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Abstract

Many machine learning problems come in the

form of networks with relational data between

entities, and one of the key unsupervised learn-

ing tasks is to detect communities in such a net-

work. We adopt the mixed-membership stochastic

blockmodel as the underlying probabilistic model,

and give conditions under which the memberships

of a subset of nodes can be uniquely identified.

Our method starts by constructing a second-order

graph moment, which can be shown to converge

to a specific product of the true parameters as the

size of the network increases. To correctly recover

the true membership parameters, we formulate an

optimization problem using insights from convex

geometry. We show that if the true memberships

satisfy a so-called sufficiently scattered condition,

then solving the proposed problem correctly iden-

tifies the ground truth. We also propose an effi-

cient algorithm for detecting communities, which

is significantly faster than prior work and with

better convergence properties. Experiments on

synthetic and real data justify the validity of the

proposed learning framework for network data.

1. Introduction

A lot of machine learning problems deal with pair-wise re-

lational data. Examples include social networks and gene

interactions. One of the key analytical questions is to detect

latent communities from the ambient interactions in an unsu-

pervised manner. Traditional methods usually deem this as

a clustering problem on graphs, and classical algorithms like

NormalizedCuts (Meila & Shi, 2001) and spectral clustering
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(Ng et al., 2002) have been successfully applied in practice.

However, most clustering based learning frameworks lack

the ability of representing more complicated network struc-

tures, for example by modeling interaction patterns between

communities and mixed-memberships of the nodes. Several

probabilistic latent variable models for networks have been

proposed to enhance interpretability and expressibility of

the model (Goldenberg et al., 2010).

1.1. Stochastic blockmodel and MMSB

The most famous probabilistic models for networks are per-

haps the stochastic block model (Snijders & Nowicki, 1997;

Nowicki & Snijders, 2001) and its mixed-membership vari-

ant (Airoldi et al., 2008). In these probabilistic models, an

edge Ai j is present or absent follows a Bernoulli distribution

with parameter Pi j , i.e.,

Pr(Ai j = {0, 1}) = P
Ai j

i j
(1 − Pi j)

1−Ai j . (1)

Furthermore, these models assume that the matrix P, whose

i, j-th entry is Pi j , admits the structure that

P = M⊤BM, (2)

where B is k × k, assuming there are k communities in the

network, and M has k rows. The value Bpq ∈ [0, 1] indi-

cates the probability that a node in community p connects

with a node in community q, for all p, q = 1, ..., k. The

i-th column of M , denoted as mi , represents the community

membership of node i. In the stochastic blockmodel (SB),

mi’s are restricted to be coordinate vectors, indicating that

each node belongs to one and only one community; whereas

in the mixed-membership stochastic blockmodel (MMSB),

mi’s belong to the probability simplex ∆, defined as

∆ = {x : x ≥ 0, 1⊤x = 1}, (3)

allowing each node to hold mixed memberships across dif-

ferent communities. We will be focusing on the MMSB

assumptions since it is more flexible to model complex

membership structures in the network.

There are some interesting properties of the MMSB. The

communities are allowed to be overlapping because of the

inter-community interactions modeled by the nonzero off-

diagonals in B. Depending on whether we are dealing with
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an undirected or directed network, we can restrict the com-

munity interaction matrix B to be symmetric or asymmetric,

respectively. In both cases the ground-truth network struc-

ture M⊤BM remains the same, so we can simply look at

the community membership matrix M to determine commu-

nites. Another somewhat counter-intuitive property is that

B does not have to be diagonally dominant, meaning that

typical interaction patterns for a community may consists

of more inter-community ones than intra-community ones.

For example, the community of lawyers typically interact

more with their clients than between peers. This type of

interaction pattern cannot be captured by traditional graph-

cut based methods, but can be easily modeled by MMSB

by letting B taking larger off-diagonal entries than their

corresponding diagonal terms.

On the other hand, parameter estimation for MMSB is chal-

lenging. First and foremost, the model may not be identi-

fiable. The only restrictions on the model parameters are

that the values in B are between 0 and 1, and the columns

of M belong to the probability simplex ∆. Therefore, there

may exist an invertible matrix Q such that QM ∈ ∆ and

0 ≤ Q−⊤BQ−1 ≤ 1 still hold, and clearly it does not affect

their product.

Apart from a lack of identifiability, maximum-likelihood

estimation for MMSB is also computationally hard. Due to

the tri-linearity of the model parameterization M⊤BM , opti-

mizing the log-likelihood is a non-convex problem, which

means obtaining a global optimum is in general hard to

guarantee. Another difficulty is exploiting sparsity for

large-scale networks. According to the Bernoulli gener-

ative model (1), the maximum-likelihood formulation of

a network of n nodes involves the summation of O(n2)

terms, even if there are only O(n) or O(n log n) edges. When

Airoldi et al. (2008) first proposed the MMSB, they intro-

duced a sparsity parameter ρ ∈ [0, 1] to specify the pro-

portion of non-edges that are generated from the Bernoulli

model (1) while the rest are simply not observed. However,

that does not mitigate the computational burden (mainly in

terms of the O(n2)memory requirement) even if the network

is very sparse—in fact, introducing the additional parameter

ρ is exactly equivalent to scaling down the B matrix by ρ,

which does not affect the overall model except by lowering

the probability of observing edges. Because of this, tradi-

tional methods like the expectation-maximization (Nowicki

& Snijders, 2001), variational Bayes (Airoldi et al., 2008),

and Gibbs sampling (Hanneke & Xing, 2007) are typically

not scalable for large networks.

1.2. Matrix/tensor factorization methods

Recently, there has been a line of work that uses nonneg-

ative matrix factorization for learning the parameters of

MMSB on a large network, including Yang & Leskovec

(2013); Zhang et al. (2014); Kaufmann et al. (2016); Jin

et al. (2017); Panov et al. (2017); Mao et al. (2017; 2018).

These methods all start by assuming that there is a way of

estimating the P matrix defined in (2) underlying the am-

bient Bernoulli observations. Then the next step is to find

a unique factorization P = M⊤BM in order to extract the

useful model parameters M and B. Despite nuances in the

assumptions, the key condition that gives rise to identifi-

ability in these works is the existance of a pure node for

every community. For community p, a pure node is defined

as a node i such that mi = ep, meaning this node has no

membership in all the communities except the p-th one.

The so-called pure node assumption is exactly the separabil-

ity assumption first proposed by Donoho & Stodden (2004)

to ensure identifiability of nonnegative matrix factorization

(NMF). It has many anonyms in unsupervised learning ap-

plications where identifiability of the latent component is

crucial, for example anchor word in topic modeling (Arora

et al., 2012; 2013), pure pixel in hyperspectral unmixing

(Nascimento & Dias, 2005; Ma et al., 2014), local domi-

nance in blind source separation (Chan et al., 2008; Fu et al.,

2015), and here the pure node assumption in community

detection. A salient feature of separability is that it not

only guarantees identifiability, but also leads to efficient

algorithms to retrieve the solution, for example via greedy

search algorithms that date back to Araújo et al. (2001).

However, separability or pure node is a somewhat restrictive

assumption in practice—for model robustness, it would be

more ideal not to rely on such strong assumptions for the

algorithm to work.

A question one may ask is whether it is possible to ob-

tain an accurate estimate of P. One may assume that we

keep on observing Bernoulli samples generated according

to the parameter P. However, we should notice that the

MMSB model A∼Bernoulli(M⊤BM) only applies to the

off-diagonal entries of the graph adjacency matrix A. The

diagonal entries of A are, by definition, equal to zero. In

fact, a diagonal entry of P, which equals to m⊤
i
Bmi , does

not have any physical meaning, because the conditional in-

dependence assumption does not apply to a node with itself.

This means even if we can observe multiple Bernoulli draws

from M⊤BM , it is impossible to directly estimate its diago-

nal entries. One can verify that the argument still holds for

the graph Laplacian matrix constructed from A.

Anandkumar et al. (2014a) proposed a more viable approach

for applying factorization techniques based on the method of

moments. Inspired by Bickel et al. (2011), they propose to

construct a three-way tensor by dividing the large network

into four disjoint sets of nodes, S0, S1, S2, and S3, and

counting the number of 3-star subgraphs. Specifically, a

3-star is a subgraph in which a node in S0 connects to three

other nodes, each belonging to S1, S2, and S3. Consider
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four nodes i0 ∈ S0, i1 ∈ S1, i2 ∈ S2, and i3 ∈ S3, it is easy

to see that such a 3-star subgraph exists with probability

(m⊤i1Bmi0 )(m
⊤
i2
Bmi0 )(m

⊤
i3
Bmi0 ).

Summing this up over all i0 ∈ S0 and divide by the size of

S0, this quantity goes asymptotically to

Ti1i2i3 =

k∑

j1, j2, j3=1

G j1 j2 j3m̃i1 j1m̃i2 j2m̃i3 j3, (4)

where m̃i = B⊤mi and G j1 j2 j3 = E
[
mi0 j1mi0 j2mi0 j3

]
.

Tensor T would admit a canonical polyadic decomposition

(CPD) if G is a super-diagonal tensor, which is true if the

simple stochastic blockmodel is considered. For MMSB,

Anandkumar et al. (2014a) argued that such a CPD structure

can still be constructed via a somewhat complicated “center-

ing” procedure, which works if the mi0’s are all generated

from a Dirichlet distribution with a known intensity parame-

ter α0. Tensor CPD is known to be essentially unique under

mild conditions (Sidiropoulos et al., 2017), and in the more

restrictive case when all the latent factors have full column

rank, there exist guaranteed algorithms like the higher-order

power method to retrieve the solution efficiently (Anandku-

mar et al., 2014b).

1.3. This paper

In this paper, we adopt the graph moment approach by

Anandkumar et al. (2014b), but instead count the number of

2-star subgraphs by dividing the network into only three sets

S0, S1, and S2. One immediate advantage is that the sheer

number of 2-stars in a network is significantly larger than

the number of 3-stars, as illustrated in Figure 1. We will

specifically set S2 to be the set of nodes that one is interested

in detecting their communities, S1 to consist of only k − 1

nodes (one less than the number of latent communities), and

the rest all go to S0 to secure an accurate estimate of graph

moment.

The main technique we use to uniquely recover the commu-

nity membership structure of S2 is via a geometric intuition

of finding the minimum volume enclosing simplex that cov-

ers the entire set of points obtained from the second-order

moment. We will show that, for this method to be able to

uniquely recover the community memberships, the only as-

sumption we need is that mixed-membership coefficients of

the nodes in S2 are sufficiently scattered, a geometric condi-

tion that will be explained in detail in the sequel. A notable

difference between our result and all the aforementioned

matrix factorization techniques is that we do not require the

existence of pure nodes for any community. The sufficiently

scattered condition includes separability, or pure nodes in

the context of community detection, as a special case, but is

much more general than the pure nodes assumption.

456
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Figure 1. For this simple network of 6 nodes, if S1 = {1},

S2 = {2}, S3 = {3}, S0 = {4, 5, 6}, we have 3 samples to es-

timate the third-order moment of S1, S2, and S3 using 3-stars, out

of which only one is nonzero 5→ (1, 2, 3) shown in dashed red. If

instead we let S1 = {1}, S2 = {2, 3}, S0 = {4, 5, 6} and estimate

the second-order moment of S1 and S2, we have in total 6 sam-

ples of 2-stars, out of which 4 are nonzeros, highlighted in blue.

The difference in sample sizes is much more significant for large

networks in practice.

Compared to the tensor decomposition approach proposed

by Anandkumar et al. (2014a), we note that our method

does not require that the mi0 vectors to be drawn from a

known Dirichlet distribution. All we require is that the

second moment E[mi0m
⊤
i0
] exists, which is very easy to

satisfy in practice. This means the components of mi0 can

be highly correlated, for example by following a logistic

normal distribution (Blei & Lafferty, 2006), in which case

it is not possible to modify the third-order moment to ad-

mit a low-rank CPD structure. Our method, on the other

hand, is still able to recover the latent communities with

identifiability guarantees, and there is no need to perform

any sophisticated “centering” procedure.

Besides guaranteed identifiability under more relaxed condi-

tions, we also provide a computationally efficient algorithm

to detect the ground-truth communities. Even though the

new learning framework induces a non-convex optimization

problem that is in general NP-hard to solve, we show that

our method ensures convergence to a stationary point. In

the special case when the restrictive pure-node assumption

does hold, our method is able to recover the true community

memberships in one iteration.

2. A Simpler Graph Moment Construction

We start by describing how to construct the second-order

moment using 2-stars to form the nonnegative matrix for us

to learn the community memberships. The network is first

divided into three disjoint sets of nodes S0, S1, and S2. The

set S2 consists of n nodes that one is interested in finding

their community memberships. The set S1 consists of k − 1

nodes, which is one less than the number of communities

(and assumed to be known, as in most other methods). The

set S0 consists of all the other nodes to act as 2-star samples

in order to construct a (k − 1) × n matrix Ŷ .

Specifically, given the adjacency matrix A for the entire
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network, with (0, 1) weights, the i1i2-th entry of Ŷ is defined

as

Ŷi1i2 =
1

|S0 |

∑

i0∈S0

Ai0i1 Ai0i2 . (5)

Under the generative model of MMSB, we know that

E[Ai j] = m⊤
i
Bm j for i , j. Assuming each edge is indepen-

dently sampled, we have E[Ai0i1 Ai0i2 ] = E[Ai0i1 ]E[Ai0i2 ]

for i1 , i2. As a result,

E[Ŷi1i2 ] =
1

|S0 |

∑

i0∈S0

m⊤i1B
⊤mi0m

⊤
i0
Bmi2

= m⊤i1B
⊤

(
1

|S0 |

∑

i0∈S0

mi0m
⊤
i0

)
Bmi2 .

Let Σ = E[mi0m
⊤
i0
] and let |S0 | go to infinity, we have that

Ŷ → M⊤
1
B⊤ΣBM2 ,

where M1 is k ×(k −1) indicating the membership of nodes

in S1 in its columns, and similarly for the columns of M2.

Define Ξ = M⊤
1
B⊤ΣB, and let Y = E[Ŷ ], then we result in

Y = ΞM2 . (6)

A few comments are in order:

• Our construction of Y works for both undirected and di-

rected networks. For directed networks, our construction

asks specifically for 2-stars that goes from a node in S0 to

nodes in S1 and S2.

• If the edges are weighted but with integer weights, one

may interpret it as multiple draws from M⊤BM , which

simply means we have a lot more samples to estimate Y .

• The idea of constructing this graph moment is inspired

by Anandkumar et al. (2014a). The main difference is

that we collect the number of 2-star subgraphs rather than

3-stars. This, again, naturally provides a lot more samples

for us to estimate Y .

• As we will see later, the estimate Ŷ can directly be used as

is, whereas Anandkumar et al. (2014a) require that nodes

in S0 follow a Dirichlet distribution, implying that the Σ

matrix has a “diagonal plus rank-one” structure. This is

not required for our method to work.

3. Identifiability from Convex Geometry

As per our moment construction, we now have an estimate

of Y = ΞM2, and we want to find a unique representation of

M2, which represents the mixed-membership of the nodes in

S2. At first glance, it is a highly under-determined problem—

how can we uniquely determine a (k − 1) × k matrix Ξ and

a k × n matrix M2 just from a (k − 1) × n data matrix

Y? We do have the constraint that both Ξ and M2 can

only take nonnegative values, but that is not enough to

Figure 2. Geometrically, the columns of Y are points in the non-

negative orthant, and columns of Ξ define a simplex that contains

all columns of Y . However, such an enclosing simplex is not

unique. There are in fact infintely many enclosing simplexes in the

nonnegative orthant.

guarantee identifiability in general, especially when the

latent dimension k is in fact larger than one of the ambient

dimensions.

3.1. Geometric interpretation

The answer lies in the geometric interpretation of the model

Y = ΞM2. Consider the i2-th column of Y , denoted as yi2 ,

we have the relation that

yi2 = Ξmi2 =

k∑

j=1

ξ jmji2 .

According to the assumption in MMSB, mi2 ∈ ∆ where ∆ is

the probability simplex defined in (3). This means that yi2
is a convex combination of ξ

1
, ..., ξk in R

k−1, for all i2 ∈ S2.

Geometrically, this means all the yi2 ’s belong to the convex

hull of ξ
1
, ..., ξk , denoted as conv(ξ

1
, ..., ξk). If the set of

vectors ξ
1
− ξk, ..., ξk−1 − ξk are linearly independent, then

conv(ξ
1
, ..., ξk) is called a simplex. Details of these convex

geometry concepts can be found in Boyd & Vandenberghe

(2004).

An example is given in Figure 2, where black dots represent

columns of Y , and red dots represent columns of Ξ . As we

can see, columns of Y clearly lie inside the simplex defined

by the columns of Ξ . However, the enclosing simplex is

not unique—the one depicted by gray dashed lines is an-

other simplex containing all the columns of Y , and there are

infinitely many more. We do know that Ξ is nonnegative,

which means conv(ξ
1
, ..., ξk) should lie in the nonnegative

orthant, but that does not help pin down the correct Ξ .

However, among all possible enclosing simplexes, intu-

itively the most plausible solution would be the one with

minimum volume. For the simplex conv(ξ
1
, ..., ξk) in R

k−1,

its volume is equal to (Strang, 2006)

Vol(Ξ) =
1

(k − 1)!

��� det
[
ξ
1
− ξk · · · ξk−1 − ξk

] ���.

Using this intuition, we propose the following formulation
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for recovering Ξ and M2

minimize
Ξ,M2

��� det
[
ξ
1
− ξk · · · ξk−1 − ξk

] ���

subject to Y = ΞM2,M2 ≥ 0, 1⊤M2 = 1.

(7)

Problem (7) can be further simplified as follows. Define

Ỹ =

[
Y

1
⊤

]
, Ξ̃ =

[
Ξ

1
⊤

]
,

then the two equality constraints can be combined into one

Ỹ = Ξ̃M2.

Furthermore, it is easy to verify that

det
[
ξ
1
− ξk · · · ξk−1 − ξk

]
= det Ξ̃,

using the Schur complement. Finally, we end up with the

formulation

minimize
Ξ̃,M2

| det Ξ̃ |

subject to Ỹ = Ξ̃M2,M2 ≥ 0, e⊤k Ξ̃ = 1
⊤.

(8)

3.2. Identifiability

Problem (8) provides an intuitive identification criterion for

recovering Ξ and M2, stemming from the geometric inter-

pretation of the problem. In this subsection, we show that if

the ground-truth membership matrix M2 satisfies a so-called

sufficiently scattered condition, then optimally solving (8)

guarantees unique recovery of M2 up to row permutations.

Different permutations of the rows correspond to relabelling

the communities, which is inconsequential in practice. From

this point on, we denote the ground-truth matrices as Ξ ♮

and M
♮
2
, and similarly for Ξ̃

♮
since it is obtained by simply

stacking Ξ ♮ with an all-one row vector 1⊤.

To study the identifiability of this model, we switch the

space from R
k−1 to R

k , where the columns of M
♮
2

belong to.

The columns of M
♮
2

have a one-to-one correpondance to the

columns of Y , and in turn the columns of Ξ ♮ correspond to

the coordinate vectors e1, ..., ek . If conv(ξ
1
, ..., ξk) is the

smallest enclosing simplex for Y , then so is ∆ for M
♮
2
, since

∆ = conv(e1, ..., ek). Consequently, the columns of M
♮
2

should be “sufficiently scattered” in ∆, because otherwise

we can further diminish the volume of the enclosing simplex.

The formal definition of “sufficiently scattered” is given as

follows.

Definition 1 (sufficiently scattered). Let D be a “hyper-disc”

on the hyperplane 1
⊤x = 1 defined as

D = {x ∈ R
k : ‖x‖2 ≤

1

k − 1
, 1⊤x = 1}. (9)

(a) Pure node (b) Sufficiently scattered (c) Not identifiable

Figure 3. A geometric illustration of the sufficiently scattered con-

dition (middle), a special case that is separable / pure node (left),

and a case that is not identifiable (right). The triangle denotes the

probability simplex ∆, the circle denotes D defined in (9), and the

shaded regions represent conv(M).

A matrix M , with all its columns in ∆, is called sufficiently

scattered if it satisfies that: (i) D ⊆ conv(M), and (ii)

bd conv(M) ∩ bdD = {(1/k)(1 − e j) : j = 1, ..., k}, where

bd denotes the boundary of a set.

The sufficiently scattered condition first appeared in (Huang

et al., 2014) to establish uniqueness guarantees for the

widely used nonnegative matrix factorization model. Fu

et al. (2015) and Lin et al. (2015) simultaneously showed

that under the same condition, the latent representation of

Y = ΞM , where the columns of M are in ∆ and Ξ is square

and non-singular, can be uniquely identified by optimizing

the volume criterion. The condition was first named “suf-

ficiently scattered” by Huang et al. (2016) for yet another

subtly different matrix tri-factorization model, which has

applications in topic modeling (Huang et al., 2016) and

hidden Markov model (HMM) identification (Huang et al.,

2018). See Fu et al. (2019) for a recent survey on a family

of related models with identifiability guarantees.

One may notice that in almost all of these aforementioned

prior works, the condition is described using conic hulls

and dual cones. In the supplementary material, we show

that the way we present the condition is equivalent to the

ones given before when everything is on the hyperplane

1
⊤x = 1. We find the way we present the condition easier for

the readers to understand, although the concepts of cones

and dual cones are crucial in proving identifiability. In the

context of our model, we have the following identifiability

result.

Theorem 1. (Fu et al., 2015; Lin et al., 2015) Suppose

Y = Ξ ♮M
♮
2
, where rank(Ξ̃

♮
) = k and M

♮
2

is sufficiently

scattered. Let (M⋆,Ξ⋆) be an optimal solution for (8), then

there exists a permutation matrix Π ∈ R
k×k such that

M
♮
2
= ΠM⋆, Ξ̃

♮
= Ξ⋆Π

⊤.

Although this theorem has been independently proven by

Fu et al. (2015) and Lin et al. (2015), we provide a complete

proof in the supplementary material nonetheless. One of

the reasons is because our formulated problem (8), while
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mathematically equivalent, is not exactly the same as the

ones written by Fu et al. (2015) and Lin et al. (2015). In

the next section of algorithm design for solving (8), we will

see that the way we write the problem leads to a more effi-

cient algorithmic implementation with better convergence

properties, which is not achieved by any prior work.

A geometric illustration of a matrix that satisfies the suf-

ficiently scattered condition is shown in Figure 3b, where

columns of the matrix are depicted as blue dots. As we can

see, D is a subset of ∆, but touches the boundary of ∆ at

points (1/k)(1−e j), j = 1, ..., k. If a matrix M is sufficiently

scattered, conv(M) contains D as a subset and, as a second

requirement, D touches the boundary of conv(M) only at

those points too.

One can also see from Figure 3a that the pure node assump-

tion, considered in (Zhang et al., 2014; Kaufmann et al.,

2016; Mao et al., 2017; Panov et al., 2017), is a very special

case of sufficiently scattered. It requires that all the coordi-

nate vectors are included in columns of M
♮
2
, which makes

conv(M
♮
2
) = ∆, while our result shows that identifiability

can be achieved even when this condition is violated. In fact,

it has been empirically observed that a nonnegative sparse

matrix satisfies the sufficiently scattered condition with very

high probability (Huang et al., 2015; Fu et al., 2019).

4. Algorithm

In this section, we propose an algorithm for approximately

solving Problem (8), which is non-convex and has been

shown to be NP-hard (Packer, 2002). Nevertheless, we

propose an algorithm after carefully reformulate Problem

(8) and apply the general idea of successive upperbound

minimization (BSUM) (Razaviyayn et al., 2013), which is

guaranteed to converge to a stationary point. The proposed

algorithm is called Community Detection via Minimum

Volume Simplex Identification (CD-MVSI).

Inspired by the work of (Chan et al., 2009) and (Huang et al.,

2016), we introduce a new variable that relates to Ξ̃
−1

to

replace Ξ̃ in (8). However, before we do that, we note that in

Problem (8), the first equality constraint decouples over the

rows of Ξ̃ , while the second equality constraint decouples

over the columns of Ξ̃ . This may lead to a difficulty if

we adopt a cyclic column/row update scheme. Our tactic

is to exploit the fact that the matrix product Ỹ = Ξ̃M2 is

not affected if we insert a diagonal matrix and its inverse

in-between,

Ỹ = Ξ̃M2 = Ξ̃DD−1M2.

We choose D to be Diag(M21), so that D−1M21 = 1. Now

we formally introduce X = (Ξ̃D)−1, and the constraints in

(8) becomes

XỸ = D−1M2 ≥ 0, XỸ1 = D−1M21 = 1.

Now we can eliminate variable M2. The loss function be-

comes | detDX |−1 = | detD |−1 | det X |−1, and we recog-

nize that | detD |−1, albeit unknown, is a positive scalar,

which does not affect the optimization problem. Finally, we

take the reciprocal square of the loss function, resulting in

the following problem formulation

maximize
X

(det X)2

subject to XỸ ≥ 0, XỸ1 = 1.
(10)

After solving (10), we let D = Diag(e⊤
k
X−1⋆ ) recover a

solution for M2 as

M2⋆ = DX⋆Ỹ .

Problem (10) now has a convex constraint set that decouples

over the rows of X , although the objective function is still

not concave. We propose to adopt the block successive

upperbound minimization (BSUM) framework (Razaviyayn

et al., 2013) and update the rows of X in a cyclic fashion.

According to Laplace’s formula, we know that det X is a

linear function with respect to the ℓ-th row of X using the

co-factor expansion

det X =

k∑

m=1

(−1)ℓ+mxℓm det Xℓm,

where Xℓm is obtained by deleting the ℓ-th row and m-th

column of X . For a particular X , we define a vector f ∈ R
k

with the m-th entry equals to

fm = det X × (−1)ℓ+m det Xℓm, (11)

then we have f⊤z ≤ (det Z)2 for all z ∈ R
k , where Z is

obtained by replacing the ℓ-th row of X with z⊤, and equality

holds if z = xℓ . Therefore, by successively solving

maximize
z

f⊤z

subject to z⊤Ỹ ≥ 0, z⊤Ỹ1 = 1,
(12)

the cyclic column update scheme is guaranteed to monoton-

ically increase the objective value of (10) if it is initialized

with a feasible point. Since the constraints decouple over

the rows, any random point, after one cycle of row updates,

becomes feasible. Problem (12) is a linear program with

only k variables and n inequality constraints, and there

exist many reliable solvers to solve it efficiently. If the

interior-point method is used, the worst case complexity is

O(k2n1.5). Recall that n is the size of the subgroup of nodes

that we are interested in detecting their communities, so it

is not necessarily a large number even for a huge network.

The proposed CD-MVSI algorithm, starting from the mo-

ment generating step described in Section 2, is summarized
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Algorithm 1 CD-MVSI: Community Detection via Mini-

mum Volume Simplex Identification

Input: network adjacency matrix A, number of communi-

ties k, index set G of a group of interested nodes

1: randomly pick a set of k − 1 nodes S

2: put the rest of nodes in R

3: Y = A(R, S)⊤A(R,G)

4: Ỹ =

[
Y

1
⊤

]
, b = Ỹ1

5: randomly initialize X ∈ R
k×k

6: repeat

7: for ℓ = 1, ..., k do

8: f ← X−1eℓ
9: z ← argmax

z
f⊤z s.t. z⊤Ỹ ≥ 0, z⊤b = 1

10: replace ℓ-th row of X with z⊤

11: end for

12: until convergence

13: D = Diag(e⊤
k
X−1)

14: return DXỸ

in Algorithm 1. The core algorithm shows some resem-

blance to the AnchorFree algorithm by Huang et al. (2016)

for learning topic models, but we note the following differ-

ences:

1. Fundamentally, CD-MVSI and AnchorFree solve dif-

ferent problems. In AnchorFree, the equality constraint

similar to the one in (10) is inherent, whereas ours comes

from careful reformulation exploiting the algebraic struc-

ture of the problem.

2. CD-MVSI replaces the objective | det X | with (det X)2,

which is mathematically equivalent except that the ob-

jective is now smooth. The immediate benefit is that

CD-MVSI only solves one LP per row update, whereas

AnchorFree solves two, which means CD-MVSI is at

least twice as fast. In the sequel we also show that it

leads to provable convergence to a stationary point.

3. An interesting numerical trick we use in CD-MVSI is

that the vector f , defined in (11), is actually (det X)2

times the ℓ-th column of X−1 per Cramer’s rule. It is

well-known that directly calculating the determinant suf-

fers from serious round-off errors. Our simulations show

that computing X−1 significantly helps stablize the nu-

merical performance.

We end this section with the following two convergence

results, which is not known prior to our work. The proofs

are relegated to the supplementary material.

Theorem 2. Assume each LP sub-problem (12) has a

unique solution, then CD-MVSI converges to a stationary

point of Problem (10).

Theorem 3. Assume the ground truth M
♮
2

satisfies the sep-

arability condition, i.e., there exists a pure node for every

community, and Ξ̃
♮

is non-singular, then CD-MVSI recovers

the true M
♮
2
, up to row permutation, in one iteration.

The caviar of Theorem 3 is that CD-MVSI also has com-

putational guarantees when the more restrictive pure-node

assumption is satisfied, similar to the work of (Zhang et al.,

2014; Kaufmann et al., 2016; Mao et al., 2017; Panov et al.,

2017). If the pure-node assumption does not hold, however,

CD-MVSI can still correctly recover the underlying commu-

nity structure under the more relaxed sufficiently scattered

condition, which cannot be achieved by any other method.

5. Experiments

In this section, we provide some numerical experiments to

showcase the effectiveness of CD-MVSI for learning com-

munity mixed-memberships from a large network. We apply

a number of community detection methods to real-world

co-authorship data sets obtained from Microsoft Academic

Network and DBLP. In the supplementary material, we also

validate the identifiability performance on synthetic data,

which clearly shows that under more general scenarios, for

example, in the absense of pure nodes or when the mem-

bership coefficients do not follow a Dirichlet distribution,

CD-MVSI manages to perfectly identify the underlying

community structure whereas other baseline methods are

not able to.

Baseline methods. Mao et al. (2017) and Panov et al.

(2017) demonstrated that their pure-node based methods,

GeoNMF and SPOC, out-perform most of the other algo-

rithms, including stochastic variational inference (Gopalan

et al., 2012) designed for scaling up the original MMSB

model. We therefore mainly compare with GeoNMF and

SPOC in this section. We also construct the third-order

graph moment proposed by Anandkumar et al. (2014a),

and the subsequent canonical polyadic decomposition is

executed using Tensorlab (Vervliet et al., 2016). All the

experiments are conducted in MATLAB on an iMac Pro,

and we use the built-in linprog function in MATLAB to

solve each of the LP sub-problems.

Data sets. We consider the co-authorship data from Mi-

crosoft Academic Graph (MAG) and DBLP constructed by

Mao et al. (2017). 1 Each network is provided with “ground-

truth” community memberships of the nodes: In MAG, each

paper is tagged with a “field of study” label (community),

and the membership of a node (author) is the number of

papers with certain tags normalized by the total number of

papers. In DBLP, communities are defined by venues, and

memberships are obtained by counting the number of papers

published in specific venues. We refer the readers to Mao

et al. (2017) for details.

1Downloaded from http://www.cs.utexas.edu/

~xmao/coauthorship

http://www.cs.utexas.edu/~xmao/coauthorship
http://www.cs.utexas.edu/~xmao/coauthorship
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Figure 4. Averaged Spearman rank correlation coefficient (SRCavg) and run time performance on co-authorship networks.

Mao et al. (2017) divided the networks into smaller ones in

each experiment, so that each network contains only 3–6

communities. To make the experiment more challenging, we

combine the smaller DBLP networks (with 10,000 to 30,000

nodes each) into bigger ones to work with. Specifically,

DBLP−i means we combine all the sub-networks except

the i-th one. In this case each network contains 13–16

communities.

Evaluation metric. We evaluate the performance by calcu-

lating the averaged Spearman’s rank correlation coefficient

(SRCavg) between the learned community memberships M̂

and the ground-truth M ♮ provided by the data set, after fix-

ing the permutation ambiguity of the communities using the

Hungarian algorithm. This evaluation metric is the same as

the one used in Mao et al. (2017) and Panov et al. (2017).

The SRCavg takes values between −1 and 1, and gives a

larger number if the ranking of the elements in two vectors

are similar, which fits well in our context. A larger SRCavg

implies better performance.

Performance. The performance in terms of SRCavg and run

time is shown in Figure 4. Because CD-MVSI and the tensor

CPD method work with subsets of nodes, the experiment on

each data set is the average of 10 random trials; each time a

subset of 1000 nodes are randomly chosen as the interested

group, on which the SRCavg is calculated. For the tensor

method, the Dirichlet ‘concentration’ parameter α0 is set to

be k; i.e., we assume mi follows a uniform distribution in

the probability simplex ∆.

As we can see, CD-MVSI consistently performs better than

the other baseline methods in terms of SRCavg, sometimes

significantly better. Somewhat surprisingly, the run time

performance is at least 10 times faster than GeoNMF and

SPOC (notice the log-scale on the vertical axis). One main

reason could be that GeoNMF and SPOC both require cal-

culating the k-largest eigenvalues and their corresponding

eigenvectors of the graph adjacency matrix, whereas CD-

MVSI constructs a graph moment using basic matrix op-

erations. The inferior performance of the tensor method

is, in our opinion, partly due to the inaccurate estimate of

the Dirichlet parameter α0. Unfortunately, there is no good

way of estimating that hyper-parameter, to the best of our

knowledge.

6. Conclusion

In this paper we aimed to design a learning framework that

is guaranteed to recover the underlying community mem-

berships of the popular mixed-membership stochastic block-

model (MMSB) for large networks. Our method started

by constructing a second-order graph moment in order to

overcome the binary nature of the data, by simply counting

the number of 2-star sub-graphs. The resulting moment was

shown to admit a very intuitive geometric interpretation,

which led to our proposed problem formulation. We showed

that if the membership matrix satisfies the sufficiently scat-

tered condition, solving the proposed problem is guaranteed

to recover the ground-truth. An efficient algorithm called

CD-MVSI was then designed, which has robust conver-

gence guarantees. Experiments on real-world co-authorship

networks showcased the validity of our method.
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