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Abstract
To be effective in sequential data processing, Re-
current Neural Networks (RNNs) are required to
keep track of past events by creating memories.
While the relation between memories and the
network’s hidden state dynamics was established
over the last decade, previous works in this di-
rection were of a predominantly descriptive na-
ture focusing mainly on locating the dynamical
objects of interest. In particular, it remained un-
clear how dynamical observables affect the per-
formance, how they form and whether they can
be manipulated. Here, we utilize different train-
ing protocols, datasets and architectures to obtain
a range of networks solving a delayed classifi-
cation task with similar performance, alongside
substantial differences in their ability to extrapo-
late for longer delays. We analyze the dynam-
ics of the network’s hidden state, and uncover
the reasons for this difference. Each memory is
found to be associated with a nearly steady state
of the dynamics which we refer to as a ’slow
point’. Slow point speeds predict extrapolation
performance across all datasets, protocols and ar-
chitectures tested. Furthermore, by tracking the
formation of the slow points we are able to under-
stand the origin of differences between training
protocols. Finally, we propose a novel regular-
ization technique that is based on the relation be-
tween hidden state speeds and memory longevity.
Our technique manipulates these speeds, thereby
leading to a dramatic improvement in memory
robustness over time, and could pave the way for
a new class of regularization methods.
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1. Introduction

Recurrent Neural Networks (RNN) are the key tool cur-
rently used in machine learning when dealing with sequen-
tial data (Sutskever et al., 2014), and in many tasks re-
quiring a memory of past events (Oh et al., 2016). This
is due to the dependency of the network on its past states,
and through them on the entire input history. This abil-
ity comes with a cost - RNNs are known to be hard to train
(Pascanu et al., 2013a). This difficulty is commonly associ-
ated with the vanishing gradient that appears when trying to
propagate errors over long times (Hochreiter, 1998). When
training is successful, the network’s hidden state represents
these memories. Understanding how such representation
forms throughout training can open new avenues for im-
proving learning of memory-related tasks.

Linking hidden state dynamics with task-related memories
requires some form of reverse engineering. This can be
done by focusing on individual recurrent units (Karpathy
et al., 2015; Oh et al., 2016), or by analyzing global net-
work properties. We opt for the latter, analyzing the RNN’s
hidden states as a discrete-time dynamical system.

In this framework, memories might be associated with a
wide range of dynamical objects. On one extreme, transient
dynamics can be harnessed for memory operations (Manju-
nath & Jaeger, 2013; Maass, 2011; Maass et al., 2002). On
the other extreme, there are memory networks (Sukhbaatar
et al., 2015) that memorize everything and later use only
the relevant memories while ignoring all the rest. The ide-
alized dynamical scenario where each memory is associ-
ated with a fixed point in the RNN state space (Hopfield,
1982; Sussillo, 2014; Barak, 2017; Amit, 1989) was re-
fined in (Durstewitz, 2003; Sussillo & Barak, 2013; Mante
et al., 2013) where points which are only approximately
fixed (slow points), with a drift that is slower than the task
duration were shown to represent memory.

To allow in-depth analysis of the formation of memories
throughout training, we analyze a simple delayed classifi-
cation task. While simple enough to analyze, the task re-
quires both memory and processing - two key operations
in many RNN tasks. We train this task using different

Code availabe at: https://github.com/DoronHaviv/MemoryRNN
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datasets, unit-types and training protocols, to obtain a range
of networks. We find that different protocols lead to com-
parable performance on the task. A more careful analysis,
however, reveals that the resulting networks differ in their
extrapolation abilities and reflect their training histories.

To uncover the underlying reasons for such differences,
we extend tools used in continuous-time systems in neuro-
science (Sussillo & Barak, 2013). We find that memories of
the different classes are represented by slow points of vary-
ing slowness. We show that the speed of the points predicts
the extrapolation properties of their associated class. We
establish such a correlation in a large variety of settings.

Having established the importance of slow points as a pre-
dictor, we obtain an instructive insight on how they evolve
along the training course. Detailed analysis of individual
training trajectories makes it possible to monitor the forma-
tion of slow points under a specific training protocol. This
technique uncovers an interplay between newly recruited
and functional slow points – decreasing the stability of the
latter in a systematic manner. This provides a link between
training curriculum, dynamical objects, memory and per-
formance.

Ultimately, we take a step from merely predicting perfor-
mance to improving it. To this extent we modify the loss
function to penalize hidden state speed in relevant points,
and report a dramatic improvement for extremely long de-
lays.

2. Task Definition
Inspired by real-world applications of Recurrent Neural
Networks (Oh et al., 2016), we designed a task where the
RNN has to combine stimulus processing and memoriza-
tion (Figure 1). The network is presented with a series of
noisy images, among which appears a single target image
(from MNIST or CIFAR-10) at time ts. At a later time
point, ta, the network receives a response trigger in a sep-
arate input channel, prompting it to output the label of the
image. At all other times, the network should report a null
label.

The stimulus and reporting times are chosen randomly at
each trial from a uniform distribution on [1, Tmax] subject
to the constraint ta − ts > 4. The total stimulation time
is Tmax = 20, and the network was requested to distin-
guish between |V | = 10 different classes of MNIST (Le-
Cun et al., 2010) or CIFAR-10 (Krizhevsky et al.).

Each pixel of the noise mask was sampled from a Gaussian
distribution with mean and variance matching its counter-
part at the image corpus ε ∼ N(µn, σ

2
n). We tested the

RNNs ability to extrapolate from this task to longer dura-
tions by increasing the delay Tmax.

The motivation behind this task is three-fold. First, as
explained, this task is comparable to real-world scenarios
where RNNs are used, combining the need for both stimu-
lus memorization and feature extraction. Second, the task
lends itself to parametric variations, allowing to compare
both different training protocols and generalization abili-
ties. Third, desiring to understand the dynamical nature of
memorization in discrete Gated-RNNs, the delay between
stimulus and response trigger allows for evolution of RNN
hidden-state (HS), which can be reliably analyzed using
well known methods from dynamical systems (Sussillo &
Barak, 2013), which we modify to our discrete setting.

3. Model
For MNIST, the network consists of a single recurrent
layer of d = 200 gated recurrent units, an output layer of
|V | + 1 = 11 neurons, |V | = 10 neuron for the differ-
ent classes, and an additional neuron for the null indicator.
The input layer has n + 1 neurons, where n is the number
of pixels in the image and an extra binary input channel for
the response trigger Xr(t) defined by:

Xr(t) =

{
1, if t = ta.

0, otherwise.
(1)

For CIFAR-10, the network was expanded to d = 400 re-
current units, along with a convolutional front-end com-
posed of three convolutional layers and two dense layers.
To eliminate issues of translational invariance regarding the
response trigger and the convolutional front-end, the trigger
was added as an extra channel to the final dense layer, right
before the recurrent units (Figure 1).

The gated units are either GRU:

z = σ(WzI + Uzht + bz)
r = σ(WrI + Urht + br)
ht+1 = z ◦ ht + (1− z) ◦ tanh(WhI + Uh(r ◦ ht) + bh)

(2)

or LSTM:

f = σ(WfI + Ufht + bz)
i = σ(WiI + Uiht + bi)
o = σ(WoI + Uoht + bo)
ct+1 = f ◦ ct + i ◦ tanh(WcI + Ucht + bc)
ht+1 = o ◦ tanh(ct)

(3)

For the analysis of the network’s phase space, we denote
the state of the recurrent layer by ξ, which for LSTM is

ξ =

(
h

tanh(c)

)
and for GRU ξ = h.
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Figure 1. A Task. The network is presented an MNIST or CIFAR-10 image amidst noisy images and has to report its label at a later time,
as requested by a separate input (0, 1 to the right of images). Output should be null at all times except the reporting time. The precise
times ta, ts vary from trial to trial. B Architecture. In the case of MNIST dataset, both the image and the trigger signal are fed directly
into the recurrent layer. For the CIFAR-10 task, a convolutional feed forward network is added in front of the recurrent layer, while the
trigger signal is connected directly to the RNN.

The network was trained using the ’Adam’ optimizer
(Kingma & Ba, 2014) with a soft-max cross-entropy loss
function with an increased loss on reporting at t = ta in
proportion to Tmax. Full description of each protocol, in-
cluding schedules and other hyper-parameters is given in
the supplemental code.

4. Training Protocol: Two Types of Curricula
We found that training failed when using straightforward
stochastic gradient (SG) optimization on the full task. The
network converged to a state where it consistently reports
’null’ without regarding neither the output trigger nor the
images it has received as inputs. This suboptimal behavior
did not improve upon further training. On the other hand,
we observed that simpler versions of the task are learn-able.
If the maximal delay between stimulus and reporting time
was short or when we introduced only a limited number of
different digits, the network was able to perform the task.
This led us to try two different protocols of curriculum
learning (Bengio et al., 2009) in order teach the network
the full required task:

1. Vocabulary curriculum (VoCu) - here we started from
two classes V = {c1, c2} and then increased the vocabu-
lary gradually until reaching the full class capacity. This
protocol is similar to the original concept of (Bengio et al.,
2009) except the fact that in our vocabulary all the classes

occur with the same frequency, and the selected order of
class introduction is in fact arbitrary.

2. Delay curriculum (DeCu) - starting from short delays
between stimulus and reporting times (Tmax = 6), we pro-
gressively extended it toward the desired values. Implicitly
mentioned in (Hochreiter, 1998), this regime is expected
to mitigate the vanishing gradient problem, at least during
initial phase of training.

5. Extrapolation Ability Depends on Training
Protocol

We found that, in good accordance with existing literature
(Bengio et al., 2009; Jozefowicz et al., 2015) results for
the nominal test-set were fairly indifferent to the training
protocol (Supplementary material). Once we evaluated the
ability of each setting to extrapolate to longer delays, how-
ever, similarity ends and differences emerge.

We observed how each setting performs when the delay be-
tween stimulus and response trigger is extended further be-
yond Tmax = 20. If |V | = 10 robust fixed-point attractors
have formed, retrieval accuracy should not be affected by
the growing delay. If the computation is based on tran-
sients, then all class information is expected to eventually
vanish.

Experiments revealed that neither of these extreme options
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Figure 2. Retrieval accuracy when increasing the delay between
stimulus and response trigger beyond Tmax = 20. Despite sim-
ilar performance initially, the ability to generalize for greater de-
lays than those trained for (dashed vertical lines) varies with pro-
tocol. DeCu was superior to Vocu in both LSTM and GRU archi-
tectures for both MNIST and CIFAR-10 datasets.

was the case - performance deteriorated with increasing de-
lay, but did not reach chance levels (Figure 2). This deteri-
oration implies that not every memorized digit corresponds
to a stable fixed point attractor, but some do. Furthermore,
the deterioration was curriculum-dependent, with DeCu
outperforming VoCu in all cases.

6. Dynamics of Hidden Representation

Figure 3. Hidden state projected on leading principal components
in GRU - RNN on MNIST for delays of ∆t = 20 and 103 time-
steps from stimulus. States are color codded by their prediction.
For the nominal delay ten distinct regions are observed in the state
space, corresponding to each of the |V | = 10 classes. Examina-
tion of a larger delay ∆t = 103 reveals that some clouds collapse
into a single point at the center of the cloud, while others vanish
completely. The spread of samples in the nominal delay, along
with a smaller number of distinct fixed points at ∆t = 103 in
VoCu aligns with our findings of faster and less stable dynamics
compared to DeCu.

The relevant phase space of this dynamical system is the

Figure 4. Extrapolation accuracy predicted by slow point speeds.
The accuracy at long delays (∆t = 103 for MNIST and ∆t =
500 for CIFAR-10) is shown as a function of the slow point speed
of the associated class (green, errorbars denote standard error of
the mean). In all datasets, unit-types and training methods, slower
speeds correlate with increased accuracy. The red and blue dots
show the mean speed and accuracy for each training protocol
(standard error of the mean is smaller than marker size). The
difference in speeds between the protocols underlies the differ-
ent extrapolation performance shown in Figure 2. Ten networks
were used for MNIST, and five for CIFAR-10.

recurrent layer state ξ. We thus begin by visually inspect-
ing (in the first 3 PCA components) the activity of the net-
work for the maximal training delay, ∆t = 20. We show
here results for the MNIST dataset with a GRU architec-
ture, but similar behavior is seen for other conditions and
the statistics of all conditions is analyzed below. The left
panels of Figure 3 show that different trials of each digit
are well separated into |V | regions with a one to one cor-
respondence to data classes. Following these trajectories
for a longer delay of ∆t = 1000 shows that some regions
converge into what appears to be fixed points, while others
vanish (right panels). These figures also clearly show the
difference between the two protocols. While both achieve a
good separation with the nominal delay (left), it is already
apparent that VoCu leads to clouds of points with a larger
spread, possibly indicating a weaker attraction.

To verify the existence or absence of fixed points hinted by
the above visualization, we apply an algorithm developed
for continuous time vanilla RNN (Sussillo & Barak, 2013)
to our setting. Briefly, fixed points (stable or unstable) are
local minima of the (scalar) speed S(ξ, I) of the hidden
state ξ.

S(ξ, I) = ||F (ξ, I)− ξ||2 (4)
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where the evolution of state,

F (ξ′) = ξ(t+ 1)

∣∣∣∣
ξ(t)=ξ′

(5)

is given by equations 2 or 3 for GRU or LSTM respectively.
It is now possible to use gradient descent on the speed S
with respect to state ξ, namely, ∇ξS, to locate such min-
ima.

The initial conditions for this gradient descent were ob-
tained by running the network with the mean delay value
∆t = 15, and using the averages of hidden states of each
class as initial conditions. The external input I during gra-
dient descent was the average of the noise images, thus ef-
fectively making our system Time-Invariant so that such
points and their stability are well defined. We verified that
using different fixed external inputs did not qualitatively al-
ter the results (not shown). We repeated the procedure for
several realizations, and it always resulted in a local mini-
mum of speed for each class (which we call a slow point),
with a readout that matches the class label.

To look for a quantitative relation between slow point
speed and the memory robustness we located slow points
for every class, computed their speed and the prediction
accuracy of their associated classes after a long delay. Fig-
ure 4 shows that the speed of the slow point associated with
a certain class can predict how members of that class will
react to extrapolation experiments. This trend holds for all
architectures, unit types and datasets tested.

The colored dots in Figure 4 denote the mean of the speeds
obtained by the two different protocols. The picture here is
consistent with that observed in Figure 2, with DeCu out-
performing VoCu for all cases. Our results suggest that this
difference is mediated by a difference in speeds of the as-
sociated slow points.

We also trained networks on an additional task of delayed
matching (as opposed to classification), and observed the
same speed-accuracy anticorrelation. (Supplementary ma-
terial)

7. Formation of Slow Points - Why Protocols
Differ

We saw that the two training protocols lead to a different
representation of the stimulus memory by the network, and
hence to different dynamical objects. How does training
give rise to these differences? To answer this question, we
analyze in detail two settings - a GRU and LSTM architec-
tures trained on the MNIST database. We follow the slow
points of the velocity backwards in training time to learn
how they emerge and change throughout training, and cor-
relate these events with network performance.

We located slow points as described in Section 6 , and then
used them as initial conditions for gradient descent on the
network defined by the previous training step. We then re-
peated this procedure iteratively for all training steps. The
assumption is that the change in network parameters at each
training step will not induce a very large shift in the loca-
tions of the relevant slow points, and thus our continuation
procedure can track them. This is not clear in the case of
VoCu, where one might expect rapid changes whenever a
new class is added. Looking at the speeds of the tracked
slow points shows that this is indeed the case for VoCu
(Figure 5, A,B), with all tracked speeds exhibiting such
jumps. DeCu, on the other hand, shows a gradual slowing
down of the slow points throughout training.

By observing the gradual slowing down in DeCu, it is easy
to understand why this protocol improves performance -
slow points become slower. But the situation for VoCu is
more complicated because introducing new classes qualita-
tively changes the dynamics. A natural expectation might
be that the classes that were presented first will have more
time to stabilize, and thus will be the slowest. We saw that
this is not the case (not shown), and thus proceeded to look
deeper into the class introduction events along VoCu train-
ing.

Consider such an event - the introduction of class ci at
training time τi (We use τ to denote training step (of
SG), as opposed to the time during each trial which is de-
noted by t). We perform a short backtracking procedure
- starting just before the succeeding class is introduced
(τi+1 − 2000), and following it back until slightly before
it appeared (τi − 2000). We verified that we can follow the
point despite the jumps mentioned above (shown in supple-
mentary material).

We discovered that the new class is assigned to an existing
slow point. This slow point was previously classified as an
existing class j < i. By stitching together all such back-
tracking procedures, we obtain a diagram indicating where
each new class originated (Figure 5C).

Does this history affect performance? To answer this ques-
tion, we checked the difference in performance of the var-
ious classes following the introduction of a new one. For
instance, the diagram shows that class 8 originated from
class 5. Figure 5D shows that the performance of class 5
was impaired more than other existing classes following the
introduction of class 8.

To evaluate the statistics of this phenomenon, we repeat
this procedure for many networks, and all class introduc-
tion events. Figure 5E shows that the decline in accuracy
of the classes that spawned the new class is significantly
larger than that of the other classes (LSTM histogram is
shown in supplementary material). Specifically, for class ci
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Figure 5. A,B Speeds of each slow-point through training (only five are shown for clarity) obtained by iteratively tracking them back in
training time. The specific schedule of each curriculum is marked on the time axis (τi : ci for VoCu and τi : Tmax,i for Decu). VoCu
shows sharp jumps in the speed of all points for each class introduction, in contrast to DeCu which exhibits a gradual slowing down
along the whole course of training. C A branching diagram for VoCu, obtained from short backtracking every class, proximal to its
appearance. The change in readout suggests which slow point gave rise to the new point (e.g., 8 from 5 at time 78; 7 from 3 or 4 at time
62). D The accuracies of each individual class for the same VoCu realization when class ’8’ was introduced. As a result, all previously
existing classes show a degradation in accuracy, however, the class from which class ’8’ emerged from (class ’5’) exhibited a stronger
decline. Noisy images with double amplitude (2σ2

n) were used to amplify the effect strength. E Verifying the statistical significance of
the result in (D). For each branching event, we compared the accuracy drop of classes that gave rise to the new class, with the drop for
the remaining classes. The histogram is from all events in three VoCu realizations. It shows that indeed accuracy of spawning classes
decreases more following a branching event.

being newly introduced at training step τi, accuracy of all
classes {cj}j<i is evaluated at training steps τ = τi−1000
and τ = τi + 4000. Accuracy change ∆ak for class
ck that branches into class i is compared to the average
〈∆aj〉j<i,j 6=k.

8. Improving Long Term Memory
Can the aforementioned insights help improve perfor-
mance? Can we obtain memory for delays that are sub-
stantially longer than in the scenarios used for training? To
answer this question, we first trained the network as before
using one of the protocols discussed above. We then trained
for an additional period of 5000 gradient steps (compared
to 140000 in initial training) while regularizing our stan-
dard cross-entropy loss function Lxent by a term account-
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ing for hidden state speed. The new loss:

L′ = Lxent + λ
∑
i∈V
|S(ξ̄i)| (6)

penalizes for high speed S of equation 4 at representative
points ξ̄i associated with each class.

The natural candidates for ξ̄i are the slow points discussed
above, and indeed Figure 6 shows that dramatic improve-
ments were achieved, when compared to the same training
without the added regularization. Using the slow points
as regularizer targets is still somewhat costly, as their de-
tection requires a gradient descent step. Furthermore, as
training proceeds, the location of slow points can move –
rendering the original regularization targets less effective.
We thus used a proxy for the slow points by taking ξ̄i to
be the centre of mass of each class. This simpler proce-
dure achieved results that were comparable to using the
slow points themselves. In both cases, we verified that slow
point speed was manipulated to achieve the improved per-
formance (Figure 6 legend), and that the accuracy for nomi-
nal delays remained virtually intact. In principle, one could
train for such long delays by straight forward back propa-
gation through time, but this would be orders of magnitude
more time consuming than our method, if not impossible.

Figure 6. Effect of speed regularization on the performance is
demonstrated for the DeCu training on GRU architechure on
MNIST, results for all other setting are in Supplementary ma-
terial. For control, we trained the network for the same num-
ber of additional gradient decent steps without any regularization
(solid). Regularization targets were either the slow-points (dot-
ted) or the center-of-mass (dashed). Both regularization methods
resulted in dramatic improvements compared to control, which is
also reflected in a smaller speed of slow-points after additional
training (shown in legend brackets).

9. Discussion
Training RNNs to perform memory-related tasks is diffi-
cult (Pascanu et al., 2013b), and as a consequence many
suggestions were made on how to alleviate this difficulty.
Changing network architecture, unit-types or training pro-
tocols might be expected to generate different solutions to
the same task.

Here we showed that different training protocols can lead
to different locally optimal solutions. Although these so-
lutions perform similarly under nominal conditions, chal-
lenging the networks with unforeseen settings reveals their
differences.

An RNN is a dynamical system, and as such its operation
can be understood in the language of fixed points and other
dynamical objects. By analyzing the phase space of the
network’s hidden states, we showed that the memory of
each class was associated with a slow point of the dynam-
ics. Such slow points were shown to assist network func-
tionality (Machens et al., 2005), and arise through training
(Mante et al., 2013; Durstewitz, 2003). The speeds of these
slow points were highly correlated to the functional charac-
teristics of memory longevity, and thus provide a dynami-
cal explanation of the idiosyncrasies observed between cur-
ricula and architectures. Our result proved valid across ar-
chitectures, datasets and unit types.

In specific cases, we were able to follow the formation of
the recruitment of slow points to representation of memo-
ries during the training process. Such recruited slow points
reside in an area of phase space that belongs to a spe-
cific existing class. We showed that this process is as-
sociated with a decrease in network accuracy that is spe-
cific for the classes that contribute the slow point. Things
could have been different - slow points could emerge in
an area of phase space that is distant from existing ones,
and the introduction of a new class could have resulted in
a uniform effect on all existing classes. To uncover this
process, we introduced a back-tracking methodology that
could be relevant to any case in which learning modifies
the dynamics of the network. Possible applications include
studying the success and failure in creating memories (Beer
& Barak, 2018), preventing catastrophic forgetting, under-
standing memory capacity and more.

The setting studied in this work is a particular case of the
more general problem of solution equivalence in gradient
based optimization: On the one hand theoretical and nu-
merical evidence does exist for training outcome’s indiffer-
ence to protocol details. Specifically to our case of RNN,
it is shown in (Cirik et al., 2016) that, at least for language
modeling tasks, performance does not heavily depend on
training protocol. On the other hand, such an indifference
is far from being fully established. In particular, stochas-
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tic gradient optimization suffers from known drawbacks
(Dauphin et al., 2014; Martens & Sutskever, 2011) and
might prove dependent on initialization (Sutskever et al.,
2013) (and in particular pre-training). Our results show that
networks with the same initialization can reach different so-
lutions, and begin to uncover the dynamics underlying the
route to these solutions.

Ultimately, at the engineering end of this study, the afore-
mentioned insights allowed us to come up with a novel reg-
ularization technique which, by penalizing the hidden state
speeds, enables a dramatic improvement of performance
for extremely long times, while keeping nominal perfor-
mance intact. Having noticed that slowly increasing the de-
lay (DeCu) resulted in better stability and increased extrap-
olation ability for all the conditions tested, it might have
been possible to reach similar performance by extending
the DeCu protocol to very large delays. Such long back-
propagation through time, however, is extremely costly, if
not impossible, and avoided by our new method. Notably,
our method preserves linear time complexity of plain RNN,
as opposed to attention mechanisms whose complexity is
quadratic in time (Ke et al. (2018) and references therein).

Importantly, our regularization procedure relies on an in-
formed guess of what information the system needs to
memorize to improve performance and of where such in-
formation may be stored. In a delayed classification task,
the trivial and straight forward guess is that remembering
class improves performance with relevant information be-
ing represented by the mean of class’ samples hidden state
ξ̄i. Future work may generalize our methodology to more
complex tasks, such as natural language processing, where
long term memorization amid a continuous stream of po-
tentially useful input remains an open challenge (Paperno
et al., 2016). Doing so will require identifying the appropri-
ate entities to memorize and the locations in hidden space
representing these memories (Bau et al., 2018), for use as
regularization targets.
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