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Abstract

In binary classification, there are situations where
negative (N) data are too diverse to be fully la-
beled and we often resort to positive-unlabeled
(PU) learning in these scenarios. However, col-
lecting a non-representative N set that contains
only a small portion of all possible N data can of-
ten be much easier in practice. This paper studies
a novel classification framework which incorpo-
rates such biased N (bN) data in PU learning. We
provide a method based on empirical risk mini-
mization to address this PUbN classification prob-
lem. Our approach can be regarded as a novel
example-weighting algorithm, with the weight of
each example computed through a preliminary
step that draws inspiration from PU learning. We
also derive an estimation error bound for the pro-
posed method. Experimental results demonstrate
the effectiveness of our algorithm in not only
PUbN learning scenarios but also ordinary PU
learning scenarios on several benchmark datasets.

1. Introduction

In conventional binary classification, examples are labeled
as either positive (P) or negative (N), and we train a clas-
sifier on these labeled examples. On the contrary, positive-
unlabeled (PU) learning addresses the problem of learning
a classifier from P and unlabeled (U) data, without the need
of explicitly identifying N data (Elkan & Noto, 2008; Ward
et al., 2009).

PU learning finds its usefulness in many real-world prob-
lems. For example, in one-class remote sensing classifica-
tion (Li et al., 2011), we seek to extract a specific land-cover
class from an image. While it is easy to label examples
of this specific land-cover class of interest, examples not
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belonging to this class are too diverse to be exhaustively
annotated. The same problem arises in text classification,
as it is difficult or even impossible to compile a set of N
samples that provides a comprehensive characterization of
everything that is not in the P class (Liu et al., 2003; Fung
et al., 2006). Besides, PU learning has also been applied to
other domains such as outlier detection (Hido et al., 2008;
Scott & Blanchard, 2009), medical diagnosis (Zuluaga et al.,
2011), or time series classification (Nguyen et al., 2011).

By carefully examining the above examples, we find out that
the most difficult step is often to collect a fully representative
N set, whereas only labeling a small portion of all possible N
data is relatively easy. Therefore, in this paper, we propose
to study the problem of learning from P, U and biased N
(bN) data, which we name PUbN learning hereinafter. We
suppose that in addition to P and U data, we also gather a
set of bN samples, governed by a distribution distinct from
the true N distribution. As described previously, this can
be viewed as an extension of PU learning, but such bias
may also occur naturally in some real-world scenarios. For
instance, let us presume that we would like to judge whether
a subject is affected by a particular disease based on the
result of a physical examination. While the data collected
from the patients represent rather well the P distribution,
healthy subjects that request the examination are in general
biased with respect to the whole healthy subject population.

We are not the first to be interested in learning with bN
data. In fact, both Li et al. (2010) and Fei & Liu (2015)
attempted to solve similar problems in the context of text
classification. Li et al. (2010) simply discarded N samples
and performed ordinary PU classification. It was also men-
tioned in the paper that bN data could be harmful. Fei & Liu
(2015) adopted another strategy. The authors considered
even gathering unbiased U data is difficult and learned the
classifier from only P and bN data. However, their method
is specific to text classification because it relies on the use
of effective similarity measures to evaluate similarity be-
tween documents (refer to Supplementary Material D.5 for
a deeper discussion and an empirical comparison with our
method). Therefore, our work differs from these two in
that the classifier is trained simultaneously on P, U and bN
data, without resorting to domain-specific knowledge. The
presence of U data allows us to address the problem from a
statistical viewpoint, and thus the proposed method can be
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applied to any PUbN learning problem in principle.

In this paper, we develop an empirical risk minimization-
based algorithm that combines both PU learning and impor-
tance weighting to solve the PUbN classification problem.
We first estimate the probability that an example is sampled
into the P or the bN set. Based on this estimate, we re-
gard bN and U data as N examples with instance-dependent
weights. In particular, we assign larger weights to U exam-
ples that we believe to appear less often in the P and bN
sets. P data are treated as P examples with unity weight but
also as N examples with usually small or zero weight whose
actual value depends on the same estimate.

The contributions of the paper are three-fold:

1. We formulate the PUbN learning problem as an ex-
tension of PU learning and propose an empirical risk
minimization-based method to address the problem. We
also theoretically establish an estimation error bound for
the proposed method.

2. We experimentally demonstrate that the classification
performance can be effectively improved thanks to the
use of bN data during training. In other words, PUbN
learning yields better performance than PU learning.

3. Our method can be easily adapted to ordinary PU learn-
ing. Experimentally we show that the resulting algo-
rithm allows us to obtain new state-of-the-art results on
several PU learning tasks.

Relation with Semi-supervised Learning. With P, N and
U data available for training, our problem setup may seem
similar to that of semi-supervised learning (Chapelle et al.,
2010; Oliver et al., 2018). Nonetheless, in our case, N data
are biased and often represent only a small portion of the
whole N distribution. Therefore, most of the existing meth-
ods designed for the latter cannot be directly applied to the
PUDN classification problem. Furthermore, our focus is on
deducing a risk estimator using the three sets of data, with
U data in particular used to compensate the sampling bias
in N data. On the other hand, in semi-supervised learning
the main concern is often how U data can be utilized for reg-
ularization (Grandvalet & Bengio, 2005; Belkin et al., 2006;
Miyato et al., 2016; Laine & Aila, 2017). The two should
be compatible and we believe adding such regularization to
our algorithm can be beneficial in many cases.

Relation with Dataset Shift. PUbN learning can also be
viewed as a special case of dataset shift! (Quionero-Candela

! Dataset shift refers to any case where training and test distri-
butions differ. The term sample selection bias (Heckman, 1979;
Zadrozny, 2004) is sometimes used to describe the same thing.
However, strictly speaking, sample selection bias actually refers to
the case where training instances are first drawn from the test distri-
butions and then a subset of these data is systematically discarded
due to a particular mechanism.

et al., 2009) if we consider that P and bN data are drawn
from the training distribution while U data are drawn from
the test distribution. Covariate shift (Shimodaira, 2000;
Sugiyama & Kawanabe, 2012) is another special case of
dataset shift that has been studied intensively. In the co-
variate shift problem setting, training and test distributions
have the same class conditional distribution and only dif-
fer in the marginal distribution of the independent variable.
One popular approach to tackle this problem is to reweight
each training example according to the ratio of the test den-
sity to the training density (Huang et al., 2007; Sugiyama
et al., 2008). Nevertheless, simply training a classifier on
a reweighted version of the labeled set is not sufficient in
our case since there may be examples with zero probability
to be labeled, and it is therefore essential to involve U sam-
ples in the second step of the proposed algorithm. It is also
important to notice that the problem of PUbN learning is
intrinsically different from that of covariate shift and neither
of the two is a special case of the other.

Finally, source component shift (Quionero-Candela et al.,
2009) is also related. It assumes that data are generated
from several different sources and the proportions of these
sources may vary between training and test times. In many
practical situations, this is indeed what causes our collected
N data to be biased. However, its definition is so general that
we are not aware of any universal method which addresses
this problem without explicit model assumptions on data
distribution.

2. Problem Setting

In this section, we briefly review the formulations of PN,
PU and PNU classification and introduce the problem of
learning from P, U and bN data.

2.1. Standard Binary Classification

Letz € R and y € {+1,—1} be random variables fol-
lowing an unknown probability distribution with density
p(x,y). Let g : R? — R be an arbitrary decision function
for binary classification and ¢ : R — R be a loss function
of margin yg(x) that usually takes a small value for a large
margin. The goal of binary classification is to find g that
minimizes the classification risk:

R(9) = Bz y)~pay [L(yg(2))]; (1)

where Bz y)~p(a,y) [-] denotes the expectation over the joint
distribution p(, y). When we care about classification accu-
racy, /£ is the zero-one loss £o1(z) = (1 — sign(z))/2. How-
ever, for ease of optimization, {y; is often substituted with
a surrogate loss such as the sigmoid loss £gs(2) = 1/(1 +
exp(z)) or the logistic loss £1og(2) = In(1 + exp(—z)) dur-
ing learning.
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In standard supervised learning scenarios (PN classifica-
tion), we are given P and N data that are sampled inde-
pendently from pp(x) = p(x | y = +1) and pn(x ) =
plx |y =—1)as Xp = {x'},F, and Ay = {wN}
Let us denote by Ry () = Egrpp () [€(9())], By (9) =
Egnpy (@) [l(—g(x))] partial risks and 7 = p(y = 1) the
P prior. We have the equality R(g) = 7Ry (g) + (1 —

m)Ry (g). The classification risk (1) can then be empiri-
cally approximated from data by

Ren(g) = nRE (9) + (1 — m) Ry (9),

where R7(g) = =202 Ug(a})) and Ry(g) =
nlN SN £(—g(xY)). By minimizing Rpx(g) we obtain

3
the ordinary empirical risk minimizer gpn.

2.2. PU Classification

In PU classification, instead of N data Xy we have only
access to Xy = {2V}:Y, ~ p(x) a set of U samples drawn
from the marginal density p(x). Several effective algorithms
have been designed to address this problem. Liu et al. (2002)
proposed the S-EM approach that first identifies reliable N
data in the U set and then run the Expectation-Maximization
(EM) algorithm to build the final classifier. The biased
support vector machine (Biased SVM) introduced by Liu
et al. (2003) regards U samples as N samples with smaller
weights. Mordelet & Vert (2014) solved the PU problem by
aggregating classifiers trained to discriminate P data from
a small random subsample of U data. An ad hoc algorithm
designed for linear classifiers, treating the U set as an N set
influenced by label noise, was proposed in (Shi et al., 2018).

Recently, attention has also been paid on the unbiased risk
estimator proposed by du Plessis et al. (2014; 2015). The
key idea is to use the following equality:

(1 —m) Ry (9) = Ry (9) — 7Ry (9),

where Ry (9) = Euivp@ll(—g(z))] and Ry(g) =
Eypp(a) [((—g(x))]. This equality is acquired by exploit-
ing the fact p(x) = 7pp(x) + (1 — m)pn(x). As a result,
we can approximate the classification risk (1) by

Roy(g) = 7R (9) — 7Ry (9) + Ry (9), ()

where Ry (g) = nlp SR U(—g(ah)) and Ry(g) =
nlU SU L(—g(2Y)). We then minimize RPU(g) to obtain

another empirical risk minimizer gpy. Note that as the loss
is always positive, the classification risk (1) that Rpy(g)
approximates is also positive. However, Kiryo et al. (2017)
pointed out that when the model of g is too flexible, that
is, when the function class G is too large, Rpy (gpy) indeed
goes negative and the model severely overfits the training

data. To alleviate overfitting, the authors observed that
R;(9) — mRp (9) = (1 — )Ry (g9) > 0 and proposed the
non-negative risk estimator for PU learning:

Rpu(g) = nR (9) + max{0, B; (9) — 7Ry (9)}. (3)

In terms of implementation, stochastic optimization was
used and when r = Ry (g9) — 7Ry (g) becomes smaller than
some threshold value —f for a mini-batch, they performed
a step of gradient ascent along Vr to make the mini-batch
less overfitted.

2.3. PNU Classification

In semi-supervised learning (PNU classification), P, N and
U data are all available. An abundance of works have been
dedicated to solving this problem. Here we in particular
introduce the PNU risk estimator proposed by Sakai et al.
(2017). By directly leveraging U data for risk estimation, it
is the most comparable to our method. The PNU risk is sim-
ply defined as a linear combination of PN and PU/NU risks.
Let us just consider the case where PN and PU risks are
combined, then for some 7 € [0, 1], the PNU risk estimator
is expressed as

R}ZNU(Q) = WRPN( )+ (11— )RPU(Q)

= 7Ry (9) + (1 — )Ry (9)
+ (1= (Ry(9) — 7Ry (9)). @)

We can again consider the non-negative correction by forc-
ing the term 7(1 — ) By (9) + (1 — 7)(Rg (9) — 7y (9))
to be non-negative. In the rest of the paper, we refer to the
resulting algorithm as non-negative PNU (nnPNU) learning
(see Supplementary Material D.4 for an alternative defini-
tion of nnPNU and the corresponding results).

2.4. PUDbN Classification

In this paper, we study the problem of PUbN learning. It
differs from usual semi-supervised learning in the fact that
labeled N data are not fully representative of the underlying
N distribution pyx(z). To take this point into account, we
introduce a latent random variable s and consider the joint
distribution p(a, y, s) with constraint p(s = +1 | x,y =
+1) = 1. Equivalently, p(y = -1 | ,s = —1) = 1.
Let p = p(y = —1,s = +1). Both 7 and p are assumed
known throughout the paper. In practice they often need to
be estimated from data (Jain et al., 2016; Ramaswamy et al.,
2016; du Plessis et al., 2017). In place of ordinary N data
we collect a set of bN samples

Xon = {1 ~ pon(@) = p(zly = —1,5 = +1).

For instance, in text classification, if our bN data is com-
posed of a small set of all possible N topics, s = +1 means



Classification from Positive, Unlabeled and Biased Negative Data

that a sample is either from these topics that make up the
bN set or in the P class. The goal remains the same: we
would like to minimize the classification risk (1).

3. Method

In this section, we propose a risk estimator for PUbN clas-
sification and establish an estimation error bound for the
proposed method. Finally we show how our method can be
applied to PU learning as a special case when no bN data
are available.

3.1. Risk Estimator

Let Bin(9) = oo [f(~9(x))] and R__,(g) =
Eonp(als=—1)[l(—g())]. Since p(x,y = —1) = p(@,y =
—1,s =+41) + p(x, s = —1), we have

R(g) = 7R (9) + pRyn(9) + (1 =7 — p)R__,(9). (5)

The first two terms on the right-hand side of the equa-
tion can be approximated directly from data by R;‘ (¢g) and

Rn(9) = nﬁ SN ¢(—g(xPN)). We therefore focus on
the third term R,__,(g) = (1 — 7 — p)R.__,(g). Our
approach is mainly based on the following theorem. We

relegate all proofs to the Supplementary Material.

Theorem 1. Let o(x) = p(s = +1 | ). Foralln € [0,1]
and h : R? — |0, 1] satisfying the condition h(x) > n =
o(x) > 0, the risk R___,(g) can be expressed as

R;:71(g) = EwNp(:c) [ﬂh(w)gn E(_g(w))(l - O'(CE))

]
7B {]lh(w»nﬁ(—g(w))l;((;()m]
(6)

In the theorem, R,__,(g) is decomposed into three terms,
and when the expectation is substituted with the average
over training samples, these three terms are approximated
respectively using data from Xy, Ap and Apn. The choice
of h and 7 is thus very crucial because it determines what
each of the three terms tries to capture in practice. Ideally,
we would like A to be an approximation of . Then, for
@ such that h(x) is close to 1, o(x) is close to 1, so the
last two terms on the right-hand side of the equation can
be reasonably evaluated using Ap and Ay (i.e., samples
drawn from p(z | s = +1)). On the contrary, if h(x) is
small, o () is small and such samples can be hardly found
in Ap or Apn. Consequently the first term appeared in the
decomposition is approximated with the help of Ay. Finally,
in the empirical risk minimization paradigm, 1 becomes
a hyperparameter that controls how important U data is

against P and bN data when we evaluate R___,(g). The
larger ) is, the more attention we would pay to U data.

One may be curious about why we do not simply approxi-
mate the whole risk using only U samples, that is, set 7 to
1. There are two main reasons. On one hand, if we have a
very small U set, which means ny < np and ny < np,
approximating a part of the risk with labeled samples should
help us reduce the estimation error. This may seem unrealis-
tic but sometimes unbiased U samples can also be difficult
to collect (Ishida et al., 2018). On the other hand, more
importantly, we have empirically observed that when the
model of g is highly flexible, even a sample regarded as N
with small weight gets classified as N in the latter stage of
training and performance of the resulting classifier can thus
be severely degraded. Introducing n alleviates this problem
by avoiding treating all U data as N samples.

As o is not available in reality, we propose to replace o by
its estimate & in (6). We further substitute h with the same
estimate and obtain the following expression:

Rsizfl,n,&(g) = Ea:rvp(a:) [ﬂ&(w)gn E(—g(:p))(l - 6’(:13))
1

+ T Egnpp(a) {ﬂa@)m U—g(x))———
+ pEmprN(m) |:]1¢”7(m)>7] E(—g(!ﬂ))T

‘We notice that Rs:%,n,& depends both on 7 and &. It can
be directly approximated from data by

1

Rueina(®9) = 123 [y, 9@ (1 - ()]

m 1—6(aj)
+ np Z {ﬂa(m{?pn f(*g(mli)))%m%}

p 1 —5(xN)
o Z |:Il&(mli3N)>n g(—g(w?N))W
We are now able to derive the empirical version of Equation
(5) as

Reuonn6(9) = 7RE(9) + pRig(9) + Ri__y, 5(9). (D)

3.2. Practical Implementation

To complete our algorithm, we need to be able to estimate
o and find appropriate 1. Given that the value of 7 can be
hard to tune, we introduce another intermediate hyperpa-
rameter 7 and choose 1 such that #{zx € Ay | 6(z) <
n} = |7(1 — 7 — p)ny], where |-] is the floor function.
The number 7(1 — 7 — p) is then the portion of unlabeled
samples that are involved in the second step of our algo-
rithm. Intuitively, we can set a higher 7 and include more
U samples in the minimization of (7) when we have a good



Classification from Positive, Unlabeled and Biased Negative Data

Algorithm 1 PUDbN Classification

1: Input: data (Xp, XpN, Xu), hyperparameter 7

2. Step 1:

3: Compute ¢ by minimizing an nnPU risk involving Ap,
XN as P data and Ay as U data

Step 2:

Initialize model parameter 6 of g

Choose A a SGD-like stochastic optimization algorithm
Set 1 such that

#{zeu|o(x) <n}=|r(1—m—p)ny]
fori=1...do
9:  Shuffle (Ap, XN, Au) into M mini-batches
10:  for each mini-batch (X7, Xy, A{)) do

AN A

o]

11: Compute the corresponding RpypN,1,6(9)

12: Use A to update 6 with the gradient information
Vo RpubN,n,5(9)

13:  end for

14: end for

15: Return: § minimizing the validation loss

estimate 6 and otherwise we should prefer a smaller 7 to
reduce the negative effect that can be caused by the use
of & of poor quality. The use of validation data to select
the final 7 should also be prioritized as what we do in the
experimental part.

Estimating o. If we regard s as a class label, the problem
of estimating o is then equivalent to training a probabilis-
tic classifier separating the classes with s = +1 and s =
—1. Upon noting that (7 + p)Egp(z|s=+1)[l(eg(x))] =
T () (€9(2))] + PEapyy (o [Eeg ()] for € €
{+1,—1}, it is straightforward to apply nnPU learn-
ing with availability of Ap, A,y and Ay to minimize
E(x,5)~p(z,s)[£(sg(x))]. In other words, here we regard
Ap and Ay as P and Ay as U, and attempt to solve a PU
learning problem by applying nnPU. Since we are inter-
ested in the class-posterior probabilities, we minimize the
risk with respect to the logistic loss and apply the sigmoid
function to the output of the model to get (x). However,
the above risk estimator accepts any reasonable & and we are
not limited to using nnPU for computing 6. For example,
the least-squares fitting approach proposed by Kanamori
et al. (2009) for direct density ratio estimation can also be
adapted to solving the problem.

To handle large datasets, it is preferable to adopt stochastic
optimization algorithms to minimize Rpubn,y,s(9)-

3.3. Estimation Error Bound

Here we establish an estimation error bound for the proposed
method. Let G be the function class from which we find a
function. The Rademacher complexity of G for the samples
of size n drawn from ¢(x) is defined as

g‘{n,q(g) = ]EXNang [Supi Z flg(wz)] s

9€9 T, €EX

where X = {z1,...,x,} and § = {&,...,&,} with
each x; drawn from ¢(x) and &; as a Rademacher variable
(Mohri et al., 2012). In the following we will assume that
RAn,¢(G) vanishes asymptotically as n — oo. This holds
for most of the common choices of G if proper regulariza-
tion is considered (Bartlett & Mendelson, 2002; Golowich
et al., 2018). Assume additionally the existence of C'y > 0
such that sup ¢ [|9]|cc < C, as well as Cp > 0 such that
sup|.<c, £(z) < Cp. We also assume that £ is Lipschitz
continuous on the interval [-C}, Cy] with a Lipschitz con-
stant Ly.

Theorem 2. Let g* = argmingg R(g) be the true risk
minimizer and JpubNy,6 = argmingeg RpUbNmﬁ(g) be
the PUbN empirical risk minimizer. We suppose that &
is a fixed function independent of data used to compute
Rpuen,n,e(g) and n € (0,1]. Let ¢ = p(6(x) < n) and
€ = Epp(a)[|6(x) — o(x)?]. Then for any § > 0, with
probability at least 1 — 6,

R(gpubN,n,6) — R(g")
4mL 4pL,
<ALy p(G) + Tgmnp,pp(g) + T"mnbN,pr(w
In(6/6) 27Cy [In(6/6) 2pCy [In(6/6)
+2C,
2ny n 2np n 2npN

+ 200/ Ce + 2Tcﬂ/u —Q)e.

Theorem 2 combined with the Borel-Cantelli lemma im-
plies that as np — oo, npn — oo and ny — oo, the
inequality limsup R(geum.n6) — R(g%) < 2Ci\/Ce +
2(C¢/n)+/(1 — )€ holds almost surely. Furthermore, if
there is Cg > 0 such that R, 4(G) < Cg//n 2, the
convergence of [(R(gpubn,y,6) — R(g*)) — (2Ce/Ce +
2(Ce/n)\/(1 = ¢)e)]T to 0is in Op(1//mp + 1/\/mun +
1/\/nu), where O, denotes the order in probability and
[]7 = max{0, -}. As for ¢, knowing that & is also estimated
from data in practice ®, apparently its value depends on both
the estimation algorithm and the number of samples that are
involved in the estimation process. For example, in our ap-
proach we applied nnPU with the logistic loss to obtain &, so
the excess risk can be written as Eg, (2 KL(o ()| o(x)),
where by abuse of notation KL(p|lq) = pIn(p/q) + (1 —

2 For instance, this holds for linear-in-parameter model class
F={f@)=w ¢(@) | [w] < Cu,|¢]oc < Cs}. where
Cw and Cy are positive constants (Mohri et al., 2012).

3 These data, according to theorem 2, must be different from
those used to evaluate Rpupn,,,(g). This condition is however
violated in most of our experiments. See Supplementary Material
D.3 for more discussion.
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p)In((1 — p)/(1 — q)) denotes the KL divergence between
two Bernouilli distributions with parameters respectively p
and ¢. It is known that ¢ = E, ) [|0(2) — o(2)]?] <
(1/2)Egp(@)KL(o(x)||6(x)) (Zhang, 2004). The excess
risk itself can be decomposed into the sum of the estima-
tion error and the approximation error. Kiryo et al. (2017)
showed that under mild assumptions the estimation error
part converges to zero when the sample size increases to
infinity in nnPU learning. It is however impossible to get rid
of the approximation error part which is fixed once we fix
the function class G. To circumvent this problem, we can
either resort to kernel-based methods with universal kernels
(Zhang, 2004) or simply enlarge the function class when we
get more samples.

3.4. PU Learning Revisited

In PU learning scenarios, we only have P and U data and
bN data are not available. Nevertheless, if we let y play
the role of s and ignore all the terms related to bN data,
our algorithm is naturally applicable to PU learning. Let us
name the resulting algorithm PUbN\N, then

Revonnn.s(9) = 7Ry (9) + Ry, 5(9),

where 6 is an estimate of p(y = +1 | ) and

R;:71,n,a(9) =

~—

)

Ewwp(w) []]-&(m)gn g(_g(w))(l - (.’I)

—_

—o(x
7 Earppto) | Lataron (-g(@) 5
PUBbN\N can be viewed as a variant of the traditional two-
step approach in PU learning which first identifies possible
N data in U data and then perform ordinary PN classification
to distinguish P data from the identified N data. However,
being based on state-of-the-art nnPU learning, our method
is more promising than other similar algorithms. Moreover,
by explicitly considering the posterior p(y = +1 | ), we
attempt to correct the bias induced by the fact of only taking
into account confident negative samples. The benefit of us-
ing an unbiased risk estimator is that the resulting algorithm
is always statistically consistent, i.e., the estimation error
converges in probability to zero as the number of samples
grows to infinity.

4. Experiments

In this section, we experimentally investigate the proposed
method and compare its performance against several base-
line methods.

4.1. Basic Setup

We focus on training neural networks with stochastic opti-
mization. For simplicity, in an experiment, & and g always

use the same model and are trained for the same number
of epochs. All models are learned using AMSGrad (Reddi
et al., 2018) as the optimizer and the logistic loss as the
surrogate loss unless otherwise specified. In all the experi-
ments, an additional validation set, equally composed of P,
U and bN data, is sampled for both hyperparameter tuning
and choosing the model parameters with the lowest valida-
tion loss among those obtained after every epoch. Regarding
the computation of the validation loss, we use the PU risk
estimator (2) with the sigmoid loss for g and an empirical ap-
proximation of By, p,(a) (|6 (2) — 0 () [*] = Egrp(a) [0 (x)?]
for & (see Supplementary Material B).

4.2. Effectiveness of the Algorithm

We assess the performance of the proposed method on
three benchmark datasets: MNIST, CIFAR-10 and 20 News-
groups. Experimental details are given in Supplementary
Material C. To recapitulate, for the three datasets we re-
spectively use a 4-layer ConvNet, PreAct ResNet-18 (He
et al., 2016) and a 3-layer fully connected neural network.
On 20 Newsgroups text features are generated thanks to the
use of ELMo word embedding (Peters et al., 2018). Since
all the three datasets are originally designed for multiclass
classification, we group different categories together to form
a binary classification problem.

Baselines. When A}y is given, two baseline methods are
considered. The first one is nnPNU adapted from (4). In
the second method, named as PU—PN, we train two binary
classifiers: one is learned with nnPU while we regard s
as the class label, and the other is learned from Ap and
Apn to separate P samples from bN samples. A sample is
classified in the P class only if it is so classified by the two
classifiers. When A}y is not available, nnPU is compared
with the proposed PUbN\N.

Sampling bN Data. To sample A}, we suppose that the
bias of N data is caused by a latent prior probability change
(Sugiyama & Storkey, 2007; Hu et al., 2018) in the N class.
Let z € Z = {1,...,5} be some latent variable which we
call a latent category, where .S is a constant. It is assumed

p@|zy=-1)=px|zy=-1s5=+1),
p(z|y:—1)7ép(z|y:_17s:+1).

In the experiments, the latent categories are the original
class labels of the datasets. Concrete definitions of Ajn with
experimental results are summarized in Table 1.

Results. Overall, our proposed method -consistently
achieves the best or comparable performance in all the
scenarios, including those of standard PU learning. Ad-
ditionally, using bN data can effectively help improving the
classification performance. However, the choice of algo-
rithm is essential. Both nnPNU and the naive PU—PN are
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Table 1. Mean and standard deviation of misclassification rates over 10 trials for MNIST, CIFAR-10 and 20 Newsgroups under different
choices of P class and bN data sampling strategies. For a same learning task, different methods are compared using the same 10 random
samplings. Underlines denote that with the use of bN data the method leads to an improvement of performance according to the 5% t-test.

Boldface indicates the best method in each task.

T Biased N data uniformly sampled from the indicated latent categories.

* Probabilities that a sample of Xy, belongs to the latent categories [1, 3, 5, 7, 9] / [bird, cat, deer, dog, frog, horse] / [sci., soc., talk.] are

[0.03, 0.15, 0.3, 0.02, 0.5] / [0.1, 0.02, 0.2, 0.08, 0.2, 0.4] / [0.1, 0.5, 0.4].

Dataset P biased N p nnPU/nnPNU PUbN(\N) PU—PN
Not given NA 576 +1.04 4.64+0.62 NA
MNIST 0,2,4,6,8 1,3,5% 0.3 5.33 £0.97 4.05+0.27 4.00+£0.30
9 > 5 > others * 0.2 4.60 + 0.65 3.91+0.66 3.77+0.31
Airplane Not given NA 12.02+£0.65 10.70 £0.57 NA
; T
CIFAR-10 automobile, ship, IC{a(l)tr,s(eiO;g,i(;rrse 0.3 10.25 £ 0.38 9.71 £0.51 10.37+0.65
truck = frog > others * 0.25 9.98 + 0.53 9.92+042 10.17+0.35
Not given NA 23.78+1.04 21.13+0.90 NA
Cat, deer, dog, . t
CIFAR-10 horse Bird, frog 0.2 22.00+£0.53 18.83+0.71 19.88+0.62
Car, truck f 0.2 22.00£0.74 20.19+1.06 21.83+1.36
Not given NA 14.67+0.87 13.30£0.53 NA
20 Newseroups alt., comp., misc., sci.t 0.21 14.69 £0.46 13.10+0.90 13.58+0.97
BIOUPS e talk.f 0.17 14.38+0.74 12.61£0.75 13.76 £ 0.66
soc. > talk. > sci.* 0.1 14414076 12.18+0.59 12.92+0.51
able to leverage bN data to enhance classification accuracy Ll
in only relatively few tasks. In the contrast, the proposed . Lo . _ o PO :..
PUDBN successfully reduce the misclassification error most et P A P o, 3-.;‘
of the time. e : SR e et
i AN P ’f‘f}”' o
Clearly, the performance gain that we can benefit from the dare T TR
availability of bN data is case-dependent. On CIFAR-10, the Lt — . ol
greatest improvement is achieved when we regard mammals R ok il BN
(a) nnPU (b) PUbN

(i.e. cat, deer, dog and horse) as P class and drawn samples
from latent categories bird and frog as labeled negative
data. This is not surprising because birds and frogs are
more similar to mammals than vehicles, which makes the
classification harder specifically for samples from these two
latent categories. By explicitly labeling these samples as N
data, we allow the classifier to make better predictions for
these difficult samples.

4.3. Illustration on How the Presence of bN Data Help

Through experiments we have demonstrated that the pres-
ence of bN data effectively helps learning a better classifier.
Here we would like to provide some intuition for the reason
behind this. Let us consider the MNIST learning task where
Abn is uniformly sampled from the latent categories 1, 3 and
5. We project the representations learned by the classifier
(i.e., the activation values of the last hidden layer of the
neural network) into a 2D plane using PCA for both nnPU

Figure 1. PCA embeddings of the representations learned by the
nnPU and PUDBN classifiers for 500 samples from the test set in the
MNIST learning task where A}, is uniformly sampled from latent
categories 1, 3 and 5.

and PUDN algorithms, as shown in Figure 1.

For both nnPU and PUDN classifiers, the first two principal
components account around 90% of variance. We can there-
fore presume that the figure depicts fairly well the learned
representations. Thanks to the use of bN data, in the high-
level feature space 1, 3, 5 and P data are further pushed
away when we employ the proposed PUbN learning algo-
rithm, and we are always able to separate 7, 9 from P to
some extent. This explains the better performance which is
achieved by PUDbN learning and the benefit of incorporating
bN data into the learning process.
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Figure 2. Comparison of uPU, nnPU and PUbN\N over two of the four PU learning tasks. For each task, means and standard deviations
are computed based on the same 10 random samplings. Dashed lines indicate the corresponding values of the final classifiers (recall that
at the end we select the model with the lowest validation loss out of all epochs).

4.4. Why Does PUbN\N Outperform nnPU ?

Our method, specifically designed for PUbN learning, nat-
urally outperforms other baseline methods in this prob-
lem. Nonetheless, Table 1 equally shows that the proposed
method when applied to PU learning, achieves significantly
better performance than the state-of-the-art nnPU algorithm.
Here we numerically investigate the reason behind this phe-
nomenon with help of the first two PU tasks of the table.

Besides nnPU and PUbN\N, we compare with unbiased
PU (uPU) learning (2). Both uPU and nnPU are learned
with the sigmoid loss, learning rate 102 for MNIST and
initial learning rate 10~* for CIFAR-10, as uPU learning is
unstable with the logistic loss. The other parts of the experi-
ments remain unchanged. On the test sets we compute the
false positive rates, false negative rates and misclassification
errors for the three methods and plot them in Figure 2. We
first notice that PUbN\N still outperforms nnPU trained
with the sigmoid loss. In fact, the final performance of the
nnPU classifier does not change much when we replace the
logistic loss with the sigmoid loss.

In (Kiryo et al., 2017), the authors observed that uPU over-
fits training data with the risk going to negative. In other
words, a large portion of U samples are classified as N. This
is confirmed in our experiments by an increase of false neg-
ative rate and decrease of false positive rate. nnPU remedies
the problem by introducing the non-negative risk estimator

(3). While the non-negative correction successfully prevents
false negative rate from going up, it also causes more N
samples to be classified as P compared to uPU. However,
since the gain in terms of false negative rate is enormous, at
the end nnPU achieves a lower misclassification error. By
further identifying possible N samples after nnPU learning,
we expect that our algorithm can yield lower false positive
rate than nnPU without misclassifying too many P samples
as N as in the case of uPU. Figure 2 suggests that this is ef-
fectively the case. In particular, we observe that on MNIST,
our method achieves the same false positive rate as uPU
whereas its false negative rate is comparable to nnPU.

5. Conclusion

This paper studies the PUbN classification problem, where
a binary classifier is trained on P, U and bN data. The
proposed method is a two-step approach inspired from both
PU learning and importance weighting. The key idea is to
attribute appropriate weights to each example for evaluation
of the classification risk using the three sets of data. We
theoretically established an estimation error bound for the
proposed risk estimator and experimentally showed that our
approach successfully leveraged bN data to improve the
classification performance on several real-world datasets. A
variant of our algorithm was able to achieve state-of-the-art
results in PU learning.
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