Supplementary Material:
Stay With Me: Lifetime Maximization Through

Heteroscedastic Linear Bandits With Reneging

A. Appendix
A.1. Proof of Lemma 2
Proof. Recall that V,, = (XJXH + )\Id). Note that

bn = (XX, + M) X f1(E0?) (39)
=V, 'X, [ (E0?) (40)
=V, ' X, (f 1 (E08) — Xngs + X0nts) (41)

+ AV, o, — AV, 42)

=V, ' X, (fHE08) — Xnds) — AV, 1o + @i
(43)

Therefore, for any x € R4, we know
27 Gn — 27 ] (44)
= |xT‘/vr;1*XnT (fil(go é\) - Xn(b*) - /\xTanlqs”

45)
< Nlzlly, - (Allg-ly, - (46)
+ X0 (5 E08) = Xub )y, ). @D
Moreover, by rewriting £ = £ — € + ¢, we have
fTHE9) (48)
=f N (E-e+e)o(E—c+0)) (49)
= fYeoe) +Mf_1(2(aoXn(9* —0,)  (50)
+ (X (0, — ) 0 X, (0, —§n))), (51)

where (50)-(51) follow from the fact that both f(-) and
J71(-) are linear with a slope My and M r !, respectively,
as described in Section 3. Therefore, by (44)-(51) and the
Cauchy-Schwarz inequality, we have

2700 = 270l < Nally, - {AlI6ully, (52
+[| X (fH (e oe) = Xuge)) |y, (53)
+ 20! ng(aoxn(a* —5,,,))HVH71 (54)

+ M7 HXJ (X (6 — ) © X (6, — B,))

(55)
O

V1 }

A.2. Proof of Lemma 3

We first introduce the following useful lemmas.

Lemma A.1 (Lemma 8.2 in (Erdés et al., 2012)) Let
{a;}X., be N independent random complex variables
with zero mean and variance o> and having uniform
sub-exponential decay, i.e., there exists k1,ko > 0 such
that

P{la;| > 2™} < Kkoe ™. (56)
We use ! to denote the conjugate transpose of a. Let a =
(ai,--- ,an)", let a; denote the complex conjugate of a;,
forall i, and let B = (B;;) be a complex N x N matrix.
Then, we have

N ~1/2
P{|aHBa — o%w(B)| > so® ( Z|Bii|2) } (57)
i=1

< Clexp( —Cy- sl/(H"””l))7 (58)

where Cy and Cy are positive constants that depend only on
K1, ke. Moreover, for the standard X%-distribution, k1 =1
and Ko = 2.

For any p x ¢ matrix A, we define the induced matrix norm

as ||A||2 '= MaXyeRa,||v]|,=1 ”Asz
Lemma A.2
HV,;WXTH2 <1,VneN. (59)
Proof. By the definition of induced matrix norm,
HV,;WXTH2 = max, VoTXV, ' XTy  (60)
v|l,=
= A ( XV, X7 ©1)
= Amax (X (XTX +AL) ' XT) (62)
Amax XX
( ) o (63)

TAmax(XTX) 4+ X T 7

where (63) follows from the singular value decomposition
and Apax (X T X) > 0. O
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To simplify notation, we use X and V as a shorthand
for X,, and V,,, respectively. For convenience, we rewrite
V-1/2XT = [v; - --v,] as the matrix of n column vectors
{v;}"_, (each v; € R?) and show the following property.

Lemma A.3 Let v; € RY be the i-th column of the matrix
V’l/QXT,for all 1 < i < n. Then, we have

> lwill; < d. (64)
=1

Proof of Lemma A.3. Recall that Ap.x(-) denotes the
largest eigenvalue of a square matrix. We know

Sollll3 = w((XV2) (VX)) (65)

i=1

—u((VEX)(XTV ) (66)

<d- Amax((v*/?X) (XTV*W)), 67)

where (66) follows from the trace of a product being com-
mutative, and (67) follows since the trace is the sum of all
eigenvalues. Moreover, we have

Amax ((XV1/2) (X TV 1/2)) (68)
= vy (69)

<Jova Joervm), < o

where (70) follows from the fact that the /5-norm is sub-
multiplicative. Therefore, by (65)-(70), we conclude that

2
Dy lvilly < d. -
We are now ready to prove Lemma 3.

Proof of Lemma 3. To simplify notation, we use X and V'
as a shorthand for X, and V,,, respectively To begin with,

we know f~l(soe) — X¢ = ((EOE) f(X.)).
Therefore, we have
[ X(f " (eoe) — Xo¢u) - (71)

My
(72)

where each element in the vector (coe — f(X ¢.)) is a cen-
tered ?-distribution with a scaling of f(¢, ;). Defining

(coe—f(X¢.)) XV 'XT(coe— f(X¢.)),

W = diag(f(xfgb*), cey f(a:lqﬁ*)), we have

[X(fHeoe) = X o), (73)
_ ]\;f [(c0e- f(ng*))TW‘l (wxv'x w)
mean=0, variance= 2 (74)

w- (5 oc— f(ng*)) } V2 (75)

mean=0, variance=2

Weusen = W' (coe— f(X ¢.)) as a shorthand and define
U = (Ul-j) =WXV'XTW. By Lemma A.1 and the
fact that (1), - - - , €(x,,) are mutually independent given
the contexts {x;}?_;, we have

]P’{|T]TU7772'U'(U)| Z?S(%UiiF)l/Q} (76)
< Crexp(—Cay/5). (77)

Recall that V=1/2X T = [v;
upper bounded as

vp]. The trace of U can be

tr(U) =tr( WXV X TW) (78)
- tr(v-1/2XTWWXV—1/2) (79)
Z (@] ¢)% - [luill3 (80)

< (02ax)? Z Jvilly < (02.0)%d, (8D
=1

where the last inequality in (81) follows directly from
Lemma A.3. Also by the commutative property of the trace
operation, we have

DU”F

where (a) follows from U being positive semi-definite (all
diagonal elements are nonnegative), and (b) follows from
(81). Therefore, by (76)-(82), we have

(ZU“) < (02’ ()

{0 Un > 25+ (02,,)%d + 208)%d}  (83)
< C; - exp(—Cay/5). (84)

1 Ch1\2
By choosing s = (6 In 51) , we have
2

{nTUn > 9(0 max)%((ci In %)2 + 1)} <.
: (85)
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Therefore, we conclude that with probability at least 1 — 6,
the following inequality holds

[X(f " (eoe) = X¢.)|| (86)
1 &
<\/ max 621 7) +1)
87
O
A.3. Proof of Lemma 4

We first introduce a useful lemma.

Lemma A.4 (Theorem 4.1 in (Tropp, 2012)) Consider a
finite sequence { Ay} of fixed self-adjoint matrices of dimen-
sion d x d, and let {~y} be a finite sequence of independent
standard normal variables. Let 0% = HZ L Al ||2 Then, for
all s > 0,

2

P{ o (Yo AL) 2 5} < d-exp(—5 ). (89)
k

where Amax(-) denotes the largest eigenvalue of a square
martrix.

Now we are ready to prove Lemma 4.

Proof of Lemma 4. To simplify notation, we use X and V'
as a shorthand for X,, and V;,, respectively. Recall that
V12X T = [v1,v9,...,v,] and define A; = v;v;", for all
¢ =1,...,n. Note that A is symmetric, for all 4. Deﬁne an
n x n diagonal matrix D = diag(e1, €2, ..., &, ). Then we
have:

e (eo ot -) .-
_ V—1/2XT<50(X(9*—¢/9\))>H2 (90)
_|lv-2x"px(0. fé)HQ 1)
= |[v-exToxvAvIee g o)

< V*1/2XTDXV*1/2H2.HVW(Q*—@)H2 (93)

- V*1/2XTDXV*1/2H 9, — éHV (94)
2
Next, the first term in (94) can be expanded into
HV*V?XTDXV*WH 95)
2

n

>

i=1 flz d.)

n
E 61‘111‘11;
i=1

) f(xiT@)Ai
( )
(96)

2

2

€q
able, for all 7. We also define a d x d matrix X

S, f(z] ¢.)AZ. Then, we have

Note that is a standard normal random vari-

Y= z“: fz] o.) (’U{U;) (viv,?) o7
= Z flx ¢* ||UZ||2 U4 UT (98)
We also know
zn:Ai Zn:ij (99)
i=1 2 i=1 2
v
<[ (v, | Gevr)|, < 2o

where (101) follows from Lemma A.2. Moreover, we know

1=l = || Y £ @) oills viv) (102)
i=1 2
Tl D VU] (103)
=1 2
= d- Ot | YA S0t (104)
=1

where (103) follows from Lemma A.2-A.3, f(z] ¢.) <

o2 .., and that v;v; is positive semi-definite, and the last
inequality follows directly from (101). By Lemma A.4 and
the fact that e(xy),- -+ ,&(z,) are mutually independent
given the contexts {9:1 ™ 1, we know that

P{Amx(ismi) > /2 \|z||25} <d- e (105)
=1

Therefore, by choosing s ln(d/ 0) and the fact that
Amax(ZIL 162 1) - HZZ 151

i=1

Finally, by applying Lemma 1 and (106) to (94), we con-
clude that for any n € N, for any § > 0, with probability at
least 1 — §, we have

, we obtain

202 ..d ln(?)} <4 (106)

HXJ CEP (A @J)’ L < aW(8)-a®(8). (107)

n

O
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A.4. Proof of Lemma 5

We first introduce a useful lemma on the norm of the
Hadamard product of two matrices.

Lemma A.5 Given any two matrices A and B of the same

dimension, the following holds:
|AoB|p<u(ABT) < [|All,- By, (108)

where ||-|| denotes the Frobenius norm. When A and B are
vectors, the above degenerates to

Ao B||2 < ||A||2 ) ||B||2

(109)

Proof of Lemma 5. To simplify notation, we use X and V'
as a shorthand for X, and V,,, respectively. Let M be a
positive definite matrix. We have

| Avlyy = ||M2 40| <||p2a] oy, 10)

where the last inequality holds since f3-norm is sub-
multiplicative. Meanwhile, we also observe that

(9* _ §)TXTX(9* _ 5)

(9* _ §>TV1/2V‘1/2XTXV‘1/2V1/2 (9* _ 5)

(111)

(112)
T 2
_ (9*—9) vizy-12xT (113)
2
T 2 2
S sy A
9 2
12
< 9*—9HV. (115)
Therefore, we know
HXT(X(9*7®OX(9W®)HV4 (116)

<] (o -9x0.-0)]

(117)
et
<1-((0.-9)"x"x(0. - 0)) (119)
< 6. -] < ) (120)

where (118) follows from Lemma A.2 and A.5, and (120)
follows from Lemma 1. The proof is complete. O

A.5. Proof of Theorem 2

-1
Recall that hg(u,v) = (<I>( ’8;(7) )) . We first need the
following lemma about Lipschitz smoothness of the function

hg(u,v).

Lemma A.6 The function hg(u,v) defined in (31) is (uni-
formly) Lipschitz smooth on its domain, i.e., there exists
a finite My, > 0 (M}, is independent of u, v, and () such
that for any 8 with || < B, for any uy,us € [—1,1] and

V1,09 € [02 02
Ul _ u
U1 V2
(

min’ max]’
(122)
2
. (123)
2

|Vh5(u17v1) - VhB(U27U2)| < Mh

Moreover, we have

hg(ug,v2) — hg(ur,v1) <

T
_ M

U2 — U1 h

(m _ v1> Vhg(u1,v1) + N

U2 — U]
V2 — U1

Proof of Lemma A.6. First, it is easy to verify that hg(-, )
is twice continuously differentiable on its domain [—1, 1] X
(02,02 ] and therefore is Lipschitz smooth, for some
finite positive constant M},. To show that there exists an My,
that is independent of u, v, 3, we need to consider the gra-
dient and Hessian of hg (-, -). Since hg(u, v) is a composite
function that involves ®(-) and f(-), it is straightforward to
write down the first and second derivatives of hg(u, v) with
respect to u and v, which depend on ®(+), ®’(-), ®”(-), f(-),
f'(+), and f”(-). Given the facts that for all the u, v and 3 in
the domain of interest, we have ®( ﬂ;“) € [®(=5-1),1],
e(F5) € (0, 7=), [9"(55M)] < S PH—, and that
FC), (), f(-) are all bounded, it is easy to verify that
such an M}, indeed exists by substituting the above condi-
tions into the first and second derivatives of hg(u, v) with
respect to u and v. Moreover, by Lemma 3.4 in (Bubeck
et al., 2015), we know that (123) indeed holds. O]

Proof of Theorem 2. Define

oh
Gu = Ssup |—5\ , (124)
up€(—1,1) ou u=1ug
oh
Qy = sup |a—ﬁ (125)
v0E(02,,02.,) 9V lu=ug

By the discussion in the proof of Lemma A.6, we know that
¢, and g, are both positive real numbers. By substituting
up = 0]z, us = 03z, v; = f(¢{ x), and vo = f(¢g )
into (123), we have

hg (03 z, g x) — hg (0] =, 6] x)

.
(92 - 91)T1: T T
= (f(¢§a:) - f(qsh)) Vhs(0] z, f(¢{ ) (127)

( (92 —91)T:c ) 2
f(é32) = f(é1 )

2

(126)

My

M

(128)
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< (qu 102 = 01l pg - 1l pg— (129)
+qu My |ld2 — d1llng - 12l pg-r ) (130)
My,

+ - (1162 - 0113 + M7 |62 — d1llag ) - 2l g

(131)

< (qu + Mp) 102 = 01l pp - |2l ng— (132)
+ My (qu + My M¢L) |2 — b1l pg - 1] pg1 s

(133)

where (130)-(131) follow from the Cauchy-Schwarz inequal-
ity and the fact that f(-) is Lipschitz continuous, and (132)-
(133) follow from the facts that ||z||, < 1, [|f2 — 01|, < 2,
and ||¢2 — ¢1||, < 2L. By letting C5 = ¢, + M}, and
Cy = My(qy + MpM;yL), we conclude (32)-(33) indeed
holds with C's and C4 being independent of 61, 02, 1, ¢2,
and . O

A.6. Proof of Lemma 6
Proof. By Theorem 2 and (35), we know

Q1 (x) = hg,,, (0] 2, 0] ) (134)

= hpu (B0 2,30 @)+ 6(0) [ally-r — hg s (0] 2,01 )
(135)

< 26,(8) [y, - (136)

. . . . ~ T n T .
Similarly, by switching the roles of 8, , ¢ and 6, ,¢; in
(135), we have

th1(2) =g, (02,0 2) >0 (137)
O

A.7. Proof of Theorem 3
Proof. For each user ¢, let 7R = {x; 1,2+, - } denote

the action sequence under the HR-UCB policy. Under HR-
UCB, HAt and th are updated only after the departure of each
user. This fact implies that z; ; = @ 4, for all ¢, j. Therefore,
we can use x4 to denote the action chosen by HR-UCB for

the user ¢, to simplify notation. Let E?R denote the expected
lifetime of user ¢ under HR-UCB. Similar to (30), we have

R = (2 (Btf@f:xit))) = (0T 0] ).
(138)

Recall that 7°%¢ and 2} denote the oracle policy and the
context of the action of the oracle policy for user ¢, respec-

tively. We compute the pseudo regret of HR-UCB as

—HR

Regret = Z R (139)

t=1

T
Z GTx;k, N xt) — hg, (G*Txh (;S*Txt).
! (140)

To simplify notation, we use w; as a shorthand for
hg, (ijf, d)jx}/") — hg, (H*T:vt, ¢Ixt). Given any § > 0,
define an event 5 in which (12) and (17) hold under the
given 4, forall t € N. By Lemma 1 and Theorem 1, we know
that the event F5 occurs with probability at least 1 — 34.
Therefore, with probability at least 1 — 39, forall ¢t € N,

wy < QN (x}) — hp, (0] e, ¢ 1) (141)
< Qi™(xe) — hp, (0. w0, ¢ 2:) (142)

= hg, (0] 21, ¢4 we) +&1(0) lzelly-1 (143)

— hg, (00 w4, 0 ) (144)

< 26-1(0) - [lelly,-1 (145)

where (141) and (143) follow directly from the definition of
the UCB index, (142) follows from the design of HR-UCB
algorithm, and (145) is a direct result under the event Ej.
Now, we are ready to conclude that with probability at least
1 — 36, we have

T T
Regret, = Z wy < | T Z w?
=1 t=1

(146)

IN

T
4Ty min{|a|}, 1,1} (147)
t=1

\/ 8€2(6)T - dlog (LTE Ad), (148)

where (146) follows from the Cauchy-Schwarz inequal-
ity, (147) follows from the fact that & () is an increasing
function in ¢, and (148) follows from Lemma 10 and 11
in (Abbasi-Yadkori et al., 2011) and the fact that V; =
Mg+ XX, =M+ ZZ 1T x . By substituting £7(9)
into (148) and using the fact that 8( ) < I'(T'), we know

IN

Regret, = O(\/Tlog INT) - <log (I(T)) + log((ls))z)
(149)

By choosing I'(T') = KT for some constant X > 0, we

thereby conclude that

2
Regret, = (’)<\/TlogT- <logT+log(%)> ) (150)

The proof is complete. O



