
Population Based Augmentation:
Efficient Learning of Augmentation Policy Schedules

Daniel Ho 1 2 Eric Liang 1 Ion Stoica 1 Pieter Abbeel 1 3 Xi Chen 1 3

Abstract
A key challenge in leveraging data augmenta-
tion for neural network training is choosing an
effective augmentation policy from a large search
space of candidate operations. Properly chosen
augmentation policies can lead to significant gen-
eralization improvements; however, state-of-the-
art approaches such as AutoAugment are compu-
tationally infeasible to run for the ordinary user.
In this paper, we introduce a new data augmenta-
tion algorithm, Population Based Augmentation
(PBA), which generates nonstationary augmenta-
tion policy schedules instead of a fixed augmenta-
tion policy. We show that PBA can match the per-
formance of AutoAugment on CIFAR-10, CIFAR-
100, and SVHN, with three orders of magnitude
less overall compute. On CIFAR-10 we achieve
a mean test error of 1.46%, which is a slight im-
provement upon the current state-of-the-art. The
code for PBA is open source and is available at
https://github.com/arcelien/pba.

1. Introduction
Data augmentation techniques such as cropping, translation,
and horizontal flipping are commonly used to train large
neural networks (Lin et al., 2013). Augmentation transforms
images to increase the diversity of image data. While deep
neural networks can be trained on enormous numbers of
data examples to exhibit excellent performance on tasks
such as image classification, they contain a likewise enor-
mous number of parameters, which causes overfitting. Data
augmentation acts as a regularizer to combat this. However,
most approaches used in training state-of-the-art networks
only use basic types of augmentation. While neural network

1EECS, UC Berkeley, Berkeley, California, USA 2Current
affiliation: X, Mountain View, California, USA 3covariant.ai,
Berkeley, California, USA. Correspondence to: Daniel Ho
<daniel.ho@berkeley.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Te
st

 e
rr

or
 (%

)

0

1

2

3

4

WRN-28-10 S-S (26 
2x96D)

S-S (26 
2x96D)

S-S (26 
2x112D)

PyramidNet

Baseline AutoAugment Population Based Augmentation

Figure 1. PBA matches AutoAugment’s classification accuracy
across a range of different network models on the CIFAR-10
dataset, while requiring 1,000x less GPU hours to run. For the full
set of results, refer to Table 2. Assuming an hourly GPU cost of
$1.5, producing a new augmentation policy costs around $7.5 for
PBA vs $7,500 with AutoAugment. The same scaling holds for
the SVHN dataset as well.

architectures have been investigated in depth (Krizhevsky
et al., 2012; He et al., 2015; Szegedy et al., 2015; Simonyan
& Zisserman, 2014; Zagoruyko & Komodakis, 2016; Huang
et al., 2016; Han et al., 2016), less focus has been put into
discovering strong types of data augmentation and data aug-
mentation policies that capture data invariances.

A key consideration when applying data augmentation is
picking a good set of augmentation functions, since redun-
dant or overly aggressive augmentation can slow down train-
ing and introduce biases into the dataset (Graham, 2014).
Many recent methods learn augmentation policies to ap-
ply different functions to image data. Among these, Au-
toAugment (Cubuk et al., 2018) stands out with state-of-the-
art results in CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), and ImageNet (Deng et al., 2009). Us-
ing a method inspired by Neural Architecture Search (Zoph
& Le, 2016), Cubuk et al. learn a distilled list of augmenta-
tion functions and associated probability-magnitude values,
resulting in a distribution of possible augmentations which
can be applied to each batch of data. However, the search
technique used in the work is very computationally expen-
sive, and code has not been released to reproduce it. In this
work, we address these issues with a simple and efficient
algorithm for augmentation policy learning.

https://github.com/arcelien/pba


Population Based Augmentation

Table 1. Comparison of pre-computation costs and test set error
(%) between this paper, AutoAugment (AA), and the previous best
published results. Previous results did not pre-compute augmenta-
tion policies. AutoAugment reported estimated cost in Tesla P100
GPU hours, while PBA measured cost in Titan XP GPU hours.
Besides PBA, all metrics are cited from (Cubuk et al., 2018). For
more detail, see Table 2. *CIFAR-100 models are trained with the
policies learned on CIFAR-10 data.

Dataset Value Previous Best AA PBA

CIFAR-10 GPU Hours - 5000 5
Test Error 2.1 1.48 1.46

CIFAR-100 GPU Hours - 0* 0*
Test Error 12.2 10.7 10.9

SVHN GPU Hours - 1000 1
Test Error 1.3 1.0 1.1

Our formulation of data augmentation policy search, Pop-
ulation Based Augmentation (PBA), reaches similar levels
of final performance on a variety of neural network mod-
els while utilizing orders of magnitude less compute. We
learn a robust augmentation policy on CIFAR-10 data in five
hours using one NVIDIA Titan XP GPU, and we visualize
its performance in Figure 1. Relative to the several days
it takes to train large CIFAR-10 networks to convergence,
the cost of running PBA beforehand is marginal and signif-
icantly enhances results. These results are summarized in
Table 1. PBA leverages the Population Based Training algo-
rithm (Jaderberg et al., 2017) to generate an augmentation
schedule that defines the best augmentation policy for each
epoch of training. This is in contrast to a fixed augmentation
policy that applies the same transformations independent of
the current epoch number.

We release code to run and evaluate our augmen-
tation search algorithm at https://github.com/
arcelien/pba. This allows an ordinary workstation
user to easily experiment with the search algorithm and aug-
mentation operations. A particularly interesting use case
would be to introduce new augmentation operations, per-
haps targeted towards a particular dataset or image modality,
and be able to quickly produce a tailored, high performing
augmentation schedule. Our code uses the Ray (Moritz
et al., 2017) implementation of PBT, which allows for easy
parallelization across and within GPUs and CPUs.

This paper is organized as follows: First, we cover rele-
vant background and AutoAugment (Section 2). We then
introduce the PBA algorithm (Section 3). We describe the
augmentation schedules PBA discovers and its performance
on several datasets. Finally, we seek to understand the
efficiency gains of PBA through ablation studies and com-
parison with baseline methods (Section 4).

2. Background
2.1. Related Work

We first review types of data augmentation for image recog-
nition, which improve generalization with limited data by
applying transformations to generate additional samples.
Common techniques such as random cropping, flipping, ro-
tating, scaling, and translating are used by top performing
models for training on MINST, CIFAR-10, and ImageNet
datasets (Simard et al., 2003; Ciresan et al., 2012; Wan et al.,
2013; Sato et al., 2015; Krizhevsky et al., 2012; Lin et al.,
2013; Han et al., 2016). Some additional approaches to
generate augmented data include image combining (Inoue,
2018; Okafor et al., 2018), elastic distortions (Wong et al.,
2016), and generative adversarial networks (Antoniou et al.,
2017).

Augmentation has been shown to have a large impact on im-
age modalities where data is scare or expensive to generate,
like medical imaging (Bowles et al., 2018; Frid-Adar et al.,
2018) or non-supervised learning approaches (Mundhenk
et al., 2017).

Several papers have attempted to automate the generation
of data augmentations with data-driven learning. These use
methods such as manifold learning (Paschali et al., 2019),
Bayesian Optimization (Tran et al., 2017), and generative ad-
versarial networks which generate transformation sequences
(Ratner et al., 2017). Additionally, (Lemley et al., 2017)
uses a network to combine pairs of images to train a target
network, and (DeVries & Taylor, 2017) injects noise and
interpolates images in an autoencoder learned feature space.
AutoAugment (Cubuk et al., 2018) uses reinforcement learn-
ing to optimize for accuracy in a discrete search space of
augmentation policies.

Our approach was inspired by work in hyperparameter op-
timization. There has been much previous work to well-
tune hyperparameters, especially in Bayesian Optimiza-
tion (Srinivas et al., 2009; Bergstra et al., 2011; Snoek
et al., 2012; Hutter et al., 2011), which are sequential in
nature and expensive computationally. Other methods in-
corporate parallelization or use non-bayesian techniques
(Li et al., 2016; Golovin et al., 2017; Shah & Ghahramani,
2015; Springenberg et al., 2016; González et al., 2016) but
still either require multiple rounds of optimization or large
amounts of compute. These issues are resolved in Popula-
tion Based Training (Jaderberg et al., 2017), which builds
upon both evolutionary strategies (Clune et al., 2008) and
random search (Bergstra & Bengio, 2012) to generate non-
stationary, adaptive hyperparameter schedules in a single
round of model training.

https://github.com/arcelien/pba
https://github.com/arcelien/pba


Population Based Augmentation

augmentation policy fc1..c5(x)

sub-policy ci(x)

RNN controller trained with Proximal Policy 
Optimization over 15,000 
child models

augmentation policy fp(x)
where
p
init 

= (op,mag=0,prob=0) x 30

fixed augmentation 
policy fc1..c5

i(x)

augmentation policy 
schedule fp0...pT(x, t)

single run of Population Based 
Training on 16 child models

(b) Population Based Augmentation

(a) AutoAugment

sub-policy ci(x)sub-policy ci(x)sub-policy ci(x)sub-policy gop,mag,prob
j(x)

sampled policy

ci(x)ci(x)ci(x)cj(x)gj(x)

Figure 2. Comparison of AutoAugment and PBA augmentation
strategies. In contrast to AutoAugment, PBA learns a schedule
instead of a fixed policy. It does so in a short amount of time
by using the PBT algorithm to jointly optimize augmentation
policy parameters with the child model. PBA generates a single
augmentation function f(x, t) where x is an input image and
t the current epoch, compared to AutoAugment’s ensemble of
augmentation policies f i(x), each of which has several further
sub-policies.

2.2. AutoAugment

Cubuk et al. shows that using a diverse, stochastic mix of
augmentation operations can significantly reduce generaliza-
tion error. They automate the search over the space of data
augmentation policies in a method called AutoAugment,
which significantly improves neural network model accu-
racy on a variety of image datasets. AutoAugment follows
an approach similar to work in the neural architecture search
area (Zoph et al., 2017; Pham et al., 2018) where a controller
RNN network is trained via reinforcement learning to out-
put augmentation policies maximizing for accuracy (Figure
2). However, this approach is expensive in both time and
compute, as the signal for the controller has to be generated
by training thousands of models to convergence on differ-
ent augmentation policies and evaluating final validation
accuracy.

Cubuk et al. curated an augmentation policy search space
based on operations from the PIL python library. These in-
clude ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert,
Equalize, Solarize, Posterize, Contrast, Color, Brightness,
Sharpness, Cutout (Devries & Taylor, 2017), and Sample-
Pairing (Inoue, 2018). Each operation has two associated
parameters: probability and magnitude. The authors used
discrete probability values from 0% to 100%, in increments
of 10%. Magnitude can range from 0 to 9 inclusive, but a
few operations ignore this value and apply a constant effect.

Figure 3. Augmentations applied to a CIFAR-10 “car” class image,
at various points in our augmentation schedule learned on Reduced
CIFAR-10 data. The maximum number of operations applied is
sampled from 0 to 2. Each operation is formatted with name,
probability, and magnitude value respectively.

A policy would then consist of five sub-policies, each con-
sisting of two operations and associated parameters. For
every batch of data, one randomly selected sub-policy would
be applied. In total, the final policy for AutoAugment con-
catenated the five best performing polices for a total of 25
sub-policies.

To learn an augmentation policy, 15,000 sampled policies
were evaluated on a Wide-ResNet-40-2 (40 layers, widening
factor of 2) child model (Zagoruyko & Komodakis, 2016) by
taking the validation accuracy after training for 120 epochs
on a “reduced” dataset. For CIFAR-10, this consists of 4,000
images from the training set, and for SVHN, 1,000 images.
CIFAR-100 is trained with a transferred augmentation policy
from CIFAR-10.

3. Population Based Augmentation
In this section we introduce the design and implementation
of the PBA algorithm.

3.1. Why Augmentation Schedules?

The end goal of PBA is to learn a schedule of augmentation
policies as opposed to a fixed policy. As we will see, this
choice is responsible for much of the efficiency gains of PBA
(Section 4). Though the search space for schedules over
training epochs is larger than that of fixed policies f ∈ F by
a factor of |F ||epochs|, counter-intuitively, PBA shows that
it is far more efficient to search for a good schedule than a



Population Based Augmentation

fixed policy. Several factors contribute to this.

First, estimating the final test error of a fixed augmentation
policy is difficult without running the training of a child
model to completion. This is true in particular because the
choice of regularizing hyperparameters (e.g., data augmen-
tation functions) primarily impacts the tail end of training.
Therefore, estimating the final performance of a given fixed
augmentation policy requires training a model almost to
completion. In contrast, it is straightforward to reuse prior
computations to estimate the performance of two variants
of a schedule that share a prefix.

Second, there is reason to believe that it is easier to find
a good augmentation policy when searching in the space
of schedules. An augmentation function that can reduce
generalization error at the end of training is not necessarily
a good function at initial phases. Such functions would
be selected out when holding the augmentation function
fixed for the entirely of training. And though the space
of schedules is large, most good schedules are necessarily
smooth and hence easily discoverable through evolutionary
search algorithms such as PBT.

3.2. Learning a Schedule

In PBA we consider the augmentation policy search problem
as a special case of hyperparameter schedule learning. Thus,
we leverage Population Based Training (PBT) (Jaderberg
et al., 2017): a hyperparameter search algorithm which
optimizes the parameters of a network jointly with their
hyperparameters to maximize performance. The output of
PBT is not an optimal hyperparameter configuration but
rather a trained model and schedule of hyperparameters. In
PBA, we are only interested in the learned schedule and
discard the child model result (similar to AutoAugment).
This learned augmentation schedule can then be used to
improve the training of different (i.e., larger and costlier to
train) models on the same dataset.

PBT executes as follows. To start, a fixed population of
models are randomly initialized and trained in parallel. At
certain intervals, an “exploit-and-explore” procedure is ap-
plied to the worse performing population members, where
the model clones the weights of a better performing model
(i.e., exploitation) and then perturbs the hyperparameters of
the cloned model to search in the hyperparameter space (i.e.,
exploration). Because the weights of the models are cloned
and never reinitialized, the total computation required is the
computation to train a single model times the population
size.

The Ray Tune framework (Moritz et al., 2017; Liaw et al.,
2018) includes a parallelized implementation of PBT
(https://ray.readthedocs.io/en/latest/
tune.html) which handles the exploit-and-explore

Algorithm 1 The PBA augmentation policy template, the
parameters of which are optimized by PBT. The parameter
vector is a vector of (op, prob,mag) tuples. There are two
instances of each op in the vector, and this parameter cannot
be changed. PBT learns a schedule for the prob and mag
parameters during the course of training a population of
child models.

Input: data x, parameters p, [list of (op, prob,mag)]
Shuffle parameters
Set count = [0, 1, 2] with probability [0.2, 0.3, 0.5]
for (op, prob,mag) in p do

if count = 0 then
break

end if
if random(0, 1) < prob then
count = count− 1
x = op(x,mag)

end if
end for
Return x

process in the backend. This implementation allows a user
to deploy multiple trials on the same GPU, provided there
is enough GPU memory. When the models only require a
fraction of the computation resources and memory of an
entire GPU, as in this work, training is sped up by fully
utilizing the GPU.

3.3. Policy Search Space

In Algorithm 1, we describe the augmentation policy func-
tion used in PBA and the optimization strategy we adapt
from PBT. The challenge here is defining a smooth param-
eterization of the augmentation policy so that PBT can in-
crementally adopt good augmentations, while still allowing
good coverage of the search space within a limited number
of perturbations.

To make PBA more directly comparable with AutoAugment,
we attempt to preserve the qualities of the AutoAugment
formulation when possible, using the same augmentation
functions, a similar number of total augmentation functions
in the policy, and the same set of magnitude variants per
function as applicable. Our augmentation policy search
space consists of the augmentation operations from Au-
toAugment, less SamplePairing (Inoue, 2018), for a total of
15 operations. We use the same code and magnitude options
derived from PIL operations to ensure a fair comparison
based on search algorithm performance.

We define a set of hyperparameters consisting of two magni-
tude and probability values for each operation, with discrete
possibilities for each. This gives us 30 operation-magnitude-
probability tuples for a total of 60 hyperparameters. Like

https://ray.readthedocs.io/en/latest/tune.html
https://ray.readthedocs.io/en/latest/tune.html


Population Based Augmentation

Algorithm 2 The PBA explore function. Probability param-
eters have possible values from 0% to 100% in increments
of 10%, and magnitdue parameters have values from 0 to 9
inclusive.

Input: Params p, list of augmentation hyperparameters
for param in p do

if random(0, 1) < 0.2 then
Resample param uniformly from domain

else
amt = [0,1,2,3] uniformly at random
if random(0, 1) < 0.5 then

param = param+ amt
else
param = param− amt

end if
Clip param to stay in domain

end if
end for

AutoAugment, we have 10 possibilities for magnitude and
11 possibilities for probability. When we apply augmenta-
tions to data, we first shuffle all operations and then apply
operations in turn until a limit is reached. This limit can
range from 0 to 2 operations.

Similar to the AutoAugment policy, PBA allows for two
of the same augmentation operations to be applied to a sin-
gle batch of data. Due to the use of a schedule, a single
operation the PBA search space includes (10 × 11)30 ≈
1.75 × 1061 possibilities, compared to 2.8 × 1032 for Au-
toAugment. For discussion about the hyperparameter priors
encoded within this policy template, see Section 4.3. Our
policy template formulation is primarily motivated by the
need to directly compare results with AutoAugment rather
than optimizing for the best possible policy template.

3.4. PBA Implementation

We describe the formulation of our search in the format of
PBT experiments (Jaderberg et al., 2017).

Step: In each iteration we run an epoch of gradient descent.

Eval: We evaluate a trial on a validation set not used for
PBT training and disjoint from the final test set.

Ready: A trial is ready to go through the exploit-and-
explore process once 3 steps/epochs have elapsed.

Exploit: We use Truncation Selection (Jaderberg et al.,
2017), where a trial in the bottom 25% of the population
clones the weights and hyperparameters of a model in the
top 25%.

Explore: See Algorithm 2 for the exploration function. For
each hyperparameter, we either uniformly resample from

all possible values or perturb the original value.

4. Experiments and Analysis
In this section, we describe experiments we ran to better
understand the performance and characteristics of the PBA
algorithm. We seek to answer the following questions:

1. How does classification accuracy and computational
cost of PBA compare to state-of-the-art and random
search baselines?

2. Where does the performance gain of PBA come from –
does having a schedule of augmentations really matter,
or is a stationary distribution sufficient?

3. How does PBA performance scale with the amount of
computation used?

4. How sensitive is PBA to the hyperparameters of the
optimization procedure – did we just move part of the
optimization process into hyperparameter selection?

4.1. Comparison with Baselines

Accuracy (CIFAR-10, CIFAR-100, SVHN) We first com-
pare PBA to other state-of-the-art methods on the CIFAR-10
(Krizhevsky, 2009) and SVHN (Netzer et al., 2011) datasets.
Following (Cubuk et al., 2018), we search over a “reduced”
dataset of 4,000 and 1,000 training images for CIFAR-10
and SVHN respectively. Comparatively, CIFAR-10 has a to-
tal of 50,000 training images and SVHN has 73,257 training
images with an additional 531,131 “extra” training images.
PBA is run with 16 total trials on the Wide-ResNet-40-2
model to generate augmentation schedules.

For the augmentation policy, we initialize all magnitude
and probability values to 0, as we hypothesize that less aug-
mentation is required early in training when the validation
accuracy is close to training accuracy. However, since train-
ing error decreases faster than validation error as training
progresses, more regularization should be required, so we
expect the probability and magnitude values to increase as
training progresses. This would counteract overfitting as we
introduce the model to more diverse data.

We then train models on the full training datasets, using
the highest performing augmentation schedules discovered
on the reduced datasets. The schedule learned on reduced
CIFAR-10 is used to train final models on reduced CIFAR-
10, CIFAR-10, and CIFAR-100. The schedule learned on
reduced SVHN is used to train final models on reduced
SVHN and SVHN. We report results in Table 2. Each model
is evaluated five times with different random initializations,
and we report both the mean and standard deviation test set
error in %.



Population Based Augmentation

Table 2. Test set error (%) on CIFAR-10, CIFAR-100, and SVHN. Lower is better. The baseline applies regular random crop and horizontal
flip operations. Cutout is applied on top of the baseline, and PBA/AutoAugment are applied on top of Cutout. We report the mean final
test error of 5 random model initializations. We used the models: Wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016), Shake-Shake
(26 2x32d) (Gastaldi, 2017), Shake-Shake (26 2x96d) (Gastaldi, 2017), Shake-Shake (26 2x112d) (Gastaldi, 2017), and PyramidNet
with ShakeDrop (Han et al., 2016; Yamada et al., 2018). Code for AA eval on SVHN was not released, so differences between our
implementations could impact results. Thus, we report AA* from our re-evaluation.

Dataset Model Baseline Cutout AA AA* PBA

CIFAR-10 Wide-ResNet-28-10 3.87 3.08 2.68 2.58 ± 0.062
Shake-Shake (26 2x32d) 3.55 3.02 2.47 2.54 ± 0.10
Shake-Shake (26 2x96d) 2.86 2.56 1.99 2.03 ± 0.11
Shake-Shake (26 2x112d) 2.82 2.57 1.89 2.03 ± 0.080
PyramidNet+ShakeDrop 2.67 2.31 1.48 1.46 ± 0.077

Reduced CIFAR-10 Wide-ResNet-28-10 18.84 17.05 14.13 12.82 ± 0.26
Shake-Shake (26 2x96d) 17.05 13.40 10.04 10.64 ± 0.22

CIFAR-100 Wide-ResNet-28-10 18.8 18.41 17.09 16.73 ± 0.15
Shake-Shake (26 2x96d) 17.05 16.00 14.28 15.31 ± 0.28
PyramidNet+ShakeDrop 13.99 12.19 10.67 10.94 ± 0.094

SVHN Wide-ResNet-28-10 1.50 1.40 1.07 1.13 ± 0.024 1.18 ± 0.022
Shake-Shake (26 2x96d) 1.40 1.20 1.02 1.10 ± 0.032 1.13 ± 0.029

Reduced SVHN Wide-ResNet-28-10 13.21 32.5 8.15 7.83 ± 0.22
Shake-Shake (26 2x96d) 13.32 24.22 5.92 6.46 ± 0.13

The models we evaluate on include: Wide-ResNet-28-10
(Zagoruyko & Komodakis, 2016), Shake-Shake (26 2x32d)
(Gastaldi, 2017), Shake-Shake (26 2x96d) (Gastaldi, 2017),
Shake-Shake (26 2x112d) (Gastaldi, 2017), and Pyramid-
Net with ShakeDrop (Han et al., 2016; Yamada et al., 2018).
PyramidNet with Shake-Drop uses a batch size of 64, and
all other models use a batch size of 128. For Wide-ResNet-
28-10 and Wide-ResNet-40-2 trained on SVHN, we use the
step learning rate schedule proposed in (Devries & Taylor,
2017), and for all others we use a cosine learning rate with
one annealing cycle (Loshchilov & Hutter, 2016). For all
models, we use gradient clipping with magnitude 5. For
specific learning rate and weight decay values, see the sup-
plementary materials.

Additionally, we report Baseline, Cutout, and AutoAugment
(AA) results found in (Cubuk et al., 2018). For baseline,
standard horizontal flipping and cropping augmentations
were used. The training data is also normalized by the re-
spective dataset statistics. For Cutout, a patch of size 16x16
is used for all CIFAR datasets, and size 20x20 for SVHN
datasets. This applied with 100% chance to each image. Au-
toAugment and PBA apply additional augmentations on top
of the Cutout set (note that this possibly includes a second
application of Cutout). The exception is Reduced SVHN,
where the first 16x16 Cutout operation is removed as it was
found to reduce performance.

CIFAR-10 On Reduced CIFAR-10, we run PBA for 200
epochs, creating a policy schedule defined over 200 epochs.
To extend the policy to Shake-Shake and PyramidNet mod-

els trained for 1800 epochs, we scale the length of the origi-
nal schedule linearly.

While model accuracy on Reduced CIFAR-10 would have
likely been improved with hyperparamater tuning for the
reduced dataset size and smaller Wide-ResNet-40-2 model,
our result shows that no hyperparameter tuning is required
for high performance.

Overall, the PBA learned schedule leads AutoAugment
slightly on PyramidNet and Wide-ResNet-28-10, and per-
forms comparably on Shake-Shake models, showing that
the learned schedule is competitive with state-of-the-art.

We visualize the discovered schedule used in training our
final CIFAR models in Figure 4. For the AutoContrast,
Equalize, and Invert augmentations, magnitude values were
ignored. From the probability values, our schedule seems to
contain all augmentations to at least a moderate degree at
some point, which is reasonable given our random perturb
exploration method. However, there is emphasis on Cutout,
Posterize, Invert, Equalize, and AutoContrast throughout
the schedule.

(Cubuk et al., 2018) suggests that color-based transforma-
tions are more useful on CIFAR compared to geometric
ones, and our results also indicate this. However, they also
found that the Invert transformation is almost never used,
while it was very common in our schedule. A possible
explanation may be that a model is able to better adapt to
Invert when using a nonstationary policy. PBA may be ex-
ploring systematically different parts of the design space



Population Based Augmentation

(a) Operation magnitudes increase rapidly in the initial phase of
training, eventually reaching a steady state around epoch 130.

(b) Normalized plot of operation probability parameters over time.
The distribution flattens out towards the end of training.

Figure 4. Plots showing the evolution of PBA operation parameters
in the discovered schedule for CIFAR-10. Note that each operation
actually appears in the parameter list twice; we take the mean
parameter value for each operation in this visualization.

than AutoAugment. Alternatively, it may be that by the
randomness in PBA, Cutout was introduced and impacted
performance. It may be fruitful to explore combinations
of PBA and AutoAugment to design nonstationary policies
with more precision from a RNN Controller.

CIFAR-100 We additionally evaluate on CIFAR-100 using
the same augmentation schedule discovered using Reduced
CIFAR-10. We find that these results are also competitive
with AutoAugment and significantly better than Baseline or
only applying Cutout.

SVHN We ran PBA for 160 epochs on a 1,000 image Re-
duced SVHN dataset to discover an augmentation policy
schedule without tuning any parameters of the algorithm.
See the appendix for a visualization of an example PBA
policy on the SVHN dataset.

We then trained models on both the Reduced SVHN and

Figure 5. Plot of the expected best child test accuracy after a given
number of random trials on Wide-ResNet-40-2. Random policy
schedules were generated by randomly selecting intervals of length
between 1 and 40, and then selecting a random policy for the
interval. All values were selected uniformly from the domain.

SVHN Full (core training data with extra data), using the
discovered schedule. Except for the Wide-ResNet-28-10
model on Reduced SVHN, training was done without tuning,
using the hyperparamters from AutoAugment. We were
able to obtain a policy comparable with AutoAugment. This
demonstrates the robustness of the PBA algorithm across
datasets.

Examining the learned policy schedule, we observe that
Cutout, Translate Y, Shear X, and Invert stand out as be-
ing present with high probability across all epochs. This
fits with the findings of (Cubuk et al., 2018), indicating
that Invert and geometric transformations are successful in
SVHN because it is important to learn invariances to these
augmentations. From another perspective, all of the aug-
mentations appear with reasonable probability at some point
in the schedule, which suggests that using a preliminary
strategy like AutoAugment to filter out poor performing
augmentations would be an interesting direction to explore.

Computational Cost AutoAugment samples and evaluates
∼15,000 distinct augmentation policies on child models,
which requires about 15000∗120 = 1.8m epochs of training.
In comparison, PBA leverages PBT to learn a schedule with
a population of 16 child models. PBA uses 200 epochs of
training per child model, for a total of 3200 epochs, or over
500x less compute than AutoAugment.

As a second baseline, we also train 250 child models with
randomly selected augmentation policies, and 250 child
models with randomly selected augmentation schedules. In
Figure 5, we use this data to plot the expected maximum
child model test accuracy after a given number of random
trials. As shown, it takes over 250 trials for the expected
child accuracy, which is strongly correlated with final ac-



Population Based Augmentation

Table 3. Ablation study: We evaluate models on CIFAR-10 using a fixed policy (the last policy of the PBA schedule learned on Reduced
CIFAR-10), shuffled schedule order, and a fully collapsed schedule, comparing to results with the original PBA schedule. See Section 4.2
for further explanation. We evaluate each model once, and some combinations were not evaluated due to cost considerations.

Model Cutout Fixed Policy Order-shuffled Fully-shuffled PBA

Wide-ResNet-28-10 3.08 2.76 2.66 2.89 2.576 ± 0.062
Shake-Shake (26 2x32d) 3.02 2.73 - - 2.54 ± 0.10
Shake-Shake (26 2x96d) 2.56 2.33 - - 2.03 ± 0.11
Shake-Shake (26 2x112d) 2.57 2.09 - - 2.03 ± 0.080
PyramidNet+ShakeDrop 2.31 1.55 - - 1.46 ± 0.077

curacy, to approach that reached by a single 16-trial PBA
run. Hence, PBA still provides over an order of magnitude
speedup here.

Real-time Overhead Since PBT trains all members of its
population simultaneously, the minimal real-time overhead
is just the time it takes to train one child model. In prac-
tice, there is a slight overhead from the mutation procedures
triggered by PBT, but the overall search time is still small
compared to the time to train the primary model. In con-
trast, AutoAugment leverages reinforcement-learning based
techniques, in which a Recurrent Neural Network (RNN)
controller is trained with the reinforcement learning algo-
rithm Proximal Policy Optimization (PPO) (Schulman et al.,
2017). Using this strategy, new augmentation policies can
only be sampled and trained after the previous batch of sam-
ples has completed, so parallelization is limited to the batch
size of the PPO update.

4.2. Does having a schedule matter?

PBA distinguishes itself from AutoAugment by learning
a augmentation policy schedule, where the distribution of
augmentation functions can vary as a function of the train-
ing epoch. To check whether a schedule contributes to
performance, we try training the model using (1) the last
augmentation policy of the PBA schedule as a fixed policy,
(2) the augmentation schedule with the order of policies
shuffled but the duration of each policy fixed, and (3) the
augmentation schedule collapsed into a time-independent
stationary distribution of augmentations (i.e., a new policy
is sampled, weighted by duration, for each batch of data).

In Table 3, we see that training with the PBA Fixed Policy
degrades accuracy by ∼10% percent on average, which
is significantly worse than training with the full sched-
ule. Compared to using Cutout, the fixed policy gives up
∼50% of gains on Wide-ResNet-28-10, Shake-Shake 32,
and Shake-Shake 96, and ∼10% of gains on Shake-Shake
112 and PyramidNet. This shows that the augmentation
schedule improves accuracy over a fixed policy, especially
on smaller models.

Similarly, when we evaluated the shuffled schedules (only

on Wide-ResNet-28-10), accuracy is also significantly lower,
showing that a stationary distribution derived from the sched-
ule does not emulate the schedule. We hypothesize that
schedule improves training by allowing ”easy” augmenta-
tions in the initial phase of training while still allowing
”harder” augmentations to be added later on.

4.3. Hyperparameter Tuning and Sensitivity

We did not tune the discrete space for magnitude or prob-
ability options to keep our policy easy to compare to Au-
toAugment. We have two copies of each operation, as the
AutoAugment sub-policy is able to contain two copies of
the same operation as well.

For the search algorithm, we lightly tuned the explore func-
tion and the distribution for count in Algorithm 1, the max-
imum number of augmentation functions to apply for each
batch of data. While we keep the maximum value of count
at 2 in line with AutoAugment’s length 2 subpolicy, there
may be room for performance improvement by carefully
tuning the distribution.

We tried perturbation intervals of 2 and 4 once, but did not
find this value to be sensitive. We also tried to run PBT for
100 epochs, but found this to slightly decrease performance
when evaluated on models for 200 epochs.

It may be interesting to consider training a larger child
model (e.g, Shake-Shake) for 1,800 epochs to generate a
schedule over the full training duration and eliminate the
need to stretch the schedule. In a similar vein, an experiment
to use PBT directly on the full CIFAR-10 dataset or Wide-
ResNet-28-10 model may lead to better performance, and is
computationally feasible with PBA.

5. Conclusion
This paper introduces PBA, a novel formulation of data
augmentation search which quickly and efficiently learns
state-of-the-art augmentation policy schedules. PBA is sim-
ple to implement within any PBT framework, and we release
the code for PBA as open source.



Population Based Augmentation

Acknowledgements
We thank Richard Liaw, Dogus Cubuk, Quoc Le, and the
ICML reviewers for helpful discussion.

References
Antoniou, A., Storkey, A. J., and Edwards, H. A. Data

augmentation generative adversarial networks. CoRR,
abs/1711.04340, 2017.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281–305, 2012.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In NIPS, 2011.

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R. N.,
Hammers, A., Dickie, D. A., del C. Valdés Hernández,
M., Wardlaw, J. M., and Rueckert, D. Gan augmentation:
Augmenting training data using generative adversarial
networks. CoRR, abs/1810.10863, 2018.

Ciresan, D., Meier, U., and Schmidhuber, J. Multi-
column deep neural networks for image classification.
2012 IEEE Conference on Computer Vision and Pat-
tern Recognition, Jun 2012. doi: 10.1109/cvpr.2012.
6248110. URL http://dx.doi.org/10.1109/
CVPR.2012.6248110.

Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F.,
and Sanjuán, R. Natural selection fails to optimize mu-
tation rates for long-term adaptation on rugged fitness
landscapes. PLoS Computational Biology, 4:1145 – 1146,
2008.

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. CoRR, abs/1805.09501, 2018. URL http:
//arxiv.org/abs/1805.09501.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, June 2009. doi: 10.1109/
CVPR.2009.5206848.

Devries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. CoRR,
abs/1708.04552, 2017. URL http://arxiv.org/
abs/1708.04552.

DeVries, T. and Taylor, G. W. Dataset augmentation in
feature space. CoRR, abs/1702.05538, 2017. URL
https://arxiv.org/abs/1702.05538.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and
Greenspan, H. Synthetic data augmentation using gan
for improved liver lesion classification. 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI
2018), pp. 289–293, 2018.

Gastaldi, X. Shake-shake regularization. CoRR,
abs/1705.07485, 2017. URL http://arxiv.org/
abs/1705.07485.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G.,
Karro, J. E., and Sculley, D. (eds.). Google
Vizier: A Service for Black-Box Optimization, 2017.
URL https://research.google.com/pubs/
archive/46180.pdf.

González, J., Dai, Z., Hennig, P., and Lawrence, N. D. Batch
bayesian optimization via local penalization. In AISTATS,
2016.

Graham, B. Fractional max-pooling. CoRR, abs/1412.6071,
2014. URL http://arxiv.org/abs/1412.
6071.

Han, D., Kim, J., and Kim, J. Deep pyramidal residual
networks. CoRR, abs/1610.02915, 2016. URL http:
//arxiv.org/abs/1610.02915.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely con-
nected convolutional networks. CoRR, abs/1608.06993,
2016. URL http://arxiv.org/abs/1608.
06993.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm configu-
ration. In LION, 2011.

Inoue, H. Data augmentation by pairing samples for images
classification. CoRR, abs/1801.02929, 2018. URL http:
//arxiv.org/abs/1801.02929.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., Fernando, C., and Kavukcuoglu, K.
Population based training of neural networks. CoRR,
abs/1711.09846, 2017. URL http://arxiv.org/
abs/1711.09846.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Tech Report, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

http://dx.doi.org/10.1109/CVPR.2012.6248110
http://dx.doi.org/10.1109/CVPR.2012.6248110
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1702.05538
http://arxiv.org/abs/1705.07485
http://arxiv.org/abs/1705.07485
https://research.google.com/pubs/archive/46180.pdf
https://research.google.com/pubs/archive/46180.pdf
http://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1610.02915
http://arxiv.org/abs/1610.02915
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1801.02929
http://arxiv.org/abs/1801.02929
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846


Population Based Augmentation

Lemley, J., Bazrafkan, S., and Corcoran, P. Smart augmen-
tation - learning an optimal data augmentation strategy.
CoRR, abs/1703.08383, 2017. URL http://arxiv.
org/abs/1703.08383.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh,
A., and Talwalkar, A. Efficient hyperparameter opti-
mization and infinitely many armed bandits. CoRR,
abs/1603.06560, 2016. URL http://arxiv.org/
abs/1603.06560.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonza-
lez, J. E., and Stoica, I. Tune: A research platform
for distributed model selection and training. CoRR,
abs/1807.05118, 2018. URL http://arxiv.org/
abs/1807.05118.

Lin, M., Chen, Q., and Yan, S. Network in network. CoRR,
abs/1312.4400, 2013. URL http://arxiv.org/
abs/1312.4400.

Loshchilov, I. and Hutter, F. SGDR: stochastic gradient
descent with restarts. CoRR, abs/1608.03983, 2016. URL
http://arxiv.org/abs/1608.03983.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Paul, W., Jordan, M. I., and Stoica, I. Ray:
A distributed framework for emerging AI applications.
CoRR, abs/1712.05889, 2017. URL http://arxiv.
org/abs/1712.05889.

Mundhenk, T. N., Ho, D., and Chen, B. Y. Improve-
ments to context based self-supervised learning. CoRR,
abs/1711.06379, 2017. URL http://arxiv.org/
abs/1711.06379.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Y Ng, A. Reading digits in natural images with
unsupervised feature learning. NIPS, 01 2011.

Okafor, E., Schomaker, L., and Wiering, M. An analysis of
rotation matrix and colour constancy data augmentation
in classifying images of animals. Journal of Information
and Telecommunication, 2:1–27, 06 2018. doi: 10.1080/
24751839.2018.1479932.

Paschali, M., Simson, W., Guha Roy, A., Ferjad Naeem,
M., Gbl, R., Wachinger, C., and Navab, N. Data aug-
mentation with manifold exploring geometric transforma-
tions for increased performance and robustness. CoRR,
abs/1901.04420, 01 2019.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient neural architecture search via parameter sharing.
CoRR, abs/1802.03268, 2018. URL http://arxiv.
org/abs/1802.03268.

Ratner, A. J., Ehrenberg, H. R., Hussian, Z., Dunn-
mon, J., and Re, C. Learning to compose domain-
specific transformations for data augmentation. NIPS,
abs/1709.01643, 2017. URL https://arxiv.org/
abs/1709.01643.

Sato, I., Nishimura, H., and Yokoi, K. Apac: Augmented
pattern classification with neural networks, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shah, A. and Ghahramani, Z. Parallel predictive entropy
search for batch global optimization of expensive ob-
jective functions. CoRR, abs/1511.07130, 2015. URL
http://arxiv.org/abs/1511.07130.

Simard, P., Steinkraus, D., and Platt, J. Best practices for
convolutional neural networks applied to visual document
analysis. Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings., 2003. doi:
10.1109/icdar.2003.1227801. URL http://dx.doi.
org/10.1109/ICDAR.2003.1227801.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. URL http://arxiv.org/
abs/1409.1556.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In NIPS, 2012.

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
Bayesian optimization with robust bayesian neural net-
works. In NIPS, 2016.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W.
Gaussian process bandits without regret: An experimental
design approach. CoRR, abs/0912.3995, 2009. URL
http://arxiv.org/abs/0912.3995.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR), 2015. URL
http://arxiv.org/abs/1409.4842.

Tran, T., Pham, T., Carneiro, G., Palmer, L. J., and Reid,
I. D. A bayesian data augmentation approach for learning
deep models. CoRR, abs/1710.10564, 2017. URL http:
//arxiv.org/abs/1710.10564.

Wan, L., Zeiler, M. D., Zhang, S., LeCun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
ICML, 2013.

http://arxiv.org/abs/1703.08383
http://arxiv.org/abs/1703.08383
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1711.06379
http://arxiv.org/abs/1711.06379
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1709.01643
https://arxiv.org/abs/1709.01643
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1511.07130
http://dx.doi.org/10.1109/ICDAR.2003.1227801
http://dx.doi.org/10.1109/ICDAR.2003.1227801
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1710.10564
http://arxiv.org/abs/1710.10564


Population Based Augmentation

Wong, S. C., Gatt, A., Stamatescu, V., and McDonnell,
M. D. Understanding data augmentation for classification:
when to warp? CoRR, abs/1609.08764, 2016. URL
http://arxiv.org/abs/1609.08764.

Yamada, Y., Iwamura, M., and Kise, K. Shakedrop regu-
larization. CoRR, abs/1802.02375, 2018. URL http:
//arxiv.org/abs/1802.02375.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, abs/1605.07146, 2016. URL http://arxiv.
org/abs/1605.07146.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. CoRR, abs/1611.01578, 2016.
URL http://arxiv.org/abs/1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
CoRR, abs/1707.07012, 2017. URL http://arxiv.
org/abs/1707.07012.

http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1802.02375
http://arxiv.org/abs/1802.02375
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

