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Abstract

We consider the problem of learning the quali-
ties of a collection of items by performing noisy
comparisons among them. Following the standard
paradigm, we assume there is a fixed “compari-
son graph” and every neighboring pair of items in
this graph is compared k times according to the
Bradley-Terry-Luce model (where the probability
than an item wins a comparison is proportional
the item quality). We are interested in how the
relative error in quality estimation scales with the
comparison graph in the regime where k is large.
We prove that, after a known transition period,
the relevant graph-theoretic quantity is the square
root of the resistance of the comparison graph.
Specifically, we provide an algorithm that is mini-
max optimal. The algorithm has a relative error
decay that scales with the square root of the graph
resistance, and provide a matching lower bound
(up to log factors). The performance guarantee of
our algorithm, both in terms of the graph and the
skewness of the item quality distribution, outper-
forms earlier results.

1. Introduction

This paper considers quality estimation from pairwise com-
parisons, which is a common method of preference elicita-
tion from users. For example, the preference of a customer
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for one product over another can be thought of as the out-
come of a comparison. Because customers are idiosyncratic,
such outcomes will be noisy functions of the quality of the
underlying items. A similar problem arises in crowdsourc-
ing systems, which must strive for accurate inference even
in the presence of unreliable or error-prone participants. Be-
cause crowdsourced tasks pay relatively little, errors are
common; even among workers making a genuine effort, in-
herent ambiguity in the task might lead to some randomness
in the outcome. These considerations make the underlying
estimation algorithm an important part of any crowdsourc-
ing scheme.

Our goal is accurate inference of true item quality from a
collection of outcomes of noisy comparisons. We will use
one of the simplest parametric models for the outcome of
comparisons, the Bradley-Terry-Luce (BTL) model, which
associates a real-valued quality measure to each item and
posits that customers select an item with a probability that
is proportional to its quality. Given a “comparison graph”
which captures which pairs of items are to be compared,
our goal is to understand how accuracy scales in terms of
this graph when participants make choices according to the
BTL model.

We focus on the regime where we perform many compar-
isons of each pair of items in the graph. In this regime,
we are able to give a satisfactory answer to the underlying
question. Informally, we prove that, up to various constants
and logarithms, the relative estimation error will scale with
the square root of measures of resistance in the underlying
graph. Specifically, we propose an algorithm whose perfor-
mance scales with graph resistance, as well as a matching
lower bound. The difference between our upper and lower
bounds depends only on the log of the confidence level and
on the skewness of the item qualities. Additionally, we note
that our performance guarantees scale better in terms of
item skewness as compared to previous work.

1.1. Formal problem statement

We are given an undirected “‘comparison graph” G(V, E),
where each node i has a positive weight w;. If (i,5) €
E, then we perform k£ comparisons between ¢ and j. The
outcomes of these comparisons are i.i.d. Bernoulli and the
probability that ¢ wins a given comparison according to the
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BTL model is
Wy

w; + W;

Dij = (D
The goal is to recover the weights w; from the outcomes of
these comparisons. Because multiplying all w; by the same
constant does not affect the distribution of outcomes, we
will recover a scaled version of the weight vector w.

Thus our goal will thus be come up with a vector of esti-
mated weights W close, in a scale-invariant sense, to the
true but unknown vector' w. A natural error measure turns
out to be the absolute value of the sine of the angle defined
by w and W, which can also be expressed as (see Lemma
?? in the Supplementary Information)

‘sin(W,w)‘ _ o W = awllp. )

acR  |Jawl]|s

In other words, | sin(T,w)| is the relative error to the clos-
est normalization of the true quality vector w. We will
also discuss the connection between this error measure and
others later on in the paper.

Following earlier literature, we assume that

for some constant b. The number b can be thought of as a
measure of the skewness of the underlying item quality. Our
goal is to understand how the error between W and w scales
as a function of the comparison graph G.

1.2. Literature Review

The dominant approach to recommendation systems relies
on inferring item quality from raw scores provided by users
(see (Jannach et al., 2016)). However, such scores might be
poorly calibrated and inconsistent; alternative approaches
that offer simpler choices might perform better.

Our starting point is the Bradley-Terry-Luce (BTL) model
of Eq. (1), dating back to (Bradley & Terry, 1952; Luce,
2012), which models how individuals make noisy choices
between items. A number of other models in the literature
have also been used as the basis of inference, we mention
the Mallows model introduced in (Mallows, 1957) and the
PL and Thurstone models (see description in (Hajek et al.,
2014)). However, we focus here solely on the BTL model.

Our work is most closely related to the papers (Negahban
et al., 2012) and (Negahban et al., 2016). These works
proposed an eigenvector calculation which, provided the
number of comparisons is sufficiently large, successfully
recovers the true weights w from the outcomes of noisy

'We follow the usual convention of denoting random variables
by capital letters, which is why W is capitalized while w is not.

comparisons. The main result of (Negahban et al., 2016)
stated that, given a comparison graph, if the number of
comparisons per edge satisfied a certain lower bound, then
it is possible to construct an estimate %4 satisfying

||W - ’LU||2 <0 b5/2dmax ]-Ogn (3)
||’UJ| ‘2 B dmin(1 - )\) kdmax

with high probability, where d,,i,, dmax are, respectively,
the smallest and largest degrees in the comparison graph,
1 — A\ is the spectral gap of a certain normalized Laplacian
of the comparison graph, and both w, W are normalized so
that their entries sum to 1. It can be proved (see Lemma
??) that the relative error on the left-hand side of Eq. (3) is
within a /b factor of the measure | sin(W, w)| provided that
max; ; W; / Wj < b, so asymptotically these two measures
differ only by factor depending on the skewness b.

The problem of recovering w was further studied in (Rajku-
mar & Agarwal, 2014), where the comparison graph was
taken to be a complete graph but with comparisons on edges
made at non-uniform rates. The sample complexity of re-
covering the true weights was provided as a function of the
smallest sampling rate over pairs of items.

A somewhat more general setting was considered in (Shah
et al., 2016), which considered a wider class of noisy com-
parison models which include the BTL model as a special
case. Upper and lower bounds on the minimax optimal
rates in estimation, depending on the eigenvalues of a cor-
responding Laplacian, were obtained for absolute error in
several different metrics; in one of these metric, the Lapla-
cian semi-metric, the upper and lower bounds were tight up
to constant factors. Similarly to (Shah et al., 2016), our goal
is to understand the dependence on the underlying graph,
albeit in the simpler setting of the BTL model.

Our approach to the problem very closely parallels the ap-
proach of (Jiang et al., 2011), where a collection of po-
tentially inconsistent rankings is optimally reconciled by
solving an optimization problem over the comparison graph.
However, whereas (Jiang et al., 2011) solves a linear pro-
gramming problem, we will use a linear least squares ap-
proach, after a certain logarithmic change of variable.

We now move on to discuss work more distantly related to
the present paper. We mention that the problem we study
here is related, but not identical, to the so-called noisy sort-
ing problem, introduced in (Braverman & Mossel, 2009),
where better items win with probability at least 1/2 + ¢ for
some positive §. This assumption does not hold for the BTL
model with arbitrary weights. Noisy sorting was also stud-
ied in the more general setting of ranking models satisfying
a transitivity condition in (Shah et al., 2017) and (Panan-
jady et al., 2017), where near-optimal minimax rates were
derived. Finally, optimal minimax rates for noisy sorting
were recently demonstrated in (Mao et al., 2017).
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There are a number of variations of this problem that have
been studied in the literature which we do not survey at
length due to space constraints. For example, the papers
(Yue et al., 2012; Szorényi et al., 2015) considered the online
version of this problem with corresponding regret, (Chen &
Suh, 2015) considered recovering the top K ranked items,
(Falahatgar et al., 2017; Agarwal et al., 2017; Maystre &
Grossglauser, 2015) consider recovering a ranked list of the
items, and (Ajtai et al., 2016) consider a model where com-
parisons are not noisy if the item qualities are sufficiently
far apart. We refer the reader to the references within those
papers for more details on related works in these directions.

1.3. Our approach

We will construct our estimate W by solving a log-least-
squares problem described next. We denote by Fj; the
fraction of times node ¢ wins the comparison against its
neighbor j, and we further set R;; = F;;/Fj;;. As the
number of comparisons on each edge goes to infinity, we
will have that R;; approaches w; /w; with probability one.
Our method consists in finding W as follows:

Z (log(vi/v;) —log Ri;)*  (4)

(i,J)EE

W = arg min
E

UGRL‘

This can be done efficiently by observing that it amounts to
solving the linear system of equations

log W; — long = log R;j, forall (i,5) € E,

in the least square sense. Let B to be the incidence matrix?
of the comparison graph. Stacking up the R;; into a vector
R, we can then write

BT logW =1log R
Least-square solutions satisfy
BB logW = Blog R

or equivalently LlogW = Blog R, where L = BBT is
the graph Laplacian. Finally, a solution is given by

logW = L'Blog R. (5)

where L' is the Moore-Penrose pseudoinverse. By using the
classic results of (Spielman & Teng, 2014), Eq. (5) can be
solved for T to accuracy e in nearly linear time in terms of
the size of the input, specifically in O (] E|log® nlog(1/€))
iterations for some constant ¢ > 0. We note that, for con-
nected graphs, all solutions w of (4) are equal up to a multi-
plicative constant and are thus equivalent in terms of crite-
rion (2).

2Given an directed graph with n nodes and |E| edges, the
incidence matrix is the n x | E/| matrix whose ’th column has a
1 corresponding to the source of edge i, a —1 corresponding to
the destination of node ¢, and zeros elsewhere. For an undirected
graph, an incidence matrix is obtained by first orienting the edges
arbitrarily.

1.4. Our contribution

We will find it useful to view the graph as a circuit with a unit
resistor on each edge; €2;; will denote the resistance between
nodes 7 and j in this circuit, 2,,x denotes the largest of
these resistances over all pairs of nodes 7,7 = 1,...,n and
similarly €2, denotes the average resistance over all pairs.
We will use E;; to denote the set of edges lying on at least
one simple path starting at ¢ and terminating at 7, with Fy,x
denoting the largest of the I;;. Naturally, Fy.x is upper
bounded by the total number of edges in the comparison
graph. The performance of our algorithms is described by
the following theorem.

Theorem 1. Let § € (0,e™1). There exist absolute con-

stants constants ¢y, co such that, if Cp, 5 > ¢11log(n/d) and
k> CzEmaxC?M; and k > c3Qb%(1 + (log(1/9)), then we
have, with probability at least 1 — 0, that

min (b2 Qmax, b4Qavg) y
k

1\ EuaxC s
<1 + log (5) + T

The main feature of this theorem is the favorable form of the
bound in the setting when k is large. Then only the leading
term

sin(W,w)? < O (

min(b?Qmax, b*Qavg ) (1 + log 1/6)
k
dominates the expression on the right-hand-side. Taking
square roots, it follows that, asymptotically,

i ([0 _( [hn
’SiH(W,U))‘ =0 ( b kmax) and O ( bkavg> ,

where the O notation hides logarithmic factor in 4.

Our other main result is that, in the regime when £ is large,
there is very little room for improvement.

Theorem 2. For any comparison graph G, and for any

algorithm, as long as k > c\/Amax(L)nQayvg for some
absolute constant ¢, we have that

sin(W,w)‘ >Q (\/Q(;;g> ,

where as before L is the graph Laplacian.

sup F
weRi

Comparing Theorem 1 with Theorem 2, we see that the
performance bounds of Theorem 1 are minimax optimal,
at least up to the logarithmic factor in the confidence level
¢ and dependence on the skewness factor b. We can thus
conclude that the square root of the graph resistance is the
key graph-theoretic property which captures how relative
error decays for learning from pairwise comparisons. This
observation is the main contribution of this paper.
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Table I.Comparison for different families of graphs, of

19) (% T ) and O(\/ bQmax ), Which are, respectively,
the asymptotic bounds (3) in (Negahban et al., 2016), and the first

bound from our Theorem 1. The common decay in k=2 is omit-
ted for the sake of conciseness.
Graph Eq. (3) | Theorem 1
Line b°/2n? byv/n
Circle b>/2n? by/n
2D grid b°/2n b
3D grid b2/2n2/3 b
Star graph vo/2\/n b
2 stars joined at centers | b%/2n!-® b
Barbell graph b>/2p3:5 by/n
Geo. random graph bo/2n b
Erdos-Renyi bo/? b

1.5. Comparison to previous work

Table 1 quantifies how much the bound of Theorem 1 ex-
pressed in terms of )., improves the asymptotic decay
rate on various graphs over the bound (Negahban et al.,
2016). The O notation ignores log-factors. Both ran-
dom graphs are taken at a constant multiple threshold
which guarantees connectivity; for Erdos-Renyi this means
p = O((logn)/n) and for a geometric random graph, this
means connecting nodes at random positions at the unit

square when they are O (\ /(logn)/ n) apart.

Most of the scalings for eigenvalues of normalized Lapla-
cians used in Table 1 are either known or easy to derive. For
an analysis of the eigenvalue of the barbell graph®, we refer
the reader to (Landau & Odlyzko, 1981); for mixing times
on the geometric random graph, we refer the reader to (Avin
& Ercal, 2007); for the resistance of an Erdos-Renyi graph,
we refer the reader to (Sylvester, 2016).

In terms of the worst-case performance in terms of the num-
ber of nodes, our bound grows at worst as O (b«/n/k)

using the observation that Q. = O(n). By contrast, for
the barbell graph, the bound of (Negahban et al., 2016)
grows as O(b%/2n35 //k), and it is not hard to see this is
actually the worst-case scaling in terms of the number of
nodes.

Finally, we note that these comparisons use slightly different
error measures: | sin(WW,w)| on our end vs the relative error
in the 2-norm after w, W have been normalized to sum to
one, used by (Negahban et al., 2016). To compare both in
terms of the latter, we could multiply our bounds by v/b (see
Lemma ?7?).

3Following (Wilf, 1989), the barbell graph refers to two com-
plete graphs on n/3 vertices connected by a line of n/3 vertices.

1.6. Notation

The remainder of this paper is dedicated to the proof Theo-
rem 1 (Theorem 2 is proved in the Supplementary Informa-
tion). However, we first collect some notation we will find
occasion to use.

As mentioned earlier, we let F}; be the empirical rate of
success of item ¢ in the &£ comparisons between ¢ and j;
thus E[F;;| = p;; so that the previously introduced R;; can

F;
be expressed as R;; = 5+

. We also let p;; = w;/w; =
Dij/Pji» to which R;; should converge asymptotically.

We will make a habit of stacking any of the quantities de-
fined into vectors; thus F', for example, denotes the vector
in R!Z! which stacks up the quantities F;; with the choice
of ¢ and j consistent with the orientation in the incidence
matrix B. The the vectors p and p are defined likewise.

2. Proof of the algorithm performance
(Theorem 1)

We begin the proof with a sequence of lemmas which work
their way to the main theorem. The first step is to introduce
some notation for the comparison on the edge (3, j).

Let X;; be the outcome of a single coin toss comparing
coins ¢ and j. Using the standard formula for the variance
of a Bernoulli random variable, we obtain

Var(Xi;) = pij(1 = pij) = @otaye
— 1 = 1
= oy ©

where we have defined v;; = p;; +2+ p;jl. Observe that vy
is always upper bounded by 3+max(pij, pii) < 34+b < 4b,
where we remind b > max; ; 7w

We first argue that all F;; are reasonably close to their ex-
pected values. For the sake of concision, we state the follow-
ing assumptions about the constants, d, k and the quantity
C,s. Note that some of the intermediate results hold under
weaker assumptions, but we omit these details for the sake
of simplicity.

Assumption 1. We have that § < e=1, Cy, 5 > ¢11log(n/d),
and k > c2b(Ch 5 + 1) max{Qmax, Emax }-

The following lemma is a standard application of Chernoft’s
inequality. For completeness, a proof is included in Section
?? of the Supplementary Information.

Lemma 1. There exist absolute constants constants cy, co
such that, under Assumption 1, we have

Chs
P | max |F;; ii| > : < 4.
((u)e 1Fis = il kv,;j>
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The next lemma provides a convenient expression for the
quantity log W —log w in terms of the “measurement errors’
F—p. Note that the normalization assumption is not a loss of
generality since w is defined up to a multiplicative constant,
and is directly satisfied if W is obtained from 5).

7

Lemma 2. Suppose w is normalized so that Y -, log w; =
0. There exist absolute constants c1, co > 0 such that, under
Assumption 1, there holds with probability 1 — ¢

logW —logw = L'BV(F —p) + L'BA, (7

bCi,
|A||oo§0< k"*), ®)

where V is a |E| x | E| diagonal matrix whose entries are
the v;;, for all edges (i, j) € E.

and

Proof. By definition
log w; — logw; = log p;; forall (i,7) € E,
which we can write as B log w = log p. It follows that
logw = (BBT) Blogp = L' Blog p,

since w is assumed normalized so that )., logw; = 0.
Combining this with Eq. (5), we obtain

log W — logw = LTB(log R — log p). 9)
We thus turn our attention to analyzing the vector log R —

log p. Our analysis will be conditioning on the event that
forall (i,5) € E,

Cn,(?
kvij

{IFi; — pij| < 1, (10

which, by Lemma 1, holds with probability at least 1 — §.
We will call this event A.

We begin with one implication that comes from putting
together event A and our assumption k > ¢;bC, 5 (in As-
sumption 1) for a constant c; that we can choose: that we
can assume that

min(ﬁiﬁ?ﬁ)
Fi—pi| < ————2,
(;I;?EXE‘ ij p1j| > 5

Y

Indeed, from Eq. (10) for this last equation to hold it suffices

to have k > 25C,, 5/(vi;p;) for all (i, j) € E. Observing
that

1 1 <b

= = Pji )

Uijp?j pijlpji p?j ’

we see that assuming k > 25bC, s is sufficient for Eq. (11)
to hold conditional on event A.

Our analysis of log R — log p begins with the observation
that since

1-Fj _1-pj
ji Pji

1 1
log|l — —1) —log| ——1
g(sz‘ ) g(m )

Next we use Taylor’s expansion of the function g(z) =
log(1/x — 1), for which we have

Rij =
we have that

log R;; — log p;;

1 1-2z

% 9'(pji) = —vij, 9" () = 20— 2)

g@):m(T

to obtain that log R;; — log p;; can thus be expressed as

1 1-— 225]'1'

2
—vij(Fji — pji) + 30— 20)° (Fij —pig)” (12)
where z;; lies between p;; and F); (and 1 — zj; lies thus
between p;; and Fj;). We can rewrite this equality in a

condensed form
logR—logp=V(F —p)+ A, (13)

where A corresponds to the second terms in (12), which
we will now bound. Because we have conditioned on
event A, which, as discussed above implies |Fj; — p;;| <
min(pji, pﬂ)/5, we actually have that Zji S [OSpj“ 12])]1]
and that 1 — z;; lying between p;; and Fj; belongs to
[O.8pij, 12])1]] Hence

1 1 n,d
Ayl € s —5—(Fij — pi)? < eaviyj—==,
‘ J| > 20-841722]'17?1‘( J pJ) < €305 L
for c3 = m, and where we have used (10) for the last

inequality. Plugging this into Eq. (13) and (9) completes the
proof, and Eq. (8) follows from the last equation combined
with the fact that v;; < 4b for all (4, j) € E. ]

The following lemma bounds how much the ratios of our
estimates WW; differ from the corresponding ratios of the true
weights w;. To state it, we will use the notation

Qz‘j = (ei

where e; is the standard notation for the 7’th basis vector.
Furthermore, we define the product

—ej)(ei —e;)",

(@) g = 2" BTLIQiL By, |allf; ;) = (2. 2) ).
(14)
Observe that the matrix BT LTQ;; LT B is positive semidefi-

nite, which implies by standard arguments that

T+ Yy, +Y) g <202, 2) 65 + 2 ) i)

holds for all vectors x, ¥.
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Lemma 3. Suppose w is normalized so that ) ., logw; =
0. There exist absolute constants c1,co > 0 such, under
Assumption 1, with with probability 1 — §, we have that for
all pairs 1,7 =1,...,n,

R 2
W,‘ w; 2 2
<10gW —log w) §2||V(F_p)H(i,j)""?”A”(i,j)7

j Jj
(15)
and

I8l <0 (%2).

Proof. Observe that, on the one hand, using Lemma 2,

—logw)TQij(logW —
(LUﬂ’F p)+ L'BA)" Qi; (L'BV(F — p) + L' BA)
(VIF—p)+ A V(F—p)+ Ay
2AV(F =p), V(F —p))aj + 2(4, A>(z:,j>

log w)

(log
<
(16)
which is the right-hand side of (15). On the other hand,
observe that

(log W — log w) Qij (log W —log w)
= (log Wi — (log Wj — log wj)) a7

= (log 3 ~1os 22)’

Combining Eq. (16) with Eq. (17) completes the proof. W

log w; —

Having proved Lemma 3, we now analyze each of the terms
in the right-hand side of Eq. (15). We begin with the second
term, i.e., with HA”?M’)' To bound it, we will need the
following inequality.

Lemma 4. Forany A € RIZ! we have that

|ATBT LT (e; — €;)] < ||Alloo /2| B,

where, recall, §);; is the resistance between nodes i and j,
and E;; is the set of edges belonging to some simple path
from 1 to j.

Proof. The result follows from circuit theory, and we sketch
it out along with the relevant references. The key idea is
that the vector u = BT LT(e; — e;) has a simple electric
interpretation. We have that . € RI®| and the %’th entry of
u is the current on edge k£ when a unit of current is put into
node u at removed at node j. For details, see the discussion
in Section 4.1 of (Vishnoi, 2013).

This lemma follows from several consequences of this inter-
pretation. First, the entries of u are an acyclic flow from ¢
to j; this follows, for example, from Thompson’s principle
which asserts that the current flow minimizes energy (see
Theorem 4.8 of (Vishnoi, 2013)). Moreover, Thompson’s

principle further asserts that ;; = ||u/|3. Finally, by the
flow decomposition theorem (Theorem 3.5 in (Ahuja et al.,
2017)), we can decompose this flow along simple paths
from i to j; this implies that [supp(u)| < |E;;|.

With these facts in mind, we apply Cauchy-Schwarz to
obtain

[lully < JJull2V/|supp(w)| < /Qi;|Eijl,

and then conclude the proof using Holder’s inequality

|ATBT LY (ei—e;)| = [ATu| < ||A]fooull1[|Alloe v/ [ B |-

As a corollary, we are able to bound the second term in Eq.
(15). The proof follows immediately by combining Lemma
4 with Lemma 3.

Corollary 1. There exist absolute constants c1, co > 0 such
that, under Assumption 1, with probability 1 — §, we have
that for all pairsi,5 =1,...,n,

HAH?i,j) <0 <Q73Ewk2> :

We now turn to the first-term in Eq. (15), which is bounded
in the next lemma.

Lemma 5. There exist absolute constants c1, co such that,
under Assumption 1, with probability 1 — 6 we have that for
all pairsi,7 =1,...,n,

b? 1
IV(F =Dl <0 (25 (141065 )

Proof. The random variable X;; — p;; (where, recall, X;
is the outcome of a single comparison between nodes
i and j) is zero-mean and supported on an interval of
length 1, and consequently it is subgaussian* with pa-
rameter 1 (see Section 5.3 of (Lattimore & Szepesviri,
2018)). By standard properties of subgaussian random vari-
ables, it follows that v;;(F;; — p;;) is subgaussian with

7 = v;;/Vk < 4b/Vk. Tt follows then from Theorem
2.1 of (Hsu et al., 2012) for subgaussian random variables

applied to [[(¢; — ¢;) BT LT (F = p) |2 = ||V (F = p)][(; ;)»

that for any ¢ > 1 there is a probability at least 1 — e~ that

16b2

A (tr(

16b2
k

[V (F 7p)‘|%i,j) <

M) + 23/t (M2)t + 2||M]| t)

< tr(M)(1 + 4t),

* A random variable Y is said to be subgaussian with parameter
Tif E[e’\y] < e™ N2 for all A



Learning from Pairwise Comparisons

where we have used vt < t, tr(M?) < tr(M)? and
||M]| < tr(M). We now compute this trace.

tr(M) = tr(BTL'Q;;L'B)

= tr(Qi L' BBTLT) = tr(Q;; L")

= (ei — ej)TLT(e,» — ej) = Qijy (18)
where the second equality uses the well-known property of
the Moore-Penrose pseudo-inverse: AT AAT = Af for any
matrix A (see Section 2.9 of (Drineas & Mahoney, 2018));
and last equality uses a well-known relation between re-
sistances and Laplacian pseudoinverses, see Chapter 4 of
(Vishnoi, 2013). The result follows then from the applica-
tion of (18) to t = log 1/4. [ ]

Having obtained the bounds in the preceding sequence of
lemmas, we now return to Lemma 3 and “plug in” the results
we have obtained. The result is the following lemma.

Lemma 6. There exist absolute constants c1,co > 0 such,

under Assumption 1, with probability 1 — 6, we have that
forall pairsi,j=1,...,n,

bE; ;C2

(b(l +1og(1/6)) + %))

X 2
W, 2 b2
[Wj - pijj| <O <pij .

Proof. By putting together Lemma 3 with Corollary 1 and
Lemma 5, we obtain that, with probability at least 1 — ¢,

. 2
(log %: — log %)

<0 (bQTJ (b(l +log(1/6)) + chg&)) "

Observe that for a sufficiently large ca, if £ > c2E;; Cfly s

then the term b(1 + log(1/4)) + % is bounded by

O(b(1+1og(1/6))). Hence, if k is also at least c2b€2;; (1 +

log(1/6)) (which holds due to Assumption 1), equation (19)

implies

Wi Ww;

log — — log —
Wj wy

<1. (20)

A particular implication is that max (elog(wi/ Wi,

elos(wi/wy)) < el+log(wi/wi)  Applying the inequality
le® — €b| < max{e?,e’}|a — b| to (20) leads then to

& < 61+10g(wi/wj)

lo %—10 Wi
W, g = gw4

wy i J

'm

and now using el°8(wi/wi) — pij» the proof follows by
combining the last equation with Eq. (19). |

The next lemma demonstrates how to convert Lemma 6 into
a bound on the relative error between W and the true weight
vector w.

Lemma 7. Suppose we have that

~ 2
W;
[ = _pij‘| < p?jSij(k)v

W;

foralli,j = 1,...,n. Fixindex ¢ € {1,...,n}. Then
there hold

sin(w, W) < max sje(k), 21

J

sin(w, W) < bzsavg, (22)
where S,yg = E“’bzil’é”’" ~ab
Proof. Tt follows from Lemma ?? that for all «,

W - awl2
sin(w, W) < [W = awlly om;)||2
[lawl[3
Taking o = Wy /wy, we get
. . 3 W,
W —awl|} > (Wi— %wz)2 B Zi(‘;w — pie)?
2 - i72 2
[[aw|[3 S ‘2;% w? 2P
Using the assumption of this lemma, we obtain
vV — 2 s 2
HW 0”'20”2 < ZZ Sl@(’;)pzl7 (23)
|low]|3 2P

from which (21) follows. Another consequence of (23) is
that

W — awl|3

[lowl[3

_ (max; p2,) >, sie(k) <32 D1 Sit
nmin; p?z N no
(24)
where we used
max,; w; / Wy

Wy
= — = max — < b.
min; w; /we

max; Pi¢

min; pie

Observe now that since sayg = % o0 % >, Sie, there must
exist at least one ¢ for which Z?:l Si¢ < Savg. Hence (22)
follows from (24). |

Having proven this last lemma, Theorem 1 follows immedi-
ately by combining By Lemma 6 and Lemma 7.

3. Experiments

The purpose of this section is two-fold. First, we would like
to demonstrate that simulations are consistent with Theorem
1; in particular, we would like to see error scalings that
are consistent with the average resistance, rather than e.g.,
spectral gap. Second, we wish observe that, although our
results are asymptotic, in practice the scaling with resistance
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appears immediately, even for small k. Since our main
contribution is theoretical, and since we do not claim that
our algorithm is better than available methods in practice,
we do not perform a comparison to other methods in the
literature. Additional details about our experiments are
provided in Section ?? in the Supplementary Information.

We begin with Erdos-Renyi comparison graphs. Figure
1 shows the evolution of the error with the number £k of
comparisons per edge. The error decreases as O(1/vVk)
as predicted. Moreover, this is already the case for small
values of k.

Next we move to the influence of the graph properties. Fig-
ure 2 shows that the average error is asymptotically con-
stant when n grows while keeping the expected degree
d := (n — 1)p constant, and that it decreases as O(1/+/d)
when the expected degree grows while keeping n constant.
This is consistent with our analysis in Table 1, and with the
results (Boumal & Cheng, 2014) showing that the average
resistance .y, of Erdos-Renyi graphs evolves as O(1/d).

We next consider lattice graphs in Figure 3. For the 3D
lattice, the error appears to converge to a constant when n
grows, which is consistent with our results since the average
resistance of 3D lattice is bounded independently of n. The
trend for the 2D lattice appears also consistent with a bound
in O(+1/log n) predicted by our results since the resistance
on 2D lattice evolves as O(log n).

sin("W,w)

Figure 1. Error evolution with the number k£ of comparisons per
edge in Erdos-Renyi graphs of 100 nodes, for different expected
degrees d = (n — 1)p, with b = 10. Each line corresponds
to a different expected degree. The results are averaged over
Ntest = 100 tests. The dashed line is proportional to 1/ Vk.

4. Conclusion

Our main contribution has been to demonstrate, by a combi-
nation of upper and lower bounds, that the error in quality
estimation from pairwise comparisons scales as the graph
resistance. Our work motivates a number of open questions.

First, our upper and lower bounds are not tight with respect
to skewness measure b. We conjecture that the scaling
of O(1/bvg/k) for relative error is optimal, but either

100 200 300 400 10'

(a)

Figure 2. Error evolution with the number of nodes n for different
expected degrees d = (n — 1)p (a), and with the expected degree
(n — 1)p for different number of nodes n (b). There are k =
100 comparisons per edge, b = 5, and results are averaged over
Ntest = 50 tests. The dashed line in (b) is proportional to 1/ Vk.

(b)

("W,

0.12 0.1
0 100 200 300 400 0 100 200 300 400 500
n

(a) (b)
Figure 3. Error evolution with the number of nodes for regular
lattices in 2D (a), and 3D (b). Each line corresponds to a different
choice of b. The number of comparisons is k& = 100 per edge.
Results are averaged over respectively Nies; = 1000 and Niest =
2000 tests. The dashed line in (a) is proportional to v/Iog n.

upper of lower bounds matching this quantity are currently
unknown.

Second, it would interesting to obtain non-asymptotic ver-
sion of the results presented here. Our simulations are con-
sistent with the asymptotic scaling O(y/€Qye/k) (ignoring
the dependence on b) being effective immediately, but at the
moment we can only prove this scaling governs the behavior
as k — oo.
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