Learning from Pairwise Comparisons

A. Supplementary Information: relation
between different relative error criteria

Our relative error criterion of | sin(W, w)| differs somewhat

from the criterion used in (Negahban et al., 2016), which

was X
[|W — wl||2

[[wl]2
where both w and and W need to be normalized to sum to
1. To represent this compactly, we introduce the notation
D(x,y) for positive vectors x, y, defined as

D(z,y) = H""y— I11|2,
H”Ulll

so that the crilgrion of (Negahban et al., 2016) can be written
simply as D(W, w).

2

We will show that if W and w satisfy max; jw; /w; < b
and max; ; W\;/Wj << b, then the two relative error criteria
are within a multiplicative factor of Vb. Thus, ignoring
factors depending on the the skewness b, we may pass from
one to the other at will.

The proof will require a sequence of lemmas, which we

present next. The first lemma provides some inequalities

satisfied by the the sine error measure.

Lemma A.l. Let z,y € R™ and denote by sin(x,y) the

sine of the angle made by these vectors. Then we have that
1Bz — yll

sin(x,y)| = min ————= = inf
s, )| = min S22 = ing

||z — aylly
lleeyll,
Moreover, if the angle between x and vy is less than w/2
(which always holds when x and y are nonnegative), we
have that
r oy
[zl [lyll,

< |sin(z,y)| <
2

2
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Moreover, since sin(z,y) = sin(y, =) the expressions re-
main valid if we permute = and y.

Proof. We begin with the first equality. Observe that
ming ||z — y||, is the distance between y and its orthog-
onal projection on the 1-dimensional subspace spanned by
x; by definition of sine, this is also ||y||, [sin(z, y)|, which
implies the equality sought.

The second equality directly follows from the change of
variable & = 1/f. Passing from min to inf is necessary is
necessary in case the optimal S is 0, which happens when x
and y are orthogonal.

Let now @ be the angle made by = and y. An analysis
of the triangle defined by 0. =/ ||z||, and y/ ||y||, shows

that sin(z, y) = Siﬂ(wT_ﬂ) |
(25) since 6 € [0, Z].

x
=L~ Tk ||2, which implies

We will also need the following lemma on the ratio between
the 1- and 2- norms of vectors.

Lemma A.2. Let v € R’} be such that max; ; —+ < b.
J x5

Then
T £
=1l < min | 1, 2 .
[ER

Proof. That ||z||2 < [|z]|1 - 1 is well-known. To prove the

b we argue as follows. First,

same with 1 replaced by 4/ -,
without loss of generality, we may assume x; € [1, b for all
i. Let Z be any random variable supported on the interval

[1, b]. Observe that
E[Z?% < bE[Z] < bE[Z)?,

where the first inequality follows because Z < b and the sec-
ond inequality follows because E[Z] > 1. We can rearrange
this as

E[Z)? _1

E[Z?] — b
Now let Z be uniform over x4, ...,x,. In this case, this
last inequality specializes to

((1/n) 30 =)
(/n) >, a2

1
e
=

or )
lal} o
213 = b

and now, inverting both sides and taking square roots, we
obtain what we need to show. |

Lemma A3. |sin(z,y)| < D(z,y) holds for nonnegative
T,y € R".

Proof.
H—nwn ~ Tl
D(z,y) — e Tl
Yy
‘ [yl 2
. ||'J||| o
=t f"Hg
[ly[l2
3z — |-
Z inf |||( xr y“Z
B [lyl]2
= [sin(z,y)l,
where the last step used Lemma A.1. |
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Lemma A.4. Suppose = € 5}?{;_ and max; ; == < b. Then
-"_?
there holds

D(z,y) < min (1 +/n, 1+ \/5) \/isin(:n, y)

Proof. Without loss of generality, we assume ||z|| =

[ly|| = 1, which means we can simplify Hﬂr‘ﬂ; — ﬂfﬂ; |2
as ||z — yl|,. Since ||y|[, = 1, we have

Ty
Hlj.':: 1y ||g

Y
Ty

D(z,y)

.

2
]_T

[/

[z = ylly + [l

Y
Y
1T ‘

= |lz—yll,+ llzl, 117 (y — )]

17z
141
Iz — ol (1+ yltell )
’ |14
where in the last inequality we have used
17y —2)| < lly —=ll, < Vally -,
and ||y — z||]2 < 1 due to the positivity of z and y. Now us-
ing Lemma A.1 to bound ||z — y||2 < v/2sin(x,y), we

have that the first part of the bound follows then from
[lz||, < ||z||,.and the second one from Lemma A.2. W

[/

B. Supplementary Information: proof of
Theorem 2

Our starting point is a lemma from (Hajek & Raginsky),
which we will use throughout the lower bound proofs, and
which we introduce next.

Let d(w,w") be a metric on W x W. Let P, (y) be an in-
dexed family of probability distributions on the observation
space V. Let w(y) be an estimator based on observations
y € Y and let Y represent the random vector associated
with the observations conditioned on w. We use Ey || to
denote expectation with respect to the randomness in Y.

We first lower bound the worst-case error by means of a
Bayesian prior. Namely, we observe that if we generate w
according to some distribution 7, then using E,[-] to denote
expectation when w is generated this way, we have

sup Ey[d(w, (Y)] > Ex y[d(w, &(Y)]]
weW

(26)

We will use [(Hajek & Raginsky) Chap. 13, Corollary 13.2]
to obtain a lower bound on (components of) the latter quan-
tity.

Lemma B.1. Let m be any prior distribution on W, and
let . be any joint probability distribution of a random pair
(w,w") € W x W, such that the marginal distributions of
both w and w' are equal to 7. Then

Exy[d(w,(Y)]] > E,[d(w,w')(1 — || Py — Pu |7yl

where || - || v represents the total-variation distance be-
tween distributions.

We will need a slight generalization of the Lemma for our
purposes. In particular, we note that it is sufficient that
the measure d(w,w") satisfies a weak version of triangle
inequality, i.e., yd(wy,wy) < d(wy,w) + d(wq,w) for
some pre-specified constant . Following along the same
lines as the proof of Le-Cam’s two-point method in [(Hajek
& Raginsky)] we get:

sup By [d(w, )] = yE.[d(w,w")(1 — || Py —
wC W

Pu:’ "'rV] (27}

Next, to apply this lemma we need to associate the random
variables of interest in our problem with the the measure P,
The random variable Y, and the corresponding observations
1y are associated with the edge e € E of our graph. In
particular, let B, be the ¢'* row of B. Recall that BBT is
the graph Laplacian. For an edge ¢ = (ij), lety, = 1if1
wins over 7 and —1 otherwise.

We now define our distribution 7: Let B = Y1 | oyuv]
be a singular decomposition of B. We augment the col-
lection of singular vectors o, v;,1 = 1,2,...,d with the
constant vector v, = %1. We observe that this collection
V = [vg, vy ..., v,] forms an orthonormal basis. We over-
load notation and collect the observations, 1., ¢ € F into
a vector y and the corresponding random-variable Y. We
specify define 7(w) by placing a uniform distribution on

the hypercube {—1,1}". We then let z = (z1,...,2,) ~
Unif{—1,1}" and write:
w, = VAz = \/nvy + 52 s v; (28)
i 7

where, 4 is a suitably small number to be specified later. So,
in particular, Ay = y/nand \; = 6/, fori = 1,2,...,n.
We note that the norm of w_’s defined this way are all equal,
1.e.,

VA2 = [[Az]]

T 1

n + 62 E —
T

i—1 i

w2l =

(29)

Our (square) error criterion sin®(W, w), is lower bounded
by

w w

l[wll [l

1 1
Ep(w, ) = 3 ’ } = p(w, ),
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see Lemma A.1.

Next, we closely follow the argument in the proof of As-
souad’s lemma [(Hajek & Raginsky)]. To do this we need to
express p(w, w) as a decomposable metric. To this end, let
a(y) = VTb(y). We will suppress dependence on 3 when
it is clear from the context. We write:

w
1[1111 Ervlplw,w(Y))| = mm]E Y H -
5 Erxlolw 0O =min e llgn = oy
w w 2
— E v —
S Y (wn|m0'

2
iz

= minJEng ( z t)
a(Y) Az Tl

i=0
i 2
Aizg
min E. I Bi(Y
Zm(Y) Y (IIAZH ( ))
= Z min Al (z: — m (Y))
‘!,h(Y) ||A ||2 wY i i

Y

T 2
(30)

where ;(Y),n:(Y) are estimators using the whole vec-
tor Y for each 4, and the last equality follows from [|Az||
being constant over the support of z. We are now go-
ing to apply the variation (27) of Lemma B.1 to each
Ervdi(z,n(Y)) = Ervy (2 —n7:(Y))? individually.
For this purpose, we define the distribution p;(z, z') by
keeping z uniformly distributed in {—1,1}", and flipping
the i*" bit to obtain 2’ (formally, z/ = —z; and z; = z; for
every j # i). Clearly, E, vd;(z,z") = 4. We next work on
simplifying the total variation (TV) term in the expression
of Lemma B.1. First, note that since we have £ indepen-
dent observations per-edge, we tensorize the probability
distributions and denote it as P®¥. By the Pinsker’s lemma
it follows that the total variation distance can be upper-
bounded by the the Kullback-Leibler Divergence [(Hajek
& Raginsky)], and furthermore, it follows from standard
algebraic manipulations (see [(Duchi) Example 3.47]) that,

1

J)@L < -D J)@k I}-‘@k
= 2 EL( || w

w’ ”W (31)

k
1P

< Z”B(l{)g(iﬂ) —log(w"))||.

Indeed, recall that the probability of ¢ winning over j
is Wi = and observe that B, log(w) =

1
wy 1+w; /'u.r‘- ’
log(w; /w;). Hence we can write

1
1 + exp(—y.B. log(w))’

Py (y.) £ Prob[Y. = y. | Be,w] =
Thus P, and P, satisfy the “logistic regression” distribu-
tion, and [(Duchi) Example 3.4]) derives Eq. (31) for total
variation distance between such distributions.

Now we prove in Section B.1 below that for §0,,,,782,,,,, <
1 and 62184 /2 < 1/4, we have,
| B(log(w) — log(w"))||? < 166°. (32)

Hence it follows from (27) that for every estimator 7;(Y')
and for such 4,

Ervy (z —mi(Y))? > v4(1 — V4k6?),

and then from (30) that

w

n Ag
_mm) E.v|p(w, (Y))] v Z Wél(l — V4kb?)
i=1

N 46%(1 — VAk$?)
Z (}Z (J'-QTL

i=1
Vi Lo,
T h

2v6%(1

= tr(LT) = “_lfzwg The
result of Theorem 2 follows then from taking 42 = m - We
need to make sure that the conditions d6,,,,1¢2,,, < 1 and
(5271..Qm,g/2 < 1/4 are satisfied, and for that it suffices to
take k > ¢opaxn€ay, for some absolute constant c. Finally,
recall that g, is the largest singularvalue of B, and L =
BB, sothat 0. = v/ Amax (L), so the condition we need
can be written as k > ¢/ A (L) 1€ avg.

B.1. Proof of Equation (32)

where we have used 3, Ul

In this subsection, we complete the proof by providing a
proof of Eq. (32). Our starting point is the observation
that, log([w.]¢) = log(1 + 8377, ve; j—j) Noting that by
Cauchy-Schwartz inequality

>
7
]
| M

[/

02nQuug /2

(33)

we enforce the constraint that § should be sufficiently small
S0

82100y /2 < 1/4. (34)

This constraint enables us to use a Taylor approximation for
log([w:]¢) — log([ws/]e)-

We use the Taylor’s expansion

fla) = FQ) + F )~ 1) + 3 1),
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for the function f(z) = log(x). This gives us

logz = — 1+ 3 /"(€)(x — 1",

where £ belongs to the interval between 1 and z. In particu-
lar,

log([w.];) = log(1+4 Z % [v;]1)

= § 29 T4 52 29 112
3 Lo+ O30 Lol
J J
where because of Eq. (33) and our bound on 4, we have that
C is upper bounded by (1/2)f"(1/2) = 2.

Similarly,
zh zh
log([w.+]; = 5%: J—j[?}j]g + C;(SQ(%: U—;[?Jj]g)z,

where Cy is lower bounded by (1/2)f"(3/2) = 2/9.
Observe that, according to our joint distribution over the pair
(w,w"), we have the bit ¢ flipped, while all others remain
the same, namely, z; = z; for j # iand z; = —z.. Thus

a5 i ¥ ¥ 2 Z: 2
log([w:]1)—log([w. |1 = 26 —[v; Ch1—Cp)o —[v;
og([w:]i)—log([w.r]u - [vi]i+(C1—C) (E,- - [v;]1)

We can write this as
zZ; 2
logw, — logw,r = 26—wv; + 6°h..
T

Recalling that V' is the vector that stacks up the vectors v;
as columns, we then have

[hzllz < hz|lx
= >2-2/9(Y Zly
1 i#i0 7
DAY Dy
1 i#i0 J

= 2 Z [V (diag(o)~'2)];)?

IFE0

[/

< 2||diag(o) 2|3
T 1

=2
g=1 "7

= 2tr(LT)

< 2n8layg.

This leads us to:
24 9
1B (1og(w.) — log(w.)l| < =~ Buil| + 62| B(h. — h)|

S 24 + 4620’(11;1)(755)&1@-

Under the assumption that that 4 is small enough so that
00 maxTavg < 1
we obtain that
1B (log(w.) — log(w.))|| < 4,
which is what we needed to show.
C. Supplementary Information: proof of
Lemma 1

We use the following version of Chernoff’s inequality: if ¥;
are are independent random variables with zero expectation,
variances o7, and further satisfying |V;| < 1 almost surely,
then

K
2
r ( Z Yi| = /\G’) < ('max (r:_“A ,e—")‘”) . (35
=1
for some absolute constants C, ¢ > 0, where 62 = Y| o7

(see Theorem 2.1.3 of (Tao, 2012)). Note that when A < o,
this reduces to

d

Let ij be the outcome of the I’th coin toss comparing
nodes i and j; that is, X.fj is an indicator variable equal to
one if 7 wins the toss. We let ¥V, = X_fj — pij- Then Y are
independent random variables, |Y;| < 1, and thus we can
apply Eq. (35). Note that 67 = 1/v;; as shown in (6).

We apply Eq. (35) with the choice of A = /', 5. Choosing
k = 4bC', 5. 1.e. c2 > 4in view of Assumption 1, and using
that v;; < 4b, it follows that

K

> Y

=1

(36)

> ,\(r) < Ce—N.

k .
AQ — Lns S _— = (}'2

1"1:-_?

so that A < o. Thus Eq. (35) reduced to Eq. (36), which
yields

£ )
P (lkFisj — kpij| = \/Cu,awk/’*?-a;:‘) < Ce™ni < 3

where this last inequality requires a suitable choice of the
constant ¢;, and we remind that £F;; is the number of suc-
cesses of ¢ over j, and. Applying the union bound over the
|E| < n? pairs i, j yields the result.

¥

D. Supplementary Information on the
experiments in Section 3

We first note that we implemented a minor modification of
our algorithm: Our estimators (4) use log R;;, and are thus
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not defined when the ratio 12;; of wins is zero or infinite,
i.e. when one agent wins no comparison with one of its
neighbors. To avoid this problem, we artificially assign half
a win to such agents. Note that these events are typically
rare, and their joint probability tends to zero when £ grows.
Our error analysis can actually be shown to remain valid for
our modified algorithm.

Each data point in the curves presented in Section 3 corre-
sponds to the average error | sin(W,w)| on a number Ny
of independent trials, chosen sufficiently large so that the
curves are stables. The weights w; were independently ran-
domly generated for each node 7, with log w; following a
uniform distribution between 0 and log b. For experiments
on Erdos-Renyi graphs, a new graph was created at each
trial. Disconnected graphs were discarded, so the results
should be understood as conditional to the graph being con-
nected.



