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Abstract
Most existing notions of algorithmic fairness are
one-shot: they ensure some form of allocative
equality at the time of decision making, but do
not account for the adverse impact of the algo-
rithmic decisions today on the long-term welfare
and prosperity of certain segments of the popula-
tion. We take a broader perspective on algorith-
mic fairness. We propose an effort-based mea-
sure of fairness and present a data-driven frame-
work for characterizing the long-term impact of
algorithmic policies on reshaping the underlying
population. Motivated by the psychological lit-
erature on social learning and the economic lit-
erature on equality of opportunity, we propose
a micro-scale model of how individuals may re-
spond to decision making algorithms. We employ
existing measures of segregation from sociology
and economics to quantify the resulting macro-
scale population-level change. Importantly, we
observe that different models may shift the group-
conditional distribution of qualifications in dif-
ferent directions. Our findings raise a number of
important questions regarding the formalization
of fairness for decision-making models.

1. Introduction
Machine Learning tools are increasingly employed to make
consequential decisions for human subjects, in areas such
as credit lending (Petrasic et al., 2017), policing (Rudin,
2013), criminal justice (Barry-Jester et al., 2015), and
medicine (Deo, 2015). Decisions made by these algo-
rithms can have a long-lasting impact on people’s lives
and may affect certain individuals or social groups nega-
tively (Sweeney, 2013; Angwin et al., 2016; Levin, 2016).

*Equal contribution 1Computer Science Department, ETH
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This realization has recently spawned an active area of re-
search into quantifying and guaranteeing fairness for ma-
chine learning (Dwork et al., 2012; Kleinberg et al., 2017;
Hardt et al., 2016).

Most existing notions of fairness assume a static popula-
tion: they ensure some form of allocative equality at the
time of decision making, but do not account for the ad-
verse impact of algorithmic decisions today on the long
term welfare and prosperity of different segments of the
population. For instance, consider equality of odds (Hardt
et al., 2016). The notion requires that the model distributes
different types of error (i.e., false positives and false neg-
atives) equally across different social groups. But it does
not take into consideration the fact that for members of the
advantaged group these erroneous predictions may be easy
to overturn, whereas for the disadvantaged it may take a
significant amount of effort to improve their qualifications
to obtain better algorithmic outcomes. Furthermore, in the
long run, the decision-making model may nudge different
segments of the population to obtain very different sets of
qualifications—some of which might be socially and eco-
nomically more desirable than others. This may in effect
lead to further marginalization of these groups.

Motivated by these concerns about existing notions of fair-
ness, we argue for a broader view of algorithmic models—
one that treats them as policies implemented within a social
context and with the potential of impacting individuals and
reshaping society. Among other considerations1, such view
of decision-making models necessitates a deeper understand-
ing of how individual decision subjects may respond to these
models and how those responses may translate into adverse
impact for certain segments of the population.

In this work, we propose an effort-based measure of un-
fairness for algorithmic decisions. We define a data-driven,
group-dependent measure of effort drawing on the economic
literature on Equality of Opportunity (Roemer & Trannoy,
2015). Our effort function captures the idea that the kind of

1Another important factor is how a utility maximizing decision
maker—employing the model—would respond to its predictions.
For instance, they may interpret the predictions in a certain way,
or update the model entirely. Prior work (Liu et al., 2018; Kannan
et al., 2019) has already addressed some of these considerations.
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changes required to obtain a desirable algorithmic outcome
(e.g., changing one’s school type from public to private to
get a better prediction for SAT score) is often significantly
more difficult to make for members of the disadvantaged
group compared to the advantaged. Building on this notion
of effort, we formulate effort unfairness as the inequality in
the amount of effort required for members of each group to
obtain their desired outcomes.

To formulate the long-term impact of algorithmic policies on
the underlying population, we specify a micro-scale model
of how individuals respond to algorithmic decision-making
models, taking inspiration from the psychological literature
on social learning (Bandura, 1962; 1978). We posit that
individuals observe and imitate the qualifications of their
social models—someone who has received a better algo-
rithmic outcome from the decision-making model—if by
doing so, they can obtain higher rewards (Bandura, 1962;
Apesteguia et al., 2007). More precisely, we model an in-
dividual’s response to be the decision-making algorithm by
first selecting a social model for him/her; the individual is
then assumed to exert effort to attain his/her model’s qual-
ifications if and only if doing so improves his/her overall
utility. With this individual-level behavioral model in place,
we can simulate decision subjects’ responses and quantify
the macro-scale impact of algorithmic policies on reshaping
the underlying populations. We employ existing measures
of segregation from sociology and economics (Massey &
Denton, 1988) to characterize how the distribution of quali-
fication for each group changes in response to the deployed
model. Importantly, we observe that different models may
shift the group-conditional distribution of qualifications in
vastly different directions.

Our work raises a number of important questions about algo-
rithmic policies and the formulation of fairness: What is the
ultimate purpose of a fair predictive model—to guarantee
allocative equality today, or to ensure similar distributions
of qualifications in the long-run? With respect to short term
allocative equality, are all error created equal, or should we
take into account the disparity in the effort it takes for differ-
ent groups to obtain their desired predictions? In the long
run, what are the type of changes that different predictive
models impose on the society? Which ones are desirable,
and which ones should be watched out for? Is it ethically
and economically acceptable to nudge different segments
of the population toward obtaining different qualifications?
If not, how can we prevent this without employing a model
whose decisions may be perceived as unfair today? These
are all critical questions that must be carefully analyzed
before determining which model is fair and best-suited to
make consequential decisions for humans. Addressing such
ethical challenges is outside the scope of this paper—and
arguably intradisciplinary Machine Learning research. We
hope that our work serves as a reminder to the ML com-

munity that to formalize fairness appropriately we need to
first formalize the processes and dynamics through which
algorithmic decisions impact their subjects and society in
the long run.

1.1. Related Work

Most existing notions of algorithmic fairness are one-shot
and require that a particular error metric is equal across all
social groups. Different choices for the metric have led to
different fairness criteria; examples include demographic
parity (Kleinberg et al., 2017; Dwork et al., 2012; Corbett-
Davies et al., 2017), disparate impact (Zafar et al., 2017;
Feldman et al., 2015), equality of odds (Hardt et al., 2016),
and calibration (Kleinberg et al., 2017). Prior notions fail
to capture the disparity in the effort it takes members of dif-
ferent social groups to improve their algorithmic outcome.
We propose a group-dependent, data-driven measure of ef-
fort, inspired by the literature on Equality Of Opportunity
(EOP) (Roemer & Trannoy, 2015; Heidari et al., 2019). (In
particular, the effort it takes individual i to improve their
feature k value from x to x′ is proportional to the difference
between the rank/quantile of x′ and x in the distribution of
feature k in i’s social group.)

Social (or observational) learning (Bandura, 2008) is a type
of learning that occurs through observing and imitating
the behavior of others. This type of learning requires a
social model (or role model)—someone of higher status
in the environment. According to the social learning the-
ory, observers recreate their role model’s behavior only if
they have sufficient motivation (Bandura, 1962; Apesteguia
et al., 2007)—this often comes from the observation that
the model is rewarded for their actions. In our model, an
individual recreates their role model’s qualification if by
doing so he obtains a positive utility, where utility is defined
as reward minus effort. Furthermore, it has been shown that
observers learn best from models that they identify with2

and find it within their capability to imitate them (Bandura,
1962). These points are captured by our effort function.
Social learning explicitly captures the role model implica-
tions of decision making policies. This echos research in
sociology and economics which has already established the
role model effects of affirmative action policies (Chung,
2000). We note that imitation dynamics have been exten-
sively studied in population and evolutionary games (see,
e.g., (Sandholm, 2010), Chapters 4 and 5).

Several recent papers study the impact of decision-making
models and fairness interventions on society and individuals
(see, e.g., (Liu et al., 2018; Kannan et al., 2019)). Unlike
prior work, our focus is on how subjects respond to algorith-
mic policies by improving/updating their (mutable) qual-

2Social identity is a person’s sense of who they are based on
their group membership(s) (Tajfel et al., 1979).
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ifications. We don’t make any case-specific assumptions
about how the world changes in response to the deployed
model, rather allow our micro-scale behavioral model to de-
rive the macro-level change. We emphasize that our model
is not meant to perfectly capture all the behavioral nuances
involved; rather our primary goal is to highlight the poten-
tial role of behavioral dynamics and human responses in
shaping the long-term impact of algorithmic models.

Also related but orthogonal to our work is a recent line
of research on strategic classification—a setting in which
decision subjects are assumed to respond strategically and
potentially untruthfully to the choice of the classification
model, and the goal is to design classifiers that are robust to
strategic manipulation (Dong et al., 2018; Hu et al., 2019;
Milli et al., 2019).

2. Setting
We consider the standard supervised learning setting: A
learning algorithm receives the training data set D =
{(xi, yi)}ni=1 consisting of n instances, where xi ∈ X
specifies the feature vector for individual i and yi ∈ Y ,
the ground truth label for him/her. We use si to refer to
the sensitive feature value (e.g., race, gender, or their in-
tersection) for individual i. For the ease of notation, we
will use zi to denote the example (xi, yi). We assume zi
fully characterizes individual i with respect to the task at
hand. The training data is sampled i.i.d. from a distribution
P on Z = X × Y . For simplicity, throughout we assume
there exists an unknown function f : X → Y such that for
all i, yi = f(xi). Unless specified otherwise, we assume
X ⊆ RK , where K denotes the number of features. The
goal of a learning algorithm is to use the training data to
fit a (regression) model (or hypothesis) h : X → Y that
accurately predicts the label for new instances. Let H be
the hypothesis class consisting of all the models available to
the learning algorithm. A learning algorithm receives D as
the input; then utilizes the data to select a model h ∈ H that
minimizes some notion of loss, L. For instance, in regres-
sion the empirical mean squared loss of a model h on D is
defined as LD(h) =

∑
i∈D(yi − ŷi)2, where ŷi = h(xi).

The learning algorithm outputs the model h ∈ H that mini-
mizes the empirical loss; i.e., h = argminh′ LD(h

′).

We assume there exists a benefit function b : X ,Y×Y → R
that quantifies the benefit an individual with feature vector
x and ground truth label y receives if the trained model
predicts label ŷ for them. Throughout this work we will
focus on benefit functions that are only functions of y, ŷ and
are linear in ŷ (e.g., b(y, ŷ) = ŷ−y+1 or b(y, ŷ) = ŷ). For
simplicity and ease of interpretation, all illustrations in the
main body of the paper are performed with ŷ as the benefit
function. Throughout, we assume higher predicted labels
are considered more desirable from the point of view of

individual decision subjects (e.g., this is the case when the
task is to predict students’ grade to decide who is admitted
to a top school).

2.1. Efforts, Rewards, Utilities

Let h specify the deployed predictive model. Consider
an individual characterized by z = (x, y). Let Rh(z, z′)
specify the reward or added benefit he/she obtains as the
result of changing his/her characteristics from z to z′:

Rh(z, z′) = b(h(x′), y′)α − b(h(x), y)α,

where α > 0 is a constant specifying the individual’s de-
gree of risk aversion. This parameter can be adjusted to
model diminishing returns to added benefit. Unless oth-
erwise specified, in our illustrations we take α = 1. Let
Eh(z, z′) specify the effort it takes the individual to update
their qualifications and make the change from z to z′ (we
will shortly elaborate on how effort can be quantified). The
overall utility of the individual is denoted by Uh(z, z′) and
for simplicity, we assume it takes on a a linear form:

Uh(z, z′) = Rh(z, z′)− Eh(z, z′).

That is, utility is simply reward minus effort. When clear
from the context, we drop the subscript h.

Throughout, we focus on effort functions that only depend
on x,x′, s. For simplicity, we assume the effort function is
additively separable across features—that is, the total effort
required to change x to x′ is a linear combination of the
effort needed to change each feature separately:3

E(z, z′) = Es(x,x′) = cs +
1

K

K∑
k=1

cs,kεs,k(xk, x
′
k, ),

where εs,k(xk, x′k, ) denotes the effort it takes to change the
value of feature k from xk to x′k for an individual belonging
to group s (defined below). For group s, cs is a group-
dependent constant specifying the minimum effort required
to make any change. Similarly for k = 1, · · · ,K, cs,k’s
are constant weights which allow us to specify the relative
difficulty of change across different features. For simplicity,
throughout we assume cs,k ≡ 1 for all k, s.

We define εs,k(xk, x′k, ) as follows—depending on the fea-
ture type and our domain knowledge about the feature:4

3Depending on our domain knowledge of how features relate
to one another, we may find a different aggregating operator (e.g.,
max) to be more appropriate than summation. For instance, if two
features automatically change together, no extra effort is required
for changing both of them simultaneously. Throughout our illus-
trations, for simplicity we focus on additively separable functions,
but our results can be readily produced for more complicated effort
functions.

4See the Appendix for a complete description of the effort
function.
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Suppose feature k is numerical and monotone (Duivesteijn
& Feelders, 2008), that is, we expect an increase in its value
to monotonically increase the predicted label—everything
else being equal. Monotonicity implies that there is a clear
direction of change that is considered desirable. As an exam-
ple in the education context, consider the number of hours
of study: we expect an increase in this feature to increase the
an student’s predicted grade. Without loss of generality, we
assume higher values of feature k are expected to increase
the predicted label (we can ensure this by preprocessing the
data and negating feature k values if necessary). We define
εs,k(xk, x

′
k, ) as follows:

εs,k(xk, x
′
k, ) = max{0, Qs,k(x′k)−Qs,k(xk)}.

Above, Qs,k(x) specifies the quantile/rank of value x in the
empirical distribution of feature k among individuals who
belong to group s.

The above effort function is inspired by the line of work on
equality of opportunity (Roemer & Trannoy, 2015): Note
that the distribution of feature k values can be different
across different social groups (e.g., men and women, or
African-Americans and Whites). We take the view that this
is potentially not the result of one group being inherently
inferior to another (in terms of feature k). Rather, it is most
likely due to the underlying socio-economic circumstances
that the privileged group can achieve higher values of fea-
ture k with less effort. To account for this in our effort
function, we measure the effort it takes a person i in group s
to change their feature k value from xk to x′k by comparing
the rank/quantile of x′k and xk in the empirical distribution
of feature k within group s. This implies that if for most peo-
ple in group s, the value of feature k is equal or better than
x′k, we consider it relatively easy for individual i to make
the change from xk to x′k. If however, very few in group s
have ever been able to achieve x′k, then it is considered very
difficult for i to make this change.

Using the effort function defined above, in Section 3 we pro-
pose a new effort-based measure of algorithmic unfairness.
In Section 4, we will utilize our effort function to compute
individual utilities and subsequently specifying the social
models.

3. Effort-based Measures of Fairness
Existing formulations of fairness are concerned with how
errors are distributed among various social groups, but they
do not account for the fact that even if errors are distributed
similarly, the effort required to fix those errors and improve
one’s prediction may be significantly higher for the disad-
vantaged subpopulation. Building on our notion of effort
introduced in Section 2, in this section we formulate a new
measure of algorithmic unfairness, called the effort unfair-
ness. At a high level, effort unfairness is the disparity in

the average effort members of each group have to exert to
obtain their desired outcomes—by imitating the appropriate
role models.5

We propose three different formalizations of effort unfair-
ness: bounded-effort unfairness, threshold-reward unfair-
ness, and effort-reward unfairness. Each notion corresponds
to a distinct/salient way in which decision subjects may
evaluate fairness and respond to their predictions.
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Figure 1: The average reward obtainable by members of
each group as the result of exerting (at most) δ units of
effort. For each model, the bounded effort unfairness is the
difference between the dashed and solid curves.

Bounded-effort unfairness is the inequality in the average
reward members of each group can obtain by exerting a
fixed level of effort. More precisely:

Definition 1 (Bounded-effort Unfairness) Given a con-
stant δ, the δ-bounded-effort unfairness of a predictive
model h is the inequality of the following metric across
different groups:

Ei∼P :si=s

(
max
z∈Z
Rh(zi, z) s.t. Eh(zi, z) ≤ δ

)
. (1)

The bounded-effort formulation is motivated by the litera-
ture on bounded willpower in behavioral economics (Mul-
lainathan & Thaler, 2000), which at a high level posits that
there is an upper bound on the level of effort people can be
expected to exert.

To compute the bounded-effort unfairness in practice, we
propose replacing the expectation in Equation 1 with the
empirical mean, and taking the maximum over the available
data set D. The latter not only simplifies the optimization,

5Note that algorithmic unfairness has many different aspects.
We introduce a new dimension along which algorithmic decisions
disparately affect different subpopulation, but this is not to under-
mine the importance of all other dimensions of unfairness (such as
error disparities). In particular, we do not claim that if a model is
fair according to our notion, then it cannot be unfair according to
other criteria.
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it also has a natural interpretation in terms of social mod-
els (see Section 4): Precisely, we estimate Equation 1 by
1
ns

∑
i:si=s

(maxz∈DRh(zi, z) s.t. Eh(zi, z) ≤ δ) where
ns is the number of subjects in group s.

Figure 1 illustrates the bounded effort unfairness calcu-
lated over the student performance data set (Cortez & Silva,
2008). (Information about the data set, our pre-processing
steps, and the trained models can be found in the Ap-
pendix. The code used to generate the plots in this paper
can be found at https://github.com/nvedant07/
effort_reward_fairness.) Note that according to
the bounded-effort measure, different models may be dis-
criminatory against different groups. Also depending on
the choice of δ the measure may rank the three models
differently.

Threshold-reward unfairness is the inequality in the average
effort member of each group need to exert to reach a certain
level of reward. More precisely:

Definition 2 (Threshold-reward Unfairness) Given a
constant δ, the δ-threshold-reward unfairness of a predictive
model h is the inequality of the following metric across
different groups:

Ei∼P :si=s

(
min
z∈Z
Eh(zi, z) s.t. Rh(zi, z) ≥ δ

)
. (2)

This formulation is motivated by the capability view of
fairness (Sen, 1993): Sen conceptualizes fairness as the
equality of capability, where at a high level, capability is
a person’s ability to reach valuable states of being (in our
case, a certain level of reward).

Figure 2 illustrates the average effort unfairness on the stu-
dent performance data set. Note that depending on the
choice of δ the measure may rank the three models differ-
ently. Also interestingly, depending on the choice of δ the
same model (i.e., linear model) may be considered unfair
toward men, unfair toward women, or perfectly fair!

The previous two formulations of effort unfairness—while
well-motivated—may give us different rankings across the
same set of alternatives depending on our choice of δ. The
final formulation, which we call the effort-reward unfairness,
resolves this issue by comparing the highest utility members
of each group can possibly achieve by exerting additional
effort. More precisely:

Definition 3 (Effort-reward Unfairness) For a predictive
model h, the effort-reward unfairness is the inequality of the
following metric across different groups:

Ei∼P :si=smax
z∈Z
Uh(zi, z). (3)

Figure 3 contrasts the effort-reward measure with existing
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Figure 2: The average effort required from members of each
group to obtain (at least) δ units of reward. For each model,
the threshold-reward unfairness is the difference between
the dashed and solid curves.

notions of algorithmic unfairness (these measures are pre-
cisely defined in the Appendix.) As evident in Figure 3,
on the student performance data set none of the existing
fairness notions fully captures the effort disparity. See the
Appendix for a numerical example further illustrating why
and how our measure of effort unfairness may not be cap-
tured by existing notions.
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Figure 3: Comparison of the effort-reward unfairness with
several existing notions of (un)fairness. Effort-reward un-
fairness ranks the models differently.

4. How Algorithmic Policies Re-shape Society
To formulate the long-term impact of algorithmic policies
on the underlying population, in this section we propose a
micro-scale model of how individuals may respond to algo-
rithmic policies, taking inspiration from the psychological
literature on social learning (Bandura, 1978). We posit that
individuals observe and potentially imitate the behavior of
their so-called social models. A social model is another
decision subject who has received a higher level of benefit
as the result of being subject to the decision-making model.
Our social learning model captures settings in which sub-
jects don’t know the inner workings of the decision making

https://github.com/nvedant07/effort_reward_fairness
https://github.com/nvedant07/effort_reward_fairness
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Figure 4: Segregation measures computed over the initial and impacted population for 3 models. Segregation may increase
or decrease as the result of the behavioral dynamics.

model, but can infer how to improve their standing by ob-
serving the decisions it makes for people similar to them
(i.e., their social models).

With the behavioral dynamics specified, we can quantify the
macro-scale long-term impact of the model on reshaping
the underlying populations. We adapt existing measures
of segregation from sociology and economics (Massey &
Denton, 1988) to characterize how the distribution of quali-
fications for each group changes in response to the deployed
model. Measures of segregation quantify how separate the
two subpopulations are in terms of distribution of qualifi-
cations. We believe such model-independent measures are
important to consider, because the decision making model
itself may change over time, but its impact on the underlying
population may be long lasting.

4.1. Behavioral Dynamics

At a high level, we simulate every individual’s response to
the predictive model by selecting a social model for them
from the training data set; the individual is then assumed
to exert effort to attain his/her model’s qualifications if and
only if doing so improves her overall utility.

Our micro-scale model is meant to capture two important
nuances pointed out by the social learning theory: First, ac-
cording to the theory observers recreate their social model’s
behavior only if they have sufficient motivation and this mo-
tivation often comes from observing that the social model is
rewarded for their actions. We capture this by assuming that
an individual recreates his/her social model’s qualification
if by doing so he/she is sufficiently rewarded and obtains
a positive utility. Second, it has been shown that observers
learn best from social models that they identify with and
find it within their ability to emulate. These points are cap-
tured through our notion of effort and utility. If a potential
social model belongs to a different group than that of the in-
dividual, the effort it takes to recreate his/her actions is very
high, therefore the individual won’t find sufficient utility in
imitating him/her.

Assuming that the training data is a representative sample
of the population6, we select the social models from among
the individuals present in the data set. In particular, for an
individual z, the model (denoted by z′) is another decision
subject in D whose imitation would maximize z’s utility.
That is, z′ = argmaxz′′∈D Uh(z, z′′).

Two remarks are in order. First, note that each one of our
fairness notions corresponds to a criterion for choosing the
social model. Depending on the context, one criterion may
better reflect the human response. In this paper, we deliber-
ately focus on utility maximization. This choice is primarily
for ease of illustration—it allows us to forgo specifying δ—
but our analysis can be replicated for the other two criteria,
as well.

Second, one may ask how can individuals be expected to find
the right social model (in particular, the utility-maximizing
one)? One concrete way is through actionable or coun-
terfactual explanations (Wachter et al., 2017; Ustun et al.,
2018). When an individual fails to receive their desired pre-
diction, such explanations lay out the optimal change he/she
can make to improve their outcome. (We re-emphasize that
we do not consider our model to be a perfect reflection of
extremely nuanced human behavior in the real world. We
do, however, consider it to be a reasonable approximation
of certain aspects of the process. Our primary goal with
this model is to illustrate the role of behavioral dynamics in
driving the societal impact of a decision making model.)

Through our proposed dynamics, we can simulate how sub-
jects respond to the predictive model. We then obtain a
new data set D′ representing the impacted population’s
qualifications. Next, we adopt measures of segregation to
compare the initial and impacted populations and quantify
the long-term macro-scale impact of the predictive model
on the underlying population. Our interest in measures of
segregation is rooted in the observation that unfairness usu-
ally emerges as a concern when there is a clear separation

6We cannot always make this assumption—the sampling pro-
cess can become biased in numerous ways.
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between different segments of the population (in terms of
qualifications and/or outcomes). If people belonging to two
socially salient groups are fully mixed—in terms of their
features and outcomes—-such concerns are unlikely to arise.
We emphasize that segregation does not always imply un-
fairness (for instance, segregation could be the consequence
of specialization: different segments of the population may
willingly invest in different sets of qualifications). But un-
fairness often comes with some form of segregation. We,
therefore, propose measures of segregation as an effective
test for potential unfairness.

4.2. Quantifying Impact via Measures of Segregation

Ethnic and racial segregation is a well-studied phenomenon
in sociology. At a high level, segregation is the degree to
which two or more groups live separately from one another.
A long line of work in sociology has been concerned with
measuring segregation. In their highly influential article,
Massey & Denton (1988) break down residential segrega-
tion into five distinct axes of measurement: centralization,
evenness, clustering, exposure, and concentration. Below,
we overview these measures and show how three of them can
be utilized to measure the macro-scale impact of decision-
making models on the distribution of qualifications.

Evenness measures how unevenly the minority group is
distributed over areal units. Evenness is maximized when
all units have the same relative number of minority and
majority members as the whole population. More precisely,
for an area/neighborhood i, let ti denote its total population,
mi the number of minority residents, and Mi the number
of majority residents of the neighborhood. Also, let pi =
mi/ti specify the percentage of minority residents in the
area. Let T and P specify the total population size and
minority proportion of the whole population. Suppose there
are N areal units in total. The Atkinson Index (AI) is a
particular measure of evenness satisfying several desirable
properties.7 For a constant 0 < β < 1, the Atkinson index
measures the inequality of (1− pi)/pi (i.e. the number of
majority residents per minority resident in neighborhood i)
computed across all individuals belonging to the minority

group: 1− P
1−P

(
1
N

∑N
i=1(1− pi)1−βp

β
i ti/TP

)1/(1−β)
.

Centralization is the degree to which a group is spatially
located near the center of an urban area. (Because of certain
urban development policies in the past, central areas of
most cities across the U.S. are declining residential areas.)
The degree of centralization can be measured by comparing
the percentage of minority residents living in the central
areas of the city. The Centralization Index (CI) is precisely
defined as follows:

∑
i central mi

m where m is the total minority

7It satisfies the transfer principle, compositional invariance,
population invariance, and organizational equivalence.

population.

Clustering measures the extent to which areal units inhab-
ited by minority members adjoin one another, or cluster, in
space. For example, the Absolute Clustering Index (ACI)
“expresses the average number of [minority] members in
nearby [areal units] as a proportion of the total population in
those nearby [areal units]” (Massey & Denton, 1988). ACI
is defined as follows:[∑N

i=1

∑N
j=1 ci,j

mi

m mj

]
−
[∑N

i=1

∑N
j=1 ci,j

1
N
m
N

]
[∑N

i=1

∑N
j=1 ci,j

mi

m tj

]
−
[∑N

i=1

∑N
j=1 ci,j

1
N
m
N

] .
For any two areas i and j, ci,j specifies the closeness be-
tween their corresponding centers.

Residential exposure refers to the degree of potential con-
tact, or the possibility of interaction, between minority and
majority group members within geographic areas of a city.
Concentration refers to relative amount of physical space
occupied by a minority group in the urban environment.

There are several notable differences between our setting
and that of residential segregation. First, in our setting
there are no predefined notions of “area” or “neighbor-
hoods” that individuals belong to. Second, individuals are
described by multi-dimentional feature vectors—as opposed
to a 2-dimensional vector specifying their residential loca-
tion. Third, it is not immediately clear how distances and
similarity between individuals should be defined. Next, we
will address these issues for evenness, centralization, and
clustering.

Throughout this section, we will focus on the mutable fea-
ture subspace. We take the distance between two individ-
uals i (belonging to group s) and j (belonging to group
s′) as follows: d(i, j) = max{ds(i, j), ds′(i, j)}, where
ds(i, j) is defined as follows: max{0, Qs(yj)−Qs(yi)}+∑
k∈ mutable εs,k(xk, x

′
k). We will use Atkinson index to

measure evenness. We will specify areas through what we
call focal points—these are feature vectors in the mutable
feature subspace that at least one subject in the original pop-
ulation imitates to improve their utility. Each focal point
corresponds to a neighborhood, and an individual belongs to
the neighborhood of their nearest focal point. We measure
the degree of centralization by comparing the percentage
of minority individuals whose predictions are above the
average (e.g., Ŷ > 11.94). We measure ACI at the individ-
ual level—that is, we assume each individual corresponds
to a neighborhood. We define the similarity between two
neighborhoods as follows: ci,j = e−d(i,j).

Figure 4 illustrates our measures of segregation both for
the initial population (depicted in blue) and the impacted
population—after individuals respond to the model by ad-
justing their qualifications (depicted in red). Segregation
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Figure 5: The change in various measures of segregation as a function of enforcing fairness contraints with strength τ .

can change in counter-intuitive ways through imitation dy-
namics.

5. The Role of Fairness Interventions
In this Section, we investigate the effect of enforcing fair-
ness constraints—at the time of training—on the long term
population-level impact of the deployed model. We focus
on the case of linear regression. We train a model by mini-
mizing the mean squared error while imposing the welfare
constraints proposed by Heidari et al. (2018).

Figure 5 shows the effect of imposing fairness constraints
on various measures of segregation (all computed by taking
females as the minority/protected group). One might expect
that these constraints would always reduce segregation in
the long run. As illustrated in Figure 5, this is not always the
case. For a small value of τ , enforcing fairness constraints
can significantly reduce the degree of clustering (see Fig-
ure 5a). Larger values of τ can reverse this effect and lead to
a population that is more heavily clustered/segregated com-
pared to the original population. Evenness remains relatively
unchanged regardless of the value of τ (see Figure 5b).

These findings highlight an important insight about fairness
constraints: they can affect segregation in two competing
ways. On the one hand by automatically assigning a desir-
able label to some members of the disadvantaged group, the
model incentivizes these members not to make any change.
On the other hand, these members can serve as social mod-
els for the rest of the disadvantaged group, nudging more
of them to improve their qualifications and obtain better
labels. Which force is more powerful? One can only answer
this by simulating the dynamics on the particular data set at
hand. We see clear parallels between our observations and
the prior work on affirmative action policies. Advocates of
affirmative action often argue that a larger representation
of minorities in desirable positions can lead to role models
who encourage other minorities in their investment deci-
sions (see e.g., (Chung, 2000)). At the same time, critics

argue that affirmative action quota may indirectly harm the
disadvantaged group members by reducing their incentives
to invest in qualifications (Coate & Loury, 1993a;b). Similar
to our work, economic results on the long-term impact of
affirmative action policies is mixed and context-specific.

We end this section with a remark on fairness-restoring
interventions. While we focused on algorithmic interven-
tions, we must emphasize that changing the decision-making
model is not the only mechanism through which segrega-
tion and unfairness can be alleviated. Instead of artificially
changing the decision boundary, it may be socially more de-
sirable to address unfairness before people are subjected to
algorithmic decision making. For instance, one could design
and implement policies that make it easier for disadvantaged
group members to obtain certain qualifications. We leave
the analysis of such feature interventions as a promising
direction for future work.

6. Conclusion & Future Directions
We presented a data-driven framework for studying the po-
tential long-term impact of predictive models on decision
subjects and society. We proposed a micro-model of human
response to algorithmic policies rooted in psychology and
several macro-level measures of change borrowed from soci-
ology and economics. Our work suggests several immediate
directions for future work, including but not limited to (a)
human subject experiments to investigate the viability of
our behavioral model; (b) designing an efficient mechanism
for bounding effort-reward unfairness.
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