any policy µ.

This result suggests an interpretation of γod as a particular
importance sampling ratio of the two option models.4 While
it is unlikely to be able to obtain it exactly, even an approxi-
mate γod may help balance the bias (Munos et al., 2016). We
leave a precise characterization of the general case of this
for the future, Finally, from Eq. (3) and Lemmas 1 and 2,
we have our result:
Theorem 2. Let dmin and dmax be the minimum and maxi-
mum option durations across the option set O. Let Fo denote
the set of possible terminating states of an option o. Let µ
be a policy over options, and let each P oΓ be estimated from
n i.i.d. samples. Then, with probability 1− δ, the error in
the estimate qµ

Γ̂
is bounded by:

E = ‖qµ
Γ̂
− qµγr‖

≤
(γdmin
p − γdmax

p )w + γdmin
p ∆v

1− ‖γd‖γdmin
p

√
1

2n
log

2|S||O|
δ︸ ︷︷ ︸

variance

+ rmax

(γp − γr)(γdmin
p + 1) + γp(1− ‖γd‖)

(1− γr)2(1− ‖γd‖γdmin
p )︸ ︷︷ ︸

bias

4 Note that in order for the form of γod from this proposition
to hold, γod must be a full (rather than diagonal) matrix, whose
value is closely related to that of the option transition model, e.g.
if γp = 1, γod = P oγr exactly.

g

S

G

Figure 4. The domains used in our experiments. Left Four Rooms.
The agent starts in the top left room, and aims to navigate to G1

via options that navigate to hallways. The option policies are ε-soft
and extremely noisy with ε = 0.5. Right Growing Gridworld. The
agent’s task is to get from the start state S to the goal G. There
is another distractor goal g with a smaller reward. Bottom Chain.
The goal is to collect as much reward as possible in a limited time,
by avoiding the distractor reward on the left, and pursuing the
sequence of smaller rewards instead.

where

∆v = max
o∈O

(
max
s∈Fo

vµΓ(s)− min
s∈Fo

vµΓ(s)
)

is the maximum variation of value in terminating states, and
w = maxo∈O mins∈Fo γd(s)v

µ
Γ(s).

7. Experiments
We illustrate empirically the key ideas of this paper:

1. the bias-variance tradeoff obtained in Theorem 2; and

2. the ability of time dilation to extend the agent’s horizon
and preserve far-sighted policies, irrespectively of the
size of the environment;

Our approximate planning setting is similar to that described
by Jiang et al. (2015). Following that work, and since the
reward model is unaffected by our proposal, we do not
estimate the reward model in these experiments, and instead
use its true value (which can be computed exactly in these
tasks). Finally, in 7.3, we evaluate the learning performance
on an illustrative task with characteristic properties.

7.1. Bias-Variance

We investigate whether the analytical bias-variance tradeoff
can be observed in practice in the control setting on the
classical Four Rooms domain (Sutton et al., 1999). Here,
the agent aims to navigate to a goal location via options
that navigate from inside of each room to its hallways (see
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Figure 5. The certainty equivalence loss − 1
|S|
∑
s v
∗
Γ̂
(s) as a func-

tion of γp, for different values of γd (lower is better). The reward
model is known, the transition model is estimated fromN samples,
and v∗

Γ̂
is obtained from solving the corresponding MDP. Average

of 100 independent runs. Notice the similarity with Fig. 3, which
diminishes as N increases, since the effects of the variance then
diminish, while the large error for small γ-s is due to a large bias.
Note the log scale, where the value at 1.0 is biased to be finite.

Fig. 4: Left). The reward is zero everywhere, except for the
goal, where it is 10. To evaluate the effects of varied option
duration, we add ε-noise to the typically deterministic option
policies. That is: an option takes an action recommended
by its original πo w.p. 1 − ε, and a random action w.p. ε.
To obtain a clear picture, we consider a very noisy case of
ε = 0.5.

For each option o, and for each state s ∈ Io, we sample N
trajectories to obtain an estimate P̂ oΓ of P oΓ . We then perform
policy iteration w.r.t. the approximate models P̂ oΓ and the
true reward models Roγr to obtain the approximate optimal
policy π∗

Γ̂
. We then report the certainty equivalence (CE)

loss − 1
|S|
∑
s∈S v

∗
Γ̂
(s) for the value of this π∗

Γ̂
. See Fig. 5

for the results. Notice how the loss curves mimic the bound
on the variance term from Lemma 1 closely for reasonably
high γp, while the bias term dominates the performance
of the low γp-s. Note that because options terminate at
exactly one state (the hallway), ∆v is zero, and the variance
is entirely eliminated at γp = 1.

7.2. Horizon Invariance

Recall the scenario described in Sec. 3. We simulate an
experiment that mimics this scenario and observe that our
intuitions hold in practice numerically. In particular, we
consider a simple Growing Gridworld task (Fig. 4: Right).

Figure 6. The certainty equivalence gain 1
|S|
∑
s v(s) as a function

of the grid size (higher is better). The value function v is the value
w.r.t. a high γeval of the optimal policies w.r.t. Left the exact
model P oΓ Right the approximate model P̂ oΓ . The shaded area
denotes standard deviation. In both cases the performance of the
variant γp < 1 deteriorates with the size of the grid, while the
variant with γp = 1, γd < 1 is indifferent to the size of the grid.
Note that this pattern is irrespective of the chosen value of γp and
would occur for some grid size for any γp.

There are two terminal states: g with a smaller reward (of
1) and G with a larger reward (of 2). The preference of the
agent between them is entirely determined by its discount
factor γp. As before, we estimate P̂ oΓ from N samples, and
obtain π∗

Γ̂
by policy iteration. We take the value of N to

be 2 here. For the estimation to be less trivial, we consider
ε-soft option policies, as described above, with ε = 0.05.
We then consider both the value vπ̂∗γeval of the optimal policy
π∗

Γ̂
w.r.t. approximate model, and the value vπ

∗

γeval
of the

optimal policy π∗Γ w.r.t. the true model P oΓ , both evaluated
with a very high γeval = 1− 10−8.

We compare two variants: one with γp < 1, γd = 1 (cor-
responding to the classical option model), and the other
with γp = 1, γd < 1 (exploiting time dilation). The re-
ward model is computed with the same value of γr < 1 for
both cases. Figure 6 reports the certainty equivalence gain
1
|S|
∑
s v(s) for both the exact and approximate optimal val-

ues of these variants. The same pattern is induced in both
cases, and the values of the optimal policies diminish, as
the size of the grid gets larger. Time dilation on the other
hand allows the options to maintain the same performance
regardless of the size of the grid.

7.3. Learning Performance

We now study the learning performance of an agent in re-
lation to time dilation. We use a simple illustrative task
imbued with the realistic properties that motivated our pro-
posal: the chain given in Fig. 4 (bottom). The agent must
choose between greedily pursuing a large reward R or a se-
quence of smaller rewards, whose sum is larger than R. The
setting is continuing, but there is a small chance of death
which doesn’t allow for collecting all the rewards. There is
a variable amount of steps between the rewards, and each
reward is only collectible once. The agent has two options,
one for each movement direction, which terminate when a
reward is reached. At each primitive time step, there is zero-
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Figure 7. Top: Cumulative performance (total sum of undis-
counted reward collected during training) for all of the γp, γr set-
tings, plotted with linear interpolation. Bottom: Learning curves
for each setting showing the mean undiscounted return per episode
(with colors corresponding to the heatmap above).

mean reward-noise with parameterized standard deviation
pn, and a “stickiness” probability ps, with which the agent
stays in place.

We use Q-learning over options with call-and-return execu-
tion. When an option terminates after D steps, it receives a
γr-discounted D-step return, and bootstraps with a discount
of γdγDp . Fig. 7 summarizes the results across a range of
γr and γp for two settings of the task: noise-free and with
noise as described above.5 Qualitatively, there are three
levels of performance: convergence to the optimal policy π∗r
(red), convergence to the suboptimal policy π∗R (blue), and
slower convergence to π∗r (green). In the noise-free case, we
observe a stark effect of the importance of the γr, γp rela-
tionship. When γp > γr (i.e. with time dilation), the agent
is able to quickly discover π∗r , even for very low values of
γr. Reward noise has the effect of yielding intermediate
performance for more settings (i.e. a larger green region).
In this more challenging case, settings with intermediate val-
ues of γr and high values of γp yield the best performance,
showcasing the effectiveness of time dilation.

8. Related Work
The analysis we provided is closely related to that by Jiang
et al. (2015), and earlier results along the same lines of Petrik
& Scherrer (2009). In both works, the authors consider the

5The per-decision γd in this task does not affect the results
qualitatively, and we report results with γd = 1.

tradeoff on estimation variance vs target bias in the quality
of the approximate planning solution, due to using a lower
discount factor. Jiang et al. (2015) show that it is beneficial
to use a lower discount when the number of samples used to
estimate the transition model is small. These implications
carry over to γd in the context of options, while γp controls a
more subtle tradeoff that has to do with the random duration
of options.

Petrik & Scherrer (2009) focus on the bias aspect, and show
that in some problems the bias due to using a lower discount
can be lower than predicted by the worst case, especially
in problems whose rewards are sparse. It is interesting to
identify a similar structure for options.

General transition-based discounting is introduced by White
(2017), where it is proposed to use the discount as a for-
malism for reinforcement learning tasks, and shown that
each option then represents a task, since the termination
condition together with the step discount incurs a transition
discount. We alter the option transition model, and hence
incur option-transition discounts.

9. Discussion
We proposed to provide options with autonomy over their
own timescale, by introducing time dilation into the option
transition model. We analyzed the bias-variance incurred by
doing so, and verified the analytical predictions empirically.
These insights are immediately applicable to any setting
using the options framework.

While our experiments are in the control setting, the analysis
applies to a fixed policy µ. In order to extend Lemma 1 to
apply to all policies, we need to consider the relationship
of the number of optimal policies under a given model
|MΓ| to γd and γp. Jiang et al. (2015) give an interesting
interpretation of the discount as a policy complexity control
parameter, and show that this quantity grows monotonically
with γ. This analysis is trickier with options, due to there
being two parameters γd and γp controlling the discount.

This work offers a formal foundation, from which there are
many possible future directions. Learning the appropriate
discount parameters for the given set of options, or even
as a way to discover options, is the obvious next step. The
non-homogeneous discounting structure may act similarly
to a deliberation cost (Harb et al., 2018) and encourage
non-trivial option discovery. On the other hand, the horizon
invariance property lends itself well to the transfer setting,
which is where hierarchical methods are most appropriate.
Namely, because our proposal removes the strict depen-
dencies on the primitive timescale, it may be possible to
successively transfer option models and policies learned on
smaller instances of a task to larger instances of the same
task, as a form of scaffolding.
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