
Better generalization with less data using robust gradient descent

Matthew J. Holland 1 Kazushi Ikeda 2

Abstract

For learning tasks where the data (or losses) may
be heavy-tailed, algorithms based on empirical
risk minimization may require a substantial num-
ber of observations in order to perform well off-
sample. In pursuit of stronger performance un-
der weaker assumptions, we propose a technique
which uses a cheap and robust iterative estimate
of the risk gradient, which can be easily fed into
any steepest descent procedure. Finite-sample
risk bounds are provided under weak moment as-
sumptions on the loss gradient. The algorithm
is simple to implement, and empirical tests us-
ing simulations and real-world data illustrate that
more efficient and reliable learning is possible
without prior knowledge of the loss tails.

1. Introduction
Machine learning requires reliable statistical inference
which can be implemented to be computationally efficient.
To capture this more formally, it is typical to use a risk
R(w) ..= E l(w; z), induced by a loss l, where w is the
parameter to be specified, and expectation is with respect to
the data z. Given a sample z1, . . . ,zn, if a learning algo-
rithm outputs ŵ such that R(ŵ) is sufficiently small with
large confidence over the sample distribution, one takes this
as theoretical evidence for good generalization, albeit up to
conditions placed on the underlying data distribution. The
inferential side of the task is important since the risk can
never be observed, and the computational side is important
for minimizing the gap between the ŵ we study formally
and the ŵ we actually obtain in practice.

The empirical mean of the risk, given by n−1∑n
i=1 l(·; zi),

offers a natural objective function to be minimized based on
the data, and indeed empirical risk minimization (ERM) is
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the de facto standard learning strategy for tackling most ma-
chine learning problems (Kearns & Schapire, 1994; Bartlett
et al., 1996; Alon et al., 1997; Bartlett & Mendelson, 2003).
While ERM is an established strategy, it has many limita-
tions which have been elucidated in recent years. Since
ERM admits any minimizer of the empirical risk, general
analysis of ERM learners abstracts away the actual imple-
mentation of the algorithm. Recent work, however, has
shown how sensitive ERM can be to the actual implemen-
tation (Daniely & Shalev-Shwartz, 2014; Feldman, 2016),
where highly sub-optimal performance can be observed in
classification tasks with more than two classes, let alone the
case of unbounded, possibly heavy-tailed losses. A related
problem is highlighted clearly by Lin & Rosasco (2016),
where ERM implemented using gradient descent (GD) only
enjoys strong guarantees when the data is sharply concen-
trated around the mean. Such results are of conceptual and
practical importance given the ubiquity of gradient-based
methods in modern machine learning. These results also
imply that typical learning algorithms implementing ERM
are liable to become highly inefficient if the data is “incon-
venient” in the heavy-tailed sense.

As heavy-tailed data abounds in practice (Finkenstädt &
Rootzén, 2003), it is naturally of interest to study new algo-
rithms which, like GD-based ERM (henceforth, ERM-GD)
are easy to implement, but which are more robust to the un-
derlying data distribution. In this paper, we propose a new
learning algorithm which utilizes robust and inexpensive
estimates of the risk gradient for use in a first-order update
procedure.

Review of related work Seminal work by Lin & Rosasco
(2016) looks at the generalization of ERM-GD for sub-
Gaussian observations. Since ERM-GD is a key benchmark
to be compared against, it is of interest to find a technique
that is competitive with ERM-GD when it is optimal, but
which behaves better when sub-Gaussianity cannot be as-
sumed.

Our main interest is with robustness to the underlying distri-
bution, and important work in this direction has appeared in
recent years. One approach is to use all the data to construct
robust estimates R̂(w) of the risk R(w) for each w to be
checked, and subsequently minimize R̂ as an alternative ob-
jective. A strategy using M-estimates of R was introduced



Better generalization with less data using robust gradient descent

by Brownlees et al. (2015), based on results due to Catoni
(2009; 2012). Statistical guarantees are near-optimal under
very weak assumptions on the data, but unfortunately R̂ is
defined implicitly, which makes computation a challenge.
Even if R is convex, the estimate R̂ need not be, and the
non-linear optimization required by this method does not
scale well to models with many parameters.

Another notable line of work looks at generalizations of the
“median of means” procedure, in which one constructs candi-
dates on disjoint partitions of the data, and aggregates them
such that anomalous candidates are effectively ignored (Hsu
& Sabato, 2016; Minsker & Strawn, 2017). Conceptually
the closest recent work to this paper is that of “robust gra-
dient descent” algorithms implemented using a median of
means sub-routine. Chen et al. (2017); Prasad et al. (2018)
apply this routine directly to the loss gradients, while Lecué
& Lerasle (2017); Lecué et al. (2018) take the mean loss
gradient of the subset corresponding to the median of means
risk estimate. Both approaches have strong statistical guar-
antees and can be easily implemented, but their performance
is marginal: when sample size n is small relative to the com-
plexity of the model, very few subsets can be created, and
robustness is poor; conversely, when n is large enough to
make many candidates, cheaper and less sophisticated meth-
ods often suffice. While demonstrably robust, the difficulty
of proper partitioning in practice is demonstrated clearly by
the empirical tests of Lecué et al. (2018). Methodologically,
these algorithms differ entirely from ours in terms of the
robust gradient estimator used, since we use M-estimates of
the risk gradient computed using a fixed-point scheme.

Our contributions To overcome the limitations of ERM-
GD, and existing robust alternatives highlighted above, our
key idea is to make use of robust estimates of the risk gra-
dient, instead of the risk itself. This estimates can then be
fed directly into gradient-based iterative updates. While
computational overhead arises due to the need to robustify
in high dimensions, the optimization side of the problem is
much more straightforward, and we obtain strong formal
guarantees that hold over a wide class of data distributions.
Our main contributions:

• A new learning algorithm which is easy to implement,
mimics ERM-GD under sub-Gaussian data, while be-
ing more robust to heavy-tailed data.

• Finite sample bounds on the excess risk incurred by our
proposed procedure which hold under weak moment
assumptions on the data distribution.

• Empirical tests using both simulations and real-world
benchmark data reinforce the practical utility of our
procedure and the robustness implied by the theory.

2. Robust gradient descent
Were the risk to be known, we could update using

w∗(t+1)
..= w∗(t) − α(t)g(w∗(t)) (1)

where g(w) ..= R′(w), an ideal procedure. Any learning
algorithm in practice will not have access to R or g, and
thus must approximate this update with

ŵ(t+1)
..= ŵ(t) − α(t)ĝ(ŵ(t)), (2)

where ĝ represents some sample-based estimate of g. Set-
ting ĝ to the sample mean reduces to ERM-GD, and condi-
tioned on ŵ(t), E ĝ(ŵ(t+1)) = g(ŵ(t+1)), a property used
throughout the literature (Rakhlin et al., 2012; Le Roux
et al., 2012; Johnson & Zhang, 2013; Shalev-Shwartz &
Zhang, 2013; Frostig et al., 2015; Murata & Suzuki, 2016).
While convenient from a technical standpoint, there is no
conceptual necessity for ĝ to be unbiased. More realisti-
cally, as long as ĝ is sharply distributed around g, then an
approximate first-order procedure should not deviate too
far from the ideal, even if these estimators are biased. An
outline of such a routine is given in Algorithm 1.

Algorithm 1 Robust gradient descent outline
inputs: ŵ0, T > 0
for t = 0, 1, . . . , T − 1 do
D(t) ← {l′(ŵ(t); zi)}ni=1 {Update loss gradients.}
σ̂(t) ← RESCALE(D(t)) {Eqn. (4).}
θ̂(t) ← LOCATE(D(t), σ̂(t)) {Eqns. (3), (5).}
ŵ(t+1) ← ŵ(t) − α(t)θ̂(t) {Plug in to update.}

end for
return: ŵ(T )

Let us flesh out the key sub-routines used in a single itera-
tion, for thew ∈ Rd case. When the data is prone to outliers,
a “soft” truncation of errant values is a prudent alternative
to discarding valuable data. This can be done systematically
using a convenient class of M-estimators of location and
scale (van der Vaart, 1998; Huber & Ronchetti, 2009). The
LOCATE sub-routine entails taking a convex, even function
ρ, and for each coordinate, computing θ̂ = (θ̂1, . . . , θ̂d) as

θ̂j ∈ arg min
θ∈R

n∑
i=1

ρ

(
l′j(w; zi)− θ

sj

)
, j = 1, . . . , d.

(3)

Note that if ρ(u) = u2, then θ̂j reduces to the sample mean
of {l′j(w; zi)}ni=1, thus to reduce the impact of extreme
observations, it is useful to take ρ(u) = o(u2) as u→ ±∞.
Here the sj > 0 factors are used to ensure that consistent
estimates take place irrespective of the order of magnitude
of the observations. We set the scaling factors in two steps.
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First is RESCALE, in which a rough dispersion estimate of
the data is computed for each j using

σ̂j ∈

{
σ > 0 :

n∑
i=1

χ

(
l′j(w; zi)− γj

σ

)
= 0
}
. (4)

Here χ : R → R is an even function, satisfying χ(0) < 0,
and χ(u) > 0 as u→ ±∞ to ensure that the resulting σ̂j is
an adequate measure of the dispersion of l′j(w; z) about a
pivot point, say γj =

∑n
i=1 l

′
j(w; zi)/n. Second, we adjust

this estimate based on the available sample size and desired
confidence level, as

sj = σ̂j
√
n/ log(2δ−1) (5)

where δ ∈ (0, 1) specifies the desired confidence level
(1 − δ), and n is the sample size. This last step appears
rather artificial, but can be derived from a straightforward
theoretical argument, given in section 3.1. This concludes
all the steps1 in one full iteration of Algorithm 1 on Rd.

In the remainder of this paper, we shall investigate the learn-
ing properties of this procedure, through analysis of both a
theoretical (section 3) and empirical (section 4) nature. As
an example, in the strongly convex risk case, our formal
argument yields excess risk bounds of the form

O

(
d
(
log(dδ−1) + d log(n)

)
n

)
+O

(
(1− αβ)T

)
with probability no less than 1−δ over the sample, for small
enough α(t) = α over T iterations. Here β > 0 is a constant
that depends only on R, and analogous results hold without
strong convexity. Of the underlying distribution, all that is
assumed is a bound on the variance of l′(·; z), suggesting
formally that the procedure should be competitive over a
diverse range of data distributions.

3. Theoretical analysis
Here we analyze the performance of Algorithm 1 on hy-
pothesis classW ⊆ Rd, as measured by the risk achieved,
which we estimate using upper bounds that depend on key
parameters of the learning task. A general sketch is given,
followed by some key conditions, representative results,
and discussion. All proofs are relegated to supplementary
materials.

1For concreteness, unless specified otherwise, in all em-
pirical tests to follow we use the Gudermannian function
(Abramowitz & Stegun, 1964), ρ(u) =

∫ u

0 ψ(x) dx where
ψ(u) = 2 atan(exp(u)) − π/2, and χ(u) = u2/(1 + u2) − c,
for a constant c > 0. General conditions on ρ, as well as standard
methods for computing the M-estimates, namely the θ̂j and σ̂j ,
are given in the supplementary materials.

Notation For integer k, write [k] ..= {1, . . . , k} for
all the positive integers from 1 to k. Let µ denote the
data distribution, with z1, . . . ,zn independent observations
from µ, and z ∼ µ an independent copy. Risk is then
R(w) ..= Eµ l(w; z), its gradient g(w) ..= R′(w), and
R∗ ..= infw∈W R(w). P denotes a generic probability mea-
sure, typically the product measure induced by the sample.
We write ‖ · ‖ for the usual (`2) norm on Rd. For function
F on Rd with partial derivatives defined, write the gradient
as F ′(u) ..= (F ′1(u), . . . , F ′d(u)) where for short, we write
F ′j(u) ..= ∂F (u)/∂uj .

3.1. Argument sketch

The analysis here requires only two steps: (i) A good esti-
mate ĝ ≈ g implies that approximate update (2) is near the
optimal update. (ii) Under variance bounds, coordinate-wise
M-estimation yields a good gradient estimate. We are then
able to conclude that with enough samples and iterations
(but not too many iterations), the output of Algorithm 1 can
achieve an arbitrarily small excess risk. Here we spell out
the key facts underlying this approach.

For the first step, let w∗ ∈ Rd be a minimizer of R. When
the risk R is strongly convex, then using well-established
convex optimization theory (Nesterov, 2004), we can easily
control ‖w∗(t+1)−w

∗‖ as a function of ‖w∗(t)−w
∗‖ for any

step t ≥ 0. Thus to control ‖ŵ(t+1) −w∗‖, in comparing
the approximate case and optimal case, all that matters is
the difference between g(ŵ(t)) and ĝ(ŵ(t)) (Lemma 4).
For the general case of convex R, since one cannot easily
control the distance of the optimal update from any potential
minimum, one must directly compare the trajectories of ŵ(t)
and w∗(t) over t = 0, 1, . . . , T , which once again amounts
to a comparison of g and ĝ. This inevitably leads to more
error propagation and thus a stronger dependence on T , but
the essence of the argument is the same.

For the second step, since ĝ is based on a random sample
{z1, . . . ,zn}, we need an estimation technique which ad-
mits guarantees for any choice of w, with high probability
over the random draw of the sample. A basic requirement is
that

P
{

max
t≤T
‖ĝ(ŵ(t))− g(ŵ(t))‖ ≤ ε

}
≥ 1− δ. (6)

Of course this must be proved (see Lemmas 3 and 8), but if
valid, then running Algorithm 1 for T steps, we can invoke
(6) to get a high-probability event on which ŵ(T ) closely
approximates the optimal GD output, up to the accuracy
specified by ε. Naturally this ε will depend on confidence
level δ, which implies that to get 1− δ confidence intervals,
the upper bound in (6) will increase as δ gets smaller.

In the LOCATE sub-routine of Algorithm 1, we construct
a more robust estimate of the risk gradient than can be
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provided by the empirical mean, using an ancillary estimate
of the gradient variance. This is conducted using a smooth
truncation scheme, as follows. One important property of ρ
in (3) is that for any u ∈ R, one has

− log(1− u+ Cu2) ≤ ρ′(u) ≤ log(1 + u+ Cu2) (7)

for a fixed C > 0, a simple generalization of the key prop-
erty utilized by Catoni (2012). For the Gudermannian func-
tion (section 2 footnote), we can take C ≤ 2, with the added
benefit that ρ′ is bounded and increasing. As to the quality
of these estimates, note that they are distributed sharply
around the risk gradient, as follows.

Lemma 1 (Concentration of M-estimates). For each coor-
dinate j ∈ [d], the estimates θ̂j of (3) satisfy

1
2 |θ̂j − gj(w)| ≤

C varµ l′j(w; z)
sj

+ sj log(2δ−1)
n

(8)

with probability no less than 1 − δ, given large enough n
and sj .

To get the tightest possible confidence interval as a function
of sj > 0, we must set

s2
j =

Cn varµ l′j(w; z)
log(2δ−1) ,

from which we derive (5), with σ̂2
j corresponding to a com-

putable estimate of varµ l′j(w; z). If the variance over
all choices of w is bounded by some V < ∞, then up
to the variance estimates, we have ‖ĝ(w) − g(w)‖ ≤
O(
√
dV log(2dδ−1)/n), with ĝ = θ̂ from Algorithm 1,

yielding a bound for (6) free of w.
Remark 2 (Comparison with ERM-GD). As a reference
example, assume we were to run ERM-GD, namely using an
empirical mean estimate of the gradient. Using Chebyshev’s
inequality, with probability 1 − δ all we can guarantee is
ε ≤ O(

√
d/(nδ)). On the other hand, using the location

estimate of Algorithm 1 provides guarantees with log(1/δ)
dependence on the confidence level, realizing an exponential
improvement over the 1/δ dependence of ERM-GD, and
an appealing formal motivation for using M-estimates of
location as a novel strategy.

3.2. Conditions and results

On the learning task, we make the following assumptions.

A1. Minimize risk R(·) over a closed, convex W ⊂ Rd
with diameter ∆ <∞.

A2. R(·) and l(·; z) (for all z) are λ-smooth, convex, and
continuously differentiable onW .

A3. There exists w∗ ∈ W at which g(w∗) = 0.

A4. Distribution µ satisfies varµ l′j(w; z) ≤ V < ∞, for
all w ∈ W , j ∈ [d].

Algorithm 1 is run following (3), (4), and (5) as specified in
section 2. For RESCALE, the choice of χ is only important
insofar as the scale estimates (the σ̂j) should be moderately
accurate. To make the dependence on this accuracy precise,
take constants cmin, cmax > 0 such that

c2
min ≤

σ̂j
varµ l′j(w; z) ≤ c

2
max, j ∈ [d] (9)

for all choices ofw ∈ W , and write c0 ..= (cmax+C/cmin).
For 1− δ confidence, we need a large enough sample; more
precisely, for each w, it is sufficient if for each j,

1
4 ≥

C log(2δ−1)
n

(
1 +

C varµ l′j(w; z)
σ̂2
j

)
. (10)

For simplicity, fix a small enough step size,

α(t) = α ∈ (0, 2/λ), t ∈ {0, . . . , T − 1}. (11)

Dependence on initialization is captured by two related
factors R0 ..= R(w∗(0)) − R∗, and D0 ..= ‖w∗(0) − w

∗‖.
Under this setup, we can control the estimation error.

Lemma 3 (Accuracy of gradient estimates). For each step
t = 0, . . . , T − 1 of Algorithm 1, we have

‖θ̂(t) − g(ŵ(t))‖ ≤
ε̃√
n

..= λ(
√
d+ 1)√
n

+ 2c0

√
dV (log(2dδ−1) + d log(3∆

√
n/2))

n

with probability no less than 1− δ.

Under strongly convex risk In addition to assumptions
(A1)–(A4), assume that R is κ-strongly convex. In this case,
w∗ in (A3) is the unique minimum. First, we control the
estimation error by showing that the approximate update (2)
does not differ much from the optimal update (1).

Lemma 4 (Minimizer control). Consider the general ap-
proximate GD update (2), with α(t) = α such that 0 <
α < 2/(κ+ λ). Assume that (6) holds with bound ε. Write
β ..= 2κλ/(κ+λ). Then, with probability no less than 1−δ,
we have

‖ŵ(T ) −w∗‖ ≤ (1− αβ)T/2D0 + 2ε
β
.

Since Algorithm 1 indeed satisfies (6), as proved in Lemma
3, we can use the control over the parameter deviation pro-
vided by Lemma 4 and the smoothness of R to prove a
finite-sample excess risk bound.
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Theorem 5 (Excess risk bounds). Write ŵ(T ) for the output
of Algorithm 1 after T iterations, run such that (10)–(11)
hold, with step size α(t) = α for all 0 < t < T , as in
Lemma 4. It follows that

R(ŵ(T ))−R∗ ≤ λ(1− αβ)TD2
0 + 4λε̃

β2n

with probability no less than 1− δ, where ε̃ is as given in
Lemma 3.
Remark 6 (Interpretation of bounds). There are two terms
in the upper bound of Theorem 5, an optimization term
decreasing in T , and an estimation term decreasing in n. The
optimization error decreases at the usual gradient descent
rate, and due to the uniformity of the bounds obtained, the
statistical error is not hurt by taking T arbitrarily large, thus
with enough samples we can guarantee arbitrarily small
excess risk. Finally, the most important assumption on the
distribution is weak: finite second-order moments. If we
assume finite kurtosis, the argument of Catoni (2012) can
be used to create analogous guarantees for an explicit scale
estimation procedure, yielding guarantees whether the data
is sub-Gaussian or heavy-tailed an appealing robustness to
the data distribution.
Remark 7 (Doing projected descent). The above analysis
proceeds on the premise that ŵ(t) ∈ W holds after all the
updates, t ∈ [T ]. To enforce this, a standard variant of
Algorithm 1 is to update as

ŵ(t+1) ← πW

(
ŵ(t) − α(t)θ̂(t)

)
, t ∈ {0, . . . , T − 1}

where πW(u) ..= arg minv∈W ‖u − v‖. By (A1), this
projection is well-defined (Luenberger, 1969, Sec. 3.12,
Thm. 3.12). Using this fact, it follows that ‖πW(u) −
πW(v)‖ ≤ ‖u − v‖ for all u,v ∈ W , by which we can
immediately show that Lemma 4 holds for the projected
robust gradient descent version of Algorithm 1.

With prior information An interesting concept in ma-
chine learning is that of the relationship between learning
efficiency, and the task-related prior information available
to the learner. In the previous results, the learner is assumed
to have virtually no information beyond the data available,
and the ability to set a small enough step-size. What if, for
example, just the gradient variance was known? A classic
example from decision theory is the dominance of the es-
timator of James and Stein over the maximum likelihood
estimator, in multivariate Normal mean estimation using
prior variance information. In our more modern and non-
parametric setting, the impact of rough, data-driven scale
estimates was made explicit by the factor c0. Here we give
complementary results that show how partial prior informa-
tion on the distribution µ can improve learning.
Lemma 8 (Accuracy with variance information). Condi-
tioning on ŵ(t) and running one scale-location sequence of

Algorithm 1, with σ̂(t) = (σ̂1, . . . , σ̂d) modified to satisfy
σ̂2
j = C varµ l′j(ŵ(t); z), j ∈ [d]. It follows that

‖θ̂(t) − g(ŵ(t))‖ ≤ 4
(
C trace(Σ(t)) log(2dδ−1)

n

)1/2

with probability no less than 1− δ, where Σ(t) is the covari-
ance matrix of l′(ŵ(t); z).

One would expect that with sharp gradient estimates, the
variance of the updates should be small with a large enough
sample. Here we show that the procedure stabilizes quickly
as the estimates get closer to an optimum.

Theorem 9 (Control of update variance). Run Algorithm
1 as in Lemma 8, with arbitrary step-size α(t). Then, for
any t < T , taking expectation with respect to the sample
{zi}ni=1, conditioned on ŵ(t), we have

E ‖ŵ(t+1) − ŵ(t)‖2 ≤

2α2
(t)

(32Cd trace(Σ(t))
n

+ ‖g(ŵ(t))‖2
)
.

In addition to these results, one can prove an improved
version of Theorem 5 in a perfectly analogous fashion, using
Lemma 8.

4. Empirical analysis
The chief goal of our numerical experiments is to elucidate
the relationship between factors of the learning task (e.g.,
sample size, model dimension, underlying data distribution)
and the behaviour of the robust gradient procedure proposed
in Algorithm 1. We are interested in how these factors
influence performance, both in an absolute sense and relative
to the key competitors.

4.1. Controlled tests

Noisy convex minimization In this experiment, we con-
struct a risk function taking a canonical quadratic form,
setting R(w) = 〈Σw,w〉/2 + 〈w,u〉 + c, for pre-fixed
constants Σ ∈ Rd×d, u ∈ Rd, and c ∈ R. The task is to
minimize R(·) without knowledge of R itself, but rather
only access to n random function observations r1, . . . , rn.
These r : Rd → R are generated independently from a com-
mon distribution, satisfying the property E r(w) = R(w)
for allw ∈ Rd. In particular, here we generate observations
ri(w) = (〈w∗ − w,xi〉 + εi)2/2, i ∈ [n], with x and ε
independent of each other. Herew∗ denotes the minimum,
and we have that Σ = ExxT . The inputs x shall follow an
isotropic d-dimensional Gaussian distribution throughout all
the following experiments, meaning Σ is positive definite,
and R is strongly convex.
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For these first tests, we run three procedures. First is ideal
gradient descent, denoted oracle, which assumes the ob-
jective function R known. This corresponds to (1). Second,
as a standard approximate procedure (2), we use ERM-GD,
denoted erm and discussed at the start of section 2, which
approximates the optimal procedure using the empirical risk.
Against these two benchmarks, we compare our Algorithm
1, denoted rgd, as a robust alternative for (2).

Let us examine the results. We begin with a simple question:
are there natural learning settings in which rgd outperforms
ERM-GD? How does the same algorithm fare in situations
where ERM is optimal? Under Gaussian noise, ERM-GD is
effectively optimal (Lin & Rosasco, 2016, Appendix C). We
thus consider the case of Gaussian noise (mean 0, standard
deviation 20) as a baseline, and use centered log-Normal
noise (log-location 0, log-scale 1.75) as an archetype of
asymmetric heavy-tailed data. Risk results for the two rou-
tines are given alongside training error in Figure 1.
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Figure 1. Performance metrics as a function of iterative updates.
Top row: Normal noise. Bottom row: log-Normal noise. Settings:
n = 500, d = 2, α(t) = 0.1 for all t.

In the situation favorable to erm, differences in performance
are basically negligible. On the other hand, in the heavy-
tailed setting, the performance of rgd is superior in terms
of quality of the solution found and the variance of the esti-
mates. Furthermore, we see that at least in the situation of
small d and large n, taking T beyond numerical convergence
has minimal negative effect on rgd performance; on the
other hand erm is more sensitive. Comparing true risk with
sample error, we see that while there is some unavoidable
overfitting, in the heavy-tailed setting rgd departs from the
ideal routine at a slower rate, a desirable trait.

Comparison with robust loss minimizer Another inter-
esting question: instead of paying the overhead to robus-
tify gradient estimates (d dimensions to handle), why not

just make robust estimates of the risk itself, and use those
estimates to fuel an iterative optimizer? Just such a proce-
dure is analyzed by Brownlees et al. (2015) (denoted bjl
henceforth). To compare our gradient-centric approach with
their loss-centric approach, we implement bjl using the
non-linear conjugate gradient method of Polak and Ribière
(Nocedal & Wright, 1999), which is provided by fmin_cg
in the optimize module of the SciPy scientific computa-
tion library (default maximum number of iterations is 200d).
This gives us a standard first-order general-purpose opti-
mizer for minimizing the bjl objective. To see how well
our procedure can compete with a pre-fixed max iteration
number, we set T = 25 for all settings. Computation time
is computed using the Python time module. To give a
simple comparison between bjl and rgd, we run multiple
independent trials of the same task, starting both routines
at the same (random) initial value each time, generating a
new sample, and repeating the whole process for different
settings of d = 2, 4, 8, 16, 32, 64. Median times taken over
all trials (for each d setting) are recorded, and presented in
Figure 2 alongside performance results.
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Figure 2. Comparison of our robust gradient-based approach with
the robust objective-based approach. Top: Normal noise. Bottom:
log-Normal noise. Performance is given as a function of the num-
ber of d, the number of parameters to optimize, given in log2 scale.
Settings: n = 500, α(t) = 0.1 for all t.

From the results, we can see that while the performance of
both methods is similar in low dimensions and under Gaus-
sian noise, in higher dimensions and under heavy-tailed
noise, our proposed rgd realizes much better performance
in much less time. Regarding excess empirical risk, ran-
dom deviations in the sample cause the minimum of the
empirical risk function to deviate away from w∗, causing
the rgd solution to be closer to the ERM solution in higher
dimensions. On the other hand, bjl is minimizing a dif-
ferent objective function. It should be noted that there are
assuredly other ways of approaching the bjl optimization
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task, but all of which require minimizing an implicitly de-
fined objective which need not be convex. We believe that
rgd provides a simple and easily implemented alternative,
while still utilizing the same statistical principles.

Application to regression In this experiment, we ap-
ply our algorithm to a general regression task, under a
wide variety of data distributions, and compare its perfor-
mance against standard regression algorithms, both classi-
cal and modern. For each experimental condition, and for
each trial, we generate n training observations of the form
yi = xTi w

∗ + εi, i ∈ [n]. Distinct experimental conditions
are delimited by the setting of (n, d) and µ. Inputs x are
assumed to follow a d-dimensional isotropic Gaussian dis-
tribution, and thus our setting of µ will be determined by
the distribution of noise ε. In particular, we look at several
families of distributions, and within each family look at 15
distinct noise levels, namely parameter settings designed
such that sdµ(ε) monotonically increases over the range
0.3–20.0, approximately linearly over the levels.

To capture a range of signal/noise ratios, for each trial,
w∗ ∈ Rd is randomly generated as follows. Defining the se-
quence wk ..= π/4 + (−1)k−1(k−1)π/8, k = 1, 2, . . . and
uniformly sampling i1, . . . , id ∈ [d0] with d0 = 500, we set
w∗ = (wi1 , . . . , wid). Computing SNµ = ‖w∗‖2

2/ varµ(ε),
we have 0.2 ≤ SNµ ≤ 1460.6. Noise families: log-logistic
(denoted llog in figures), log-Normal (lnorm), Normal
(norm), and symmetric triangular (tri_s). Even with just
these four, we capture both bounded and unbounded sub-
Gaussian noise, and heavy-tailed data both with and without
finite higher-order moments. Prediction error is the average
error computed on an independent large testing set, and
averaged over 250 trials.

Regarding the competing methods, classical choices are
ordinary least squares (`2-ERM, denoted OLS) and least
absolute deviations (`1-ERM, LAD). We also look at two
recent methods of practical and theoretical importance de-
scribed in section 1, namely the robust regression routines of
Hsu & Sabato (2016) (HS) and Minsker (2015) (Minsker).
For the former, we used the source published online by
the authors. For the latter, on each subset the OLS solu-
tion is computed, and solutions are aggregated using the
geometric median (in `2 norm), computed using the well-
known algorithm of Vardi & Zhang (2000, Eqn. 2.6), and
the number of partitions is set to max(2, bn/(2d)c). For
comparison to this, writing RGD for Algorithm 1 in the re-
gression case, we initialize RGD to the OLS solution, with
confidence δ = 0.005, and α(t) = 0.1 for all iterations.
Maximum number of iterations is T ≤ 100; the routine
finishes after hitting this maximum or when the absolute
value of the gradient falls below 0.001 for all conditions.
Illustrative results are given in Figure 3.

Here we have fixed the dimension and noise level, and
look at different values for n, the sample size. We see
that regardless of distribution, RGD effectively matches the
optimal convergence of OLS in the norm and tri_s cases,
and is resilient to the remaining two scenarios where OLS
breaks down. There are clear issues with the median of
means based methods at very small sample sizes, though the
stronger geometric median based method does eventually at
least surpass OLS in the llog and lnorm cases.

4.2. Application to real-world benchmarks

To gain some additional perspective on algorithm perfor-
mance, we shift our focus to real-world benchmark data sets,
and classification tasks (binary and multi-class). The model
assumed is standard multi-class logistic regression: if the
number of classes is C, and the number of input features is
F , then the total number of parameters to be determined is
d = (C − 1)F . The loss function is convex in the parame-
ters, and its partial derivatives all exist, so the model aligns
well with our problem setting of interest. All learning algo-
rithms are given a fixed budget of gradient computations,
set here to 20n, where n is the size of the training set made
available to the learner.

We use three well-known data sets for benchmarking: the
CIFAR-10 data set of tiny images (ten classes), the MNIST
data set of handwritten digits (ten classes), and the protein
homology dataset (two classes) made popular by its inclu-
sion in the KDD Cup. For all data sets, we carry out 10
independent trials, with training and testing tests randomly
sampled as will be described shortly. For all datasets, we
normalize the input features to the unit interval [0, 1] in a
per-dimension fashion. For CIFAR-10, we average the RGD
color channels to obtain a single greyscale channel. As a
result, F = 1024. Note that the protein dataset has highly
unbalanced labels, with only 1296 positive labels out of
over 145,000 observations. We take random samples such
that the training and test sets are balanced, ending up with
n = 2000.

Regarding the competing methods used, we test out a
random mini-batch version of robust gradient descent
given in Algorithm 1, with mini-batch sizes ranging over
{5, 10, 15, 20}, roughly on the order of n−1/4 for the largest
datasets. We also consider a mini-batch in the sense of ran-
domly selecting coordinates to robustify: select min(100, d)
indices randomly at each iteration, and run the RGD sub-
routine on just these coordinates, using the sample mean
for all the rest. Furthermore, we considered several mi-
nor alterations to speed up the original routine, includ-
ing using log cosh(·) instead of the Gudermannian func-
tion for ρ, updating the scale much less frequently (com-
pared to every iteration), and different choices of χ for re-
scaling. We compare our proposed algorithm with stochastic
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Figure 3. Prediction error over sample size 12 ≤ n ≤ 122, fixed d = 5, noise level = 8.
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Figure 4. Test error (misclassification rate) over budget spent, as measured by gradient computations, for the top two performers within
each method class. Each plot corresponds to a distinct dataset.

gradient descent (SGD), and stochastic variance-reduced
gradient descent (SVRG) proposed by Johnson & Zhang
(2013). For each method, pre-fixed step sizes ranging
over {0.0001, 0.001, 0.01, 0.05, 0.10, 0.15, 0.20} are tested.
SGD uses mini-batches of size 1, as does the inner loop of
SVRG. The outer loop of SVRG continues until the budget
is spent, with the inner loop repeating n/2 times. Represen-
tative results are given in Figure 4.

For each of the three methods of interest, and each dataset,
we chose the top two performance settings, displayed using
the suffix *_1 and *_2 respectively. Here “top perfor-
mance” is measured by the median value of the last five
iterations. We see that in general, robust gradient descent is
competitive with the best settings of these well-known rou-
tines, has minimal divergence between the performance of
its first- and second-best settings, and in the case of smaller
data sets (protein homology), indeed significantly outper-
forms the competitors. While these are simply nascent
applications of robust gradient descent, the strong initial
performance suggests that further investigation of efficient
strategies under high-dimensional data is a promising direc-
tion.

5. Concluding remarks
In this paper we analyzed a new learning algorithm which
tries to achieve distribution-robust learning guarantees in a
computationally efficient fashion by introducing a simple
sub-routine to existing gradient-based learning procedures,
which utilizes robust estimates of the gradient of the un-
derlying risk. The idea is to integrate reliable statistical
estimation and practical implementation into a single co-
hesive process. The price paid is computational overhead
due to doing robust estimation in high dimensions and bi-
ased estimates. Since excess risk bounds can be obtained
under weak moment assumptions on the data, and initial em-
pirical tests reinforce these theoretical insights, we believe
this price is indeed worth paying, since all factors consid-
ered, the proposed procedure has been shown to generalize
better, using less samples, over more distributions than its
competitors.
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