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Proof of Proposition 1
First note that we can define cf equivalently as cf =
maxn−1l=1 Cl where

Cl = max
(S,T ,i)∈Xl

fi(T )/fi(S), (1)

and Xl = {(S, T , i)|S ⊆ T ⊂ X , i ∈ X\T , |T \S| = l}.
Now, let S ⊂ T and T \S = {j1, . . . , jr}. Then,

f(T )− f(S) = f(S ∪ {j1, . . . , jr})− f(S)
= fj1(S) + fj2(S ∪ {j1}) + . . .

+ fjr (S ∪ {j1, . . . , jr−1}). (2)

Applying (1) yields

f(T )− f(S) ≤ fj1(S) + C1fj2(S) + · · ·+ Cr−1fjr (S)

= fj1(S) +
r−1∑
l=1

Clfjt(S).

(3)
Note that (3) is invariant to the ordering of elements in
T \S . In fact, it is straightforward to see that given ordering
{j1, . . . , jr}, one can choose a set Q = {P1, . . . ,Pr} with
r permutations – e.g., by defining the right circular-shift
operator Pt({j1, . . . , jr}) = {jr−t+1, . . . , j1, . . . } for 1 ≤
t ≤ r – such that Pp(j) 6= Pq(j) for p 6= q and ∀j ∈ T \S.
Hence, (3) holds for r such permutations. Summing all of
these r inequalities we obtain

f(T )− f(S) ≤ 1

r

(
1 +

r−1∑
l=1

Cl

) ∑
j∈T \S

fj(S)

≤ 1

r
(1 + (r − 1)cf )

∑
j∈T \S

fj(S).
(4)

Next, we prove the second inequality. Note that
we can define εf = maxn−1l=1 εl where εl =
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max(S,T ,i)∈Xl
fi(T )− fi(S). Using a similar argument

as the one that we used for cf , for any S ⊂ T and
T \S = {j1, . . . , jr}, it holds that

f(T )− f(S) ≤
r−1∑
l=1

εl +
∑
j∈T \S

fj(S)

≤ (r − 1)εf +
∑
j∈T \S

fj(S),
(5)

which completes the proof.

Proof of Proposition 2
The proof follows the classical proof of greedy maximiza-
tion of submodular functions given in (Nemhauser et al.,
1978). We first prove the performance bound stated in
terms of cf . Consider Si, the set generated at the end
of the ith iteration of the greedy algorithm and assume
|S?\S(i)

t | = r ≤ k. Employing Proposition 1 with S = Si
and T = S? ∪ Si, and using monotonicity of f yields

f(S?)− f(Si)
1
r (1 + (r − 1)cf )

≤ f(S? ∪ Si)− f(Si)
1
r (1 + (r − 1)cf )

≤
∑

j∈S?\Si

fj(Si)

≤ r(f(Si+1)− f(Si)),

(6)

where we use the fact that the greedy algorithm selects
the element with the maximum marginal gain in each it-
eration. It is easy to verify, e.g., by taking the derivative,
that 1

r (1 + (r − 1)cf ) is decreasing (increasing) with re-
spect to r if cf < 1 (cf > 1). Let c = max{cf , 1}. Then
1
r (1 + (r − 1)Cmax) ≤ c. Therefore, using the fact that
r ≤ k we get

f(S?)− f(Si) ≤ ck(f(Si+1)− f(Si)). (7)

By induction and due to the fact that f(∅) = 0 we obtain

f(Sg) ≥

(
1−

(
1− 1

kc

)k)
f(S?) ≥

(
1− e− 1

c

)
f(S?),

(8)
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where we use the fact that (1 + x)y ≤ exy for y > 0.
The proof of second inequality is almost identical except
we employ the second result of Proposition 1 to begin the
proof.

Centering θ in Quadratic Models
In (19), defining θ̃ = θ − E[θ] yields

yi =
1

2
(θ̃ + E[θ])>Xi(θ̃ + E[θ]) + z>i (θ̃ + E[θ]) + νi

=
1

2
θ̃
>

Xiθ̃ +
1

2
(Xi E[θ] + X>i E[θ] + 2zi)

>θ̃

+
1

2
E[θ]>Xi E[θ] + νi.

(9)
Thus, we obtain a new quadratic model ỹi = 1

2 θ̃
>

Xiθ̃ +

z̃i
>θ̃ + νi with zero-mean unknown parameters θ̃, where

ỹi = yi − 1
2 E[θ]

>Xi E[θ], and z̃i = 1
2 (Xi E[θ] +

X>i E[θ] + 2zi).

Proof of Theorem 2
Let qθ(Θ) = pθ,yS (Θ;y) denote the posterior distribu-
tion of θ given yS , ΓS = diag({σ2

i }i∈S) denote the noise
covariance matrix Cov(νS), and define

µS = vec({1
2
θ>Xiθ + z>i θ}i∈S).

Then, the Van Trees’ bound is found as

B−1S = EyS ,θ[(∇Θ log qθ(Θ))(∇Θ log qθ(Θ))>]

= EyS ,θ[(∇Θ log pyS |θ(y;Θ)pθ(Θ))

(∇Θ log pyS |θ(y;Θ)pθ(Θ))>]

= EyS ,θ[(∇Θ log pyS |θ(y;Θ))

(∇Θ log pyS |θ(y;Θ))>] + Ix,

(10)

where

Ix = EyS ,θ

[
(∇Θ log pθ(Θ))(∇Θ log pθ(Θ))>

]
is the prior Fisher information on θ (e.g., if pθ(Θ) =
N (0,P) then Ix = P−1). Note that the conditional distri-
bution pyS |θ(y;Θ) is normal N (µθ,Γ). Therefore,

∇Θ log pyS |θ(y;Θ) = −(∇ΘµS)Γ
−1
S (yS − µS), (11)

where [∇ΘµS ]i = Xiθ + zi. Using this result we obtain

B−1S = EyS ,θ[(∇ΘµS)Γ
−1
S (yS − µS)

(yS − µS)
>Γ−1S (∇ΘµS)

>] + Ix
(a)
= EyS ,θ[EyS |θ[(∇ΘµS)Γ

−1
S (yS − µS)

(yS − µS)
>Γ−1S (∇ΘµS)

>]] + Ix

= EyS ,θ[(∇ΘµS)Γ
−1
S EyS |θ

[
(yS − µS)(yS − µS)

>]
Γ−1S (∇ΘµS)

>] + Ix
(b)
= EyS ,θ

[
(∇ΘµS)Γ

−1
S ΓSΓ

−1
S (∇ΘµS)

>]+ Ix

= EyS ,θ

[
(∇ΘµS)Γ

−1
S (∇ΘµS)

>]+ Ix

= EyS ,θ

[∑
i∈S

1

σ2
i

(Xiθ + zi)(Xiθ + zi)
>

]
+ Ix

=
∑
i∈S

1

σ2
i

(EyS ,θ

[
Xiθθ

>X>i

]
+ EyS ,θ

[
2Xiθz>i

]
+ EyS ,θ

[
ziz
>
i

]
) + Ix

=
∑
i∈S

1

σ2
i

(
XiPX>i + ziz

>
i

)
+ Ix

(12)
where to obtain (a) we use the law of total expectation, (b)
follows by the definition of covariance matrices (see (2) in
the paper), and the last equality follows since we assumed
E[θ] = 0 and Cov(θ) = E[θθ>] = P. Inverting the last
line that consists of an invertible positive definite matrix
establishes the stated results which in turn completes the
proof.

Proof of Theorem 3
The marginal gain of adding a new observation to a subset
S is

fTj (S) = Tr
(
B−1S∪{j}

)
− Tr (Ix)− Tr

(
B−1S

)
+Tr (Ix)

= Tr
(
B−1S∪{j} −B−1S

)
= Tr

(
1

σ2
j

(
XjPX>j + zjz

>
j

))
.

(13)
Therefore, the marginal gain is trace of a positive semi-
definite matrix and hence fTj (S) ≥ 0 and the function is
monotone. Furthermore, since the marginal gain does not
depend on set S it is a modular function.
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Proof of Theorem 4
Let Ij = 1

σ2
j

(
XjPX>j + zjz

>
j

)
. The marginal gain of

adding a new observation to a subset S is

fDj (S) = log det
(
B−1S∪{j}

)
− log det (Ix)− log det

(
B−1S

)
+ log det (Ix)

= log det
(
B−1S + Ij

)
− log det

(
B−1S

)
(a)
= log

detB−1S det
(
I + B

1/2
S IjB

1/2
S

)
detB−1S

= log det
(
I + B

1/2
S IjB

1/2
S

)
(b)

≥ 0,
(14)

where (a) follows from the fact that det (A + B) =
det (A) det

(
1 + A−1/2BA−1/2

)
, according to

Sylvester’s determinant identity, for any positive def-
inite matrix A and Hermitian matrix B (Bellman, 1997),
and (b) holds due to det (I + A) ≥ (1 + detA) for
any positive semi-definite matrix A. Therefore fD is
monotonically increasing.

Now consider S ⊆ T ⊂ X and j ∈ X\T . Using the
Sylvester’s determinant identity we obtain

fDj (T )/fDj (S) =
log det

(
I + B

1/2
T IjB

1/2
T

)
log det

(
I + B

1/2
S IjB

1/2
S

) ≤ 1.

(15)
Hence, cfD = max(S,T ,j)∈X̃ f

D
j (T )/fDj (S) ≤ 1 which in

turn proves submodularity of D-optimality.

Proof of Theorem 5
The marginal gain of adding a new observation to the subset
S is

fEj (S) = λmin

(
B−1S∪{j}

)
− λmin (Ix)− λmin

(
B−1S

)
+ λmin (Ix)

= λmin

(
B−1S + Ij

)
− λmin

(
B−1S

)
(a)

≥ λmin (Ij)
(16)

where (a) follows from λmin(A + B) ≥ λmin(A) +
λmin(B) according to Weyl’s inequality for two Hermitian
matrices (Bellman, 1997). The positive semi-definiteness
of Ij implies fEj (S) ≥ 0 and hence, monotonicity of fE is
established.

We now provide bounds on additive and multiplicative weak-
submodularity constants of fE(S) (Note that it can be
shown using simple examples that fE is not in general

weak submodular). Let S ⊆ T ⊂ X and j ∈ X\T .

fEj (T )/fEj (S) =
λmin

(
B−1T + Ij

)
− λmin

(
B−1T

)
λmin

(
B−1S + Ij

)
− λmin

(
B−1S

)
(b)

≤
λmin

(
B−1T

)
+ λmax (Ij)− λmin

(
B−1T

)
λmin

(
B−1S

)
+ λmin (Ij)− λmin

(
B−1S

)
≤ λmax (Ij)

λmin (Ij)
,

(17)
where (b) follows from Weyl’s inequality (Bellman, 1997).
Therefore,

cfE = max
(S,T ,j)∈X̃

fDj (T )/fDj (S) ≤ max
j∈X

λmax (Ij)

λmin (Ij)
.

(18)
For the additive weak-submodularity constant, we have

fEj (T )− fEj (S) = λmin

(
B−1T + Ij

)
− λmin

(
B−1T

)
− λmin

(
B−1S + Ij

)
+ λmin

(
B−1S

)
(c)

≤ λmax (Ij)− λmin (Ij)
(19)

where (c) follows from Weyl’s inequality. Hence,

εfE = max
(S,T ,j)∈X̃

fDj (T )− fDj (S)

≤ max
j∈X

(λmax (Ij)− λmin (Ij)) .
(20)

Proof of Theorem 6
We first prove the monotonicity. Let Ij =
1
σ2
j

(
XjPX>j + zjz

>
j

)
. For any set S and j ∈ X\S,

define

F̃S,j = Ix +
∑
i∈S

Ii + σ2
j Ij = FS + σ2

j Ij , (21)

where both F̃S,j and FS are invertible and positive definite
(PSD) matrices. Using the matrix inversion lemma (Bell-
man, 1997) as well as some algebraic simplifications, we
obtain an expression for the marginal gain according to

fAj (S) =
z>j F̃−2S,jzj

σ2
j + z>j F̃−1S,jzj

+Tr
(
F−1S Xj(σ

2
jP
−1 + X>j F−1S Xj)

−1X>j F−1S
)
.

(22)
Notice the first term on the right-hand side is positive since
F̃S,j is PSD and hence the quadratic form z>j F̃−2S,jzj is
also positive. Further, The second term on the right-hand
side is also positive as it is trace of the quadratic form
F−1S Xj(σ

2
jP
−1 + X>j F−1S Xj)

−1X>j F−1S which is also
PSD because the matrix (σ2

jP
−1 + X>j FSXj)

−1 is itself
PSD. Thus, the marginal gain is positive and the function is
monotonically increasing.
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We now provide bounds on additive and multiplicative weak-
submodularity constants of fE(S) (Note that it can be
shown fE is not in general submodular). Finding these
bounds in the general form form of model requires intense
algebraic techniques and the resulting bounds will not be
interpretable. In stead, we here provide bounds in scenarios
where zi = 0 and Xi = xix

>
i (rank 1) which is motivated

by the phase retrieval applications. In this setting, it can be
shown the marginal gain simplifies to

fAj (S) =
x>j F̃−2S xj

x>j (σ
2
jP + F̃−1S )xj

, (23)

where F̃S = Ix+
∑
i∈S

1
σ2
j
xix
>
i Pxix

>
i . Hence, the defini-

tion of multiplicative weak-submodularity constant yields,

cfA = max
(S,T ,j)∈X̃

fAj (T )/fAj (S)

= max
(S,T ,j)∈X̃

(x>j F̃−2T xj)(x
>
j (σ

2
jP + F̃−1S )xj)

(x>j F̃−2S xj)(x>j (σ
2
jP + F̃−1T )xj)

≤ max
(S,T ,j)∈X̃

λmax(F̃
−2
T )λmax(σ

2
jP + F̃−1S )

λmin(F̃
−2
S )λmin(σ2

jP + F̃−1T )
,

(24)

where the last inequality follows from the Courant–Fischer
min-max theorem (Bellman, 1997). Notice that by Weyl’s

inequality λmax(F̃
−1
S ) = λmin(F̃S)

−1 and λmin(F̃T ) ≥
λmin(F̃S) ≥ λmin(F̃∅) = λmin(Ix). Therefore,

cfA ≤ max
j

λmax(I
−1
x )2λmax(σ

2
jP + I−1x )

λmin(F̃
−1
[n] )

2λmin(σ2
jP + F̃−1[n] )

≤ max
j

λmax(I
−1
x )3(

λmax(σ
2
jP)

λmax(I
−1
x )

+ 1)

λmin(F̃
−1
[n] )

3(
λmin(σ2

jP)

λmin(F̃
−1
[n]

)
+ 1)

.

(25)

Noting F̃−1[n] = B[n] completes the proof of bounded
cfA . We can also use more applications of Weyl’s in-
equality to achieve looser yet more intuitive and compact
bounds. Using similar techniques such as applications of
Courant–Fischer min-max theorem and Weyl’s inequality
we obtain the stated results for εfA .
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