Stable and Fair Classification

A. Proof of Lemma 3.5

Proof. Given a differentiable function F' : F x F — R, we
define the Bregman divergence by

dp(f. ") = F(f)=F(f)=(f=f . VF()), Vf. [ € F.

Define R : ¥ — R by

R() = 30 L(fs) + MR VS € 7.

i€[N]

Also define R : F — R by

R() = 1 (Z L(f,s;) + L. s;>) AIFIZ, Vf € F.

J#t
By definition of ¢ and ¢*, we have

dr(g',9) =R(g") — R(g9) — (9" — 9, VR(g))

i )
<R(g") — R(9),
and
dri(9,9') =R'(9) — R'(¢") — (9 — ¢', VR'(¢")) ©
<R'(9) — R'(¢").
By Inequalities (5) and (6), we have
dr(g',9) +dri(g.9")
<R(g") - R(g) + R'(9) - R'(¢") %)
1 , .
:N (L(glv si) - L(g7 Sz) + L(ga S;,) - L(gla S;)) .

Since dy+p = da + dp, we have
2Xlg — ¢'II%
=Ad)2(9, ") + M2 (9", 9)
(Defn. of || - ||2)
=dpi(9:9') —ds>, 1.(.5)(9:9")
+dr(g',9) = dsx,_ L9, 9)
(dayp =da+dp) (8)
<dgi(9,9') + dr(g', 9)
(nonnegativity of dg)

Si) — L(Q,SZ) + L(ga S;) -

(lg(zi) = g" ()| + |g(a})
(L(-,-) is o-admissible)

L(g",s}))

—g'(z})]) .

This completes the proof. O

B. Proof of Theorem 3.7

Proof. By Inequality (8) in the proof of Lemma 3.5, we
have

2X\[lv — '3
1 . )
<= (L(gl7 Si) - L(

N g,si) + L(g, s7) —

L(g',s7)) -

Moreover, we have forany f = a-¢(:), f' =o' - ¢(-) € F
and s € D,

L(f,s) = L(f',5) <(VaL(f,5), a0 = o)
(Convexity of L(-, s))
<IVaL(a,s)z - [la = o/l2
<Glla = o[l

(Defn. of G).

(10)

Combining with Inequalities (9) and (6), we have

o — o3
<1 (L)
SO g,
(Ineq. (9))

1 1 ’L
<oy (€l =l + Gllo — )

(Ineq. (10))
G
TAN

L(g73i) + L(g782) - L<gi73;))

lo = v"l2-

It implies that [|[v — v'[|» < 5
ty (6), we have for any s € D,

. Combining with Inequali-

2

G
< _ 3
L(g,s) — L(g",s) < Gllv —v*> < VA

This completes the proof for the stability guarantee. For the
sacrifice in the empirical risk, the argument is the same as
that of Theorem 3.2. O
C. Details of Remark 3.3

e Prediction error: f( ) e {-1 1} for any pair (f,x)
and L(f(x),y) = 1[f(x) # y],’ then we have that

1L(f(2),y) = L(f (=), )|
L[S () # y] = T[S (=) # o]

I[f(z) # f(a')] =

1 /
S 1) = 1),

which is $-admissible.

*Here, I [-] is the indicator function.
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e Soft margin SVM: L(f,s) = (1 — yf(z)),° then we

have that
IL(f(x),y) = L(f(2"),y)]
= |(L-yf(z)+ — (1 —-yf(2)+]
< lyf(@) —yfa)l

= |f(x) = f@@)],
which is 1-admissible.

e Least Squares regression: L(f,s) = (f(z) —y)?. Sup-
pose f(z) € [—1,1] for any x € X, then we have
that

< 4lf(z) - f(2")
which is 4-admissible.

e Logistic regression: L(f, s) = In(1 4 e~¥/(*)). Note
that we have forany z € X andy € {—1, 1},
‘Vf(m) 111(1 + eiyf(x))
eyl (x)
- ' 1+ e /@

—e—uf(z)
- ' e <1.

1+ e—yf(z)

Hence, the loss function L(f, s) = In(1 + e~ %/(*)) is
1-admissible.

D. Analysis of Our Framework in Specified
Settings

Next, we show the stability guarantee of our framework
in several specified models. We mainly analyze three
commonly-used models: soft margin SVMs, least squares
regression, and logistic regression.

Soft margin SVMs. Recall that S =
{si = (xi,2i,Yi) };eqn) 18 the given training set. We
first have a kernel function k(-,-) that defines values

k(x;,x;). Then each classifier f is a linear combination of
k(xi, '), i.e.,

16 =Y ak,)

i€[N]

for some o € RY In the soft margin SVM model, we
consider the following loss function

L(fs) = (1 —yf(x))+

%(a)+ = aif a > 0 and otherwise (a); = 0.

which is 1-admissible. Then Program (Stable-Fair) can be
rewritten as follows.

Jnin -y Z ajk(z;, z;)
i€[N] JEN] N
(SVM)
HAl YD qiagk(a )l st
i,j€[N]
Q(f) <0.

This model has been considered in (Zafar et al., 2017b;a)
that aims to avoid disparate impact/disparate mistreatment.
Applying Theorems 3.2 and 3.7, and the fact that L(-, ) is
1-admissible (Remark 3.3), we directly have the following
corollary.

Corollary D.1. Suppose the learning algorithm A com-
putes a minimizer Ag of Program (SVM).

o Ifk(xi,z;) < K? < oo for each i € [N], then A is
%—uniformly stable.

o Let G =sup_o7y()era(r)<o SWsep [VaL(f; s)|2.
2
Then A is S—N-uniformly stable.

Least square regression. The only difference from soft
margin SVM is the loss function, which is defined as fol-
lows.

L(f,s) = (f(z) —y)*.
Then Program (Stable-Fair) can be rewritten as follows.

2

Join Yi — Z ajk(z;j, i)

i€[N] JEIN] (LS)
+ Al Z iajk(zi,z)|f st

i,j €[N]
Q(f) <0.

Applying Theorems 3.2 and 3.7, we have the following
corollary.

Corollary D.2. Suppose the learning algorithm A com-
putes a minimizer Ag of Program (LS).

o If B =max,cx |f(z)| and k(z;,x;) < k* < oo for
2,2
each i € [N], then A is %—uniformly stable.

o LetG = SUP f—aT¢(-)eF:Q(f)<0 SUPseD IVaL(f, )l
Then A is f;, -uniformly stable.

Proof. We only need to verify that L(-,-) is (2B + 2)-
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admissible. For any z, 2’ € X and y € {—1,1}, we have

[(f(z) —y)? = (f(&') = v)?|
=|(f(z) = f() - (f ( )+f(m’) 2y)|
<(If@)]+1f@)]+2) - [(f(=) — f(2"))]
<(

I(
2B +2)|(f(x) = f(@")].

This completes the proof. O

Logistic regression. Again, the only difference from soft
margin SVM is the loss function, which is defined as fol-
lows.

L(f,s) = In(1 4 e ¥ @),

This model has been widely used in the literature (Za-
far et al., 2017b;a; Goel et al.,, 2018). Then Pro-
gram (Stable-Fair) can be rewritten as follows.

min Z In (1 +yi-e 2] a"k(%’“))

aeRN
1€[N]

FA Y gk, o)l st (LR)
i,j €[]
Q(f) <o0.
Applying Theorem 3.2 and 3.7, and the fact that L(-,-) is
1-admissible (Remark 3.3), we have the following corollary.

Corollary D.3. Suppose the learning algorithm A com-
putes a minimizer Ag of Program (LR).

o Ifk(xi,z;) < K? < oo for each i € [N], then A is
%—uniformly stable.

o Let G =sups_q74(yera(f)<o SWPsep [VaL(f,s)l|
Then A is S—N—uniformly stable.



