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Abstract
In a recent study, Friedler et al. (Friedler et al.,
2019) observed that fair classification algorithms
may not be stable with respect to variations in the
training dataset – a crucial consideration in sev-
eral real-world applications. Motivated by their
work, this paper initiates a study of designing
classification algorithms that are both fair and sta-
ble. We propose an extended framework based
on fair classification algorithms that are formu-
lated as optimization problems, by introducing
a stability-focused regularization term. Theoret-
ically, we prove a stability guarantee, that was
lacking in fair classification algorithms, and also
provide an accuracy guarantee for our extended
framework. Our accuracy guarantee can be used
to inform the selection of the regularization pa-
rameter in our framework. We assess the benefits
of our approach empirically by extending sever-
al fair classification algorithms that are shown to
achieve a good balance between fairness and ac-
curacy over the Adult dataset, and show that our
framework improves the stability at only a slight
sacrifice in accuracy.

1. Introduction
Fair classification has fast become a central problem in ma-
chine learning due to concerns of bias with respect to sensi-
tive attributes in automated decision making, e.g., against
African-Americans while predicting future criminals (Flo-
res et al., 2016; Angwin et al., 2016; Berk, 2009), granting
loans (Dedman et al., 1988), or NYPD stop-and-frisk (Goel
et al., 2016). Consequently, a host of fair classification
algorithms have been proposed; see (Bellamy et al., 2018).

In a recent study, (Friedler et al., 2019) pointed out that sev-
eral existing fair classification algorithms are not “stable”.
In particular, they considered the standard deviation of a fair-
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ness metric (statistical rate, that measures the discrepancy
between the positive proportions of two groups; see Eq. (4))
and accuracy over ten random training-testing splits with
respect to race/sex attribute over the Adult dataset. They
observed that the standard deviation of the fairness metric is
2.4% for the algorithm in (Kamishima et al., 2012) (KAAS)
with respect to the race attribute, and is 4.1% for that in (Za-
far et al., 2017b) (ZVRG) with respect to the sex attribute.
These significant standard deviations imply that the classi-
fier learnt from the respective fair classification algorithms
might perform differently depending on the training dataset.

Stability is a crucial consideration in classification (Bous-
quet & Elisseeff, 2002; Mukherjee et al., 2006; Briand et al.,
2009; Fawzi et al., 2018), and has been investigated in sev-
eral real-world applications, e.g., advice-giving agents (Ger-
shoff et al., 2003; Van Swol & Sniezek, 2005), recommen-
dation systems (Adomavicius & Zhang, 2012; 2011; 2016),
and judicial decision-making (Shapiro, 1965). Stable classi-
fication algorithms can also provide defense for data poison-
ing attacks, whereby adversaries want to corrupt the learned
model by injecting false training data (Biggio et al., 2012;
Mei & Zhu, 2015; Steinhardt et al., 2017).

There is a growing number of scenarios in which stable and
fair classification algorithms are desired. One example is
recommendation systems that rely on classification algo-
rithms (Park et al., 2012; Portugal et al., 2018). Fairness is
often desired in recommendation systems, e.g., to check gen-
der inequality in recommending high-paying jobs (Farahat &
Bailey, 2012; Datta et al., 2015; Sweeney, 2013). Moreover,
stability is also important for the reliability and acceptability
of recommendation systems (Adomavicius & Zhang, 2012;
2011; 2016). Another example is that of a judicial decision-
making system, in which fair classification algorithms are
being deployed to avoid human biases for specific sensitive
attributes, e.g., against African-Americans (Flores et al.,
2016; Angwin et al., 2016; Berk, 2009). The dataset, that
incorporates collected personal information, may be noisy
due to measurement errors, privacy issues, or even data poi-
soning attacks (Lam & Riedl, 2004; Mobasher et al., 2007;
O’mahony et al., 2004; Barreno et al., 2010) and, hence,
it is desirable that the fair classifier also be stable against
perturbations in the dataset.
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1.1. Our contributions

In this paper, we initiate a study of stable and fair clas-
sifiers in automated decision-making tasks. In particular,
we consider the class of fair classification algorithms that
are formulated as optimization problems that minimize the
empirical risk while being constrained to being fair. The
collection F of possible classifiers is assumed to be a repro-
ducing kernel Hilbert space (RKHS) (see Program (ConFair)
for a definition); this includes many recent fair classifier-
s such as (Zafar et al., 2017a;b; Goel et al., 2018). Our
main contribution is an algorithmic framework that incorpo-
rates the notion of uniform stability (Bousquet & Elisseeff,
2002) – the maximum l∞-distance between the risks of two
classifiers learned from two training sets that differ in a
single sample (see Definition 2.1). This allows us to address
the stability issue observed by (Friedler et al., 2019). To
achieve uniform stability, we introduce a stability-focused
regularization term to the objective function of fair classifier
(Program (Stable-Fair)), which is motivated by the work
of (Bousquet & Elisseeff, 2002). Although some existing
fair classification algorithms (Kamishima et al., 2012; Goel
et al., 2018) use regularizers, they do not seem to realize that
(and show how) the regularization term can also make the
algorithm more stable. Under mild assumptions on the loss
function (Definition 3.1), we prove that our extended frame-
work indeed has an additional uniform stability guarantee
Õ( 1

λN ), where λ is the regularization parameter and N is
the size of the training set (Theorems 3.2). Moreover, if F is
a linear model, we can achieve a slightly better stability guar-
antee (Theorem 3.7). Our stability guarantee also implies
an empirical risk guarantee that can be used to inform the
selection of the regularization parameter in our framework.
By letting λ = Θ( 1√

N
), the increase in the empirical risk

by introducing the regularization term can be bounded by
Õ( 1√

N
) (Theorems 3.2 and 3.7, Remark 3.3). As a conse-

quence, our stability guarantee also implies a generalization
bound – the expected difference between the expected risk
and the empirical risk is Õ( 1

λN ) (Corollaries 3.6 and 3.8).

Further, we conduct an empirical evaluation over the Adult
dataset and apply our framework to several fair classifica-
tion algorithms, including KAAS (Kamishima et al., 2012),
ZVRG (Zafar et al., 2017a) and GYF (Goel et al., 2018)
(Section 4). Similar to (Friedler et al., 2019), we evaluate
the fairness metric and accuracy of these algorithms and
our extended algorithms. Besides, we also compute the ex-
pected number of different predictions over the test dataset
between classifiers learned from two random training sets
as a stability measure stab (Eq. (3)). The empirical results
show that our classification algorithms indeed achieve bet-
ter stability guarantee, while being fair. For instance, with
respect to the sex attribute, the standard deviation of the
fairness metric of ZVRG improves from 4.1% ((Friedler
et al., 2019)) to about 1% using our extended algorithm,

and the stability measure stab decreases from 70 (λ = 0)
to 25 (λ = 0.02). Meanwhile, the loss in accuracy due to
imposing stability-focused regularization term is small (at
most 1.5%).

Overall, we provide the first extended framework for stable
and fair classification, which makes it flexible and easy
to use, slightly sacrifices accuracy, and performs well in
practice.

1.2. Other related work

From a technical view, most relevant prior works formulated
the fair classification problem as a constrained optimization
problem, e.g., constrained to statistical parity (Zafar et al.,
2017b; Menon & Williamson, 2018; Goel et al., 2018; Celis
et al., 2019b), or equalized odds (Hardt et al., 2016a; Za-
far et al., 2017a; Menon & Williamson, 2018; Celis et al.,
2019b). Our extended framework can be applied to this type
of fair classification. Another approach for fair classifica-
tion is to shift the decision boundary of a baseline classifier,
e.g., (Fish et al., 2016; Hardt et al., 2016a; Goh et al., 2016;
Pleiss et al., 2017; Woodworth et al., 2017; Dwork et al.,
2018). Finally, a different line of research pre-processes the
training data with the goal of removing the bias for learning,
e.g., (Kamiran & Calders, 2009; Luong et al., 2011; Kami-
ran & Calders, 2012; Zemel et al., 2013; Feldman et al.,
2015; Krasanakis et al., 2018).

Several prior works (Bousquet & Elisseeff, 2002; Shalev-
Shwartz et al., 2010; Maurer, 2017; Meng et al., 2017) study
the stability property for empirical risk minimization. (Hardt
et al., 2016b), (London, 2016) and (Kuzborskij & Lampert,
2018) showed that the stochastic gradient descent method is
stable. Moreover, several recent works studied stability in
deep neural networks (Raghu et al., 2017; Vidal et al., 2017).
Stability has been investigated in other automated decision-
making tasks, e.g., feature selection (Nogueira et al., 2018)
and structured prediction (London et al., 2013; 2014; 2016).

There exists a related notion to stability, called differential
privacy, where the prediction for any sample should not
change with high probability if the training set varies a single
element. By (Wang et al., 2016), differential privacy implies
a certain stability guarantee. Hence, it is possible to achieve
stable and fair classifiers by designing algorithms that satisfy
differential privacy and fairness simultaneously. Recent
studies (Hajian et al., 2016; 2015; Kashid et al., 2015; 2017;
Ruggieri et al., 2014) have expanded the application of
methods to achieve both goals; see a recent paper (Ekstrand
et al., 2018) for more discussions. However, these methods
are almost all heuristic and without theoretical guarantee.
There also remains the open problem of characterizing under
what circumstances and definitions, privacy and fairness are
simultaneously achievable, and when they compete with
each other.
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2. Our model
2.1. Preliminaries

We consider the Bayesian model for classification, in which
= denote a joint distribution over the domain D = X ×
[p] × {−1, 1} where X is the feature space. Each sample
(X,Z, Y ) is drawn from = where Z ∈ [p] represents a
sensitive attribute,1 and Y ∈ {−1, 1} is the label of (X,Z)
that we want to predict.

Let F denote the collection of all possible classifiers f :
X → R. Given a loss function L(·, ·) that takes a classifier
f and a distribution = as arguments, the goal of fair clas-
sification is to learn a classifier f ∈ F that minimizes the
expected risk R(f) := Es∼= [L(f, s)] . However, since =
is often unknown, we usually use the empirical risk to esti-
mate the expected risk (Bousquet & Elisseeff, 2002; Shalev-
Shwartz et al., 2010; Maurer, 2017), i.e., given a training
set S = {si = (xi, zi, yi)}i∈[N ] (where (xi, zi, yi) ∈ D),
the objective is to learn a classifier f ∈ F that minimizes
the empirical risk E(f) := 1

N

∑
i∈[N ] L(f, si). Denote

by Pr=[·] the probability with respect to =. If = is clear
from context, we simply denote Pr=[·] by Pr[·]. A fair
classification algorithm A can be considered as a mapping
A : D∗ → F , which learns a classifier AS ∈ F from a
training set S ∈ D∗.

2.2. Stability measure

In this paper, we focus on the following stability measure
introduced by (Bousquet & Elisseeff, 2002), which was also
used by (Shalev-Shwartz et al., 2010; Maurer, 2017; Meng
et al., 2017). This notion of stability measures whether the
risk of the learnt classifier is stable under replacing one
sample in the training dataset.
Definition 2.1 (Uniform stability (Bousquet & Elisseeff,
2002)). Given an integer N , a real-valued classification
algorithm A is βN -uniformly stable with respect to the loss
function L(·, ·) if the following holds: for all i ∈ [N ] and
S, Si ∈ DN , ‖L(AS , ·)− L(ASi , ·)‖∞ ≤ βN , i.e., for any
training set S, Si ∈ DN , the l∞-distance between the risks
of AS and ASi is at most βN .

By definition, algorithm A is stable if βN is small.

Since classification algorithms usually minimize the empiri-
cal risk, it is easier to bound to provide theoretical bounds
on the risk difference. This is the reason we consider the no-
tion of uniform stability. Moreover, uniform stability might
imply that the prediction variation is small with a slight
perturbation on the training set. Given an algorithm A and
a sample x ∈ X , we predict the label to be +1 if A(x) ≥ 0
and to be -1 if A(x) < 0. In the following, we summarize

1Our results can be generalized to multiple sensitive attributes
Z1, . . . , Zm where Zi ∈ [pi]. We omit the details.

the stability property considered in (Friedler et al., 2019).

Definition 2.2 (Prediction stability). Given an integer N ,
a real-valued classification algorithm A is βN -prediction
stable if the following holds: for all i ∈ [N ],

Pr
S,Si∈DN ,X∼=

[I [AS(X) ≥ 0] 6= I [ASi(X) ≥ 0]] ≤ βN , 2

i.e., given two training sets S, Si ∈ DN that differ by
a single sample, the probability that AS and ASi predict
differently is at most βN .

The following lemma shows that uniform stability implies
prediction stability.

Lemma 2.3 (Uniform stability implies prediction stabil-
ity). Given an interger N , if algorithm A is βN -uniformly
stable with respect to the loss function L(·, ·) and the loss
function satisfies that for any f, f ′ ∈ F , s = (x, z, y) ∈ D,

|f(x)− f ′(x)| ≤ τ · |L(f, s)− L(f ′, s)| ,

then the prediction stability A is upper bounded by
PrS,A [|AS(X)| ≤ τβN ].

Proof. For any S, Si ∈ DN and s = (x, z, y), we have

|AS(x)−ASi(x)| ≤ τ · |L(AS , s)− L(ASi , s)| ≤ τβN .

Hence, if |AS(·)| > τβN , then we have I [AS(x) ≥ 0] =
I [ASi(x) ≥ 0] . By Definition 2.2, this implies the lemma.

2.3. The stable and fair optimization problem

Our goal is to design fair classification algorithms that have
a uniform stability guarantee. We focus on extending fair
classification algorithms that are formulated as constrained
empirical risk minimization problem over the collection
F of classifiers that is a reproducing kernel Hilbert space
(RKHS), e.g., (Zafar et al., 2017a;b; Goel et al., 2018); see
the following program.

min
f∈F

1

N

∑
i∈[N ]

L(f, si) s.t.

Ω(f) ≤ 0.

(ConFair)

Here, Ω(·) : F → Ra is a convex function given explicit-
ly for a specific fairness requirement. For instance, if we
consider the statistical rate γ(f) (Eq. (4)) as the fairness
metric, then the fairness requirement can be 0.8−γ(f) ≤ 0.
However, 0.8 − γ(f) is non-convex with respect to f . To
address this problem, in the literature, one usually defines

2Here, I [·] is the indicator function.
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a convex function Ω(f) to estimate 0.8− γ(f), e.g., Ω(f)
is formulated as a covariance-type function which is the
average signed distance from the feature vectors to the de-
cision boundary in (Zafar et al., 2017b), and is formulated
as the weighted sum of the logs of the empirical estimate
of favorable bias in (Goel et al., 2018). In what follows,
a fair classification algorithm is an algorithm that solves
Program (ConFair).

Note that an empirical risk minimizer of Program (ConFair)
might heavily depend on and even overfit the training set.
Hence, replacing a sample from the training set might cause
a significant change in the learnt fair classifier – the uni-
form stability guarantee might be large. To address this
problem, a useful high-level idea is to introduce a regular-
ization term to the objective function, which can penalize
the “complexity” of the learned classifier. Intuitively, this
can make the change in the learnt classifier smaller when a
sample from the training set is replaced. This idea comes
from (Bousquet & Elisseeff, 2002) who considered stability
for unconstrained empirical risk minimization.

Motivated by the above intuition, we consider the following
constrained optimization problem which is an extension
of Program (ConFair) by introducing a stability-focused
regularization term λ‖f‖2k. Here, λ > 0 is a regularization
parameter and ‖f‖2k is the norm of f in RKHS F where
k is the kernel function (defined later in Definition 2.5).
We consider such a regularization term since it satisfies a
nice property that relates |f(x)| and ‖f‖k for any x ∈ X
(Claim 2.6). This property is useful for proving making the
intuition above concrete and providing a uniform stability
guarantee.

min
f∈F

1

N

∑
i∈[N ]

L(f, si) + λ‖f‖2k s.t.

Ω(f) ≤ 0.

(Stable-Fair)

Our extended algorithmA is to compute a minimizerAS of
Program (Stable-Fair) by classic methods, e.g., stochastic
gradient descent (Boyd & Mutapcic, 2008).

Remark 2.4. We discuss the motivation of considering fair
classification algorithms formulated as Program (ConFair).
The main reason is that such algorithms can achieve a good
balance between fairness and accuracy, but might not be
stable. For instance, (Friedler et al., 2019) observed that
ZVRG (Zafar et al., 2017b) achieves better fairness than,
and comparable accuracy to, other algorithms with respect
to race/sex attribute over the Adult dataset. However, as
mentioned in Section 1, ZVRG is not stable depending on
a random training set. Hence, we would like to improve

the stability of ZVRG while keeping its balance between
fairness and accuracy. Note that our extended framework
can incorporate multiple sensitive attributes if the fairness
constraint Ω(f) ≤ 0 deals with multiple sensitive attributes,
e.g., (Zafar et al., 2017a;b; Goel et al., 2018).

It remains to define the regularization term ‖f‖k in RKHS.

Definition 2.5 (Regularization in RKHS). We call T (·) :
F → R≥0 a regularization term in an RKHS F if, for
any f ∈ F , T (f) := ‖f‖2k, where k is a kernel function
satisfying that 1) {k(x, ·) : x ∈ X} is a span of F; 2) for
any x ∈ X and f ∈ F , f(x) = 〈f, k(x, ·)〉.

Given a training set S = {si = (xi, zi, yi)}i∈[N ] and a ker-
nel function k : S × S → R, by definition, each classifier
is a vector space by linear combinations of k(xi, ·), i.e.,
f(·) =

∑
i∈[N ] αik(xi, ·). Then for any x ∈ X ,

f(x) = 〈
∑
i∈[N ]

αik(xi, ·), k(x, ·)〉 =
∑
i∈[N ]

αik(xi, x). (1)

For instance, if k(x, y) = 〈x, y〉, then each classifier f can
be represented by

f(x)
(1)
=

∑
i∈[N ]

αik(xi, x) =
∑
i∈[N ]

αi〈xi, x〉

= 〈
∑
i∈[N ]

αixi, x〉 = 〈β, x〉,

where β =
∑
i∈[N ] αixi. Thus, by the Cauchy-Schwarz

inequality, we have the following useful property.

Claim 2.6. ((Bousquet & Elisseeff, 2002)) Suppose F is a
RKHS with a kernel k. For any f ∈ F and any x ∈ X , we
have |f(x)| ≤ ‖f‖k

√
k(x, x).

Remark 2.7. There exists another class of fair classifica-
tion algorithms, which introduce a fairness-focused regu-
larization term µ · Ω(·) to the objective function; see the
following program.

min
f∈F

1

N

∑
i∈[N ]

L(f, si) + µ · Ω(f). (RegFair)

This approach is applied in several prior work,
e.g., (Kamishima et al., 2012; Corbett-Davies et al., 2017;
Goel et al., 2018). We can also extend this program by
introducing a stability-focused regularization term λ‖f‖2k.

min
f∈F

1

N

∑
i∈[N ]

L(f, si) + µ · Ω(f) + λ‖f‖2k.
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By Lagrangian principle, there exists a value µ ≥ 0 such
that Program (RegFair) is equivalent to Program (ConFair).
Thus, by solving the above program, we can obtain the same
stability guarantee, empirical risk guarantee and general-
ization bound as for Program (Stable-Fair).

3. Theoretical results
In this section, we analyze the performance of algorithm A
that solves Program (Stable-Fair) (Theorem 3.2). Moreover,
if F is a linear model, we can achieve a slightly better stabil-
ity guarantee (Theorem 3.7) based on different assumptions
of both the model and the loss function.

Given a training set S = {si = (xi, zi, yi)}i∈[N ] by replac-
ing the i-th element from S, we denote

Si := {s1, . . . , si−1, s
′
i, si+1, . . . , sN} .

Before analyzing the performance of algorithm A, we give
the following definition for a loss function.
Definition 3.1 (σ-admissible (Bousquet & Elisseeff,
2002)). The loss function L(·, ·) is called σ-admissible with
respect to F if for any f ∈ F , x, x′ ∈ X and y ∈ {−1, 1},

|L(f(x), y)− L(f(x′), y)| ≤ σ |f(x)− f(x′)| .

By definition, L(·, ·) is σ-admissible if L(f, y) is σ-
Lipschitz with respect to f .

3.1. Main theorem for Program (Stable-Fair)

Now we can state our main theorem which indicates that
under reasonable assumptions of the loss function and the
kernel function, algorithm A is uniformly stable.
Theorem 3.2 (Stability and empirical risk guarantee by
solving Program (Stable-Fair)). Let F be a RKHS with
kernel k such that ∀x ∈ X , k(x, x) ≤ κ2 < ∞. Let
L(·, ·) be a σ-admissible differentiable function with respect
to F . Suppose algorithm A computes a minimizer AS of
Program (Stable-Fair). Then A is σ2κ2

λN -uniformly stable.

Moreover, denote f? to be an optimal fair classifier that
minimizes the expected risk and satisfies ‖f?‖k ≤ B, i.e.,
f? := arg minf∈F :Ω(f)≤0 Es∈= [L(f, s)]. We have

ES∼=N [R(AS)]− Es∼= [L(f?, s)] ≤ σ2κ2

λN
+ λB2.

Remark 3.3. We show the assumptions of Theorem 3.2 are
reasonable. We first give some examples of L(·, ·) in which
σ is constant. In the main body, we directly give the con-
stant due to the space limit. The details can be found in
Appendix C. 1) Prediction error: Suppose f(x) ∈ {−1, 1}
for any pair (f, x). Then L(f(x), y) = I [f(x) 6= y] is 1

2 -
admissible. 2) Soft margin SVM: L(f, s) = (1− yf(x))+,3

3(a)+ = a if a ≥ 0 and otherwise (a)+ = 0.

is 1-admissible. 3) Least Squares regression: Suppose
f(x) ∈ [−1, 1] for any x ∈ X . Then we have that
L(f, s) = (f(x) − y)2 is 4-admissible. 4) Logistic re-
gression: L(f, s) = ln(1 + e−yf(x)) is 1-admissible.

Then we give examples of kernel k in which κ2 is constan-
t. 1) Linear: k(x, y) = 〈x, y〉. Then k(x, x) = ‖x‖22
and we can let κ2 = maxx∈X ‖x‖22. 2) Gaussian RBF:
k(x, y) = e−‖x−y‖

2

. Then we can let κ2 = k(x, x) = 1.
3) Multiquadric: k(x, y) =

(
‖x− y‖2 + c2

)1/2
for some

constant c > 0. Then we can let κ2 = k(x, x) = c. 4)
Inverse Multiquadric: k(x, y) =

(
‖x− y‖2 + c2

)−1/2
for

some constant c > 0. Then we can let κ2 = k(x, x) = 1/c.

Remark 3.4. The statement of Theorem 3.2 seems similar
to Lemma 4.1 of (Bousquet & Elisseeff, 2002), while the
analysis should be different due to the additional fairness
constraints. The critical difference is that the gradient of
the objective function of Program 2 might not be 0 at the
optimal point any more. Thus, we need to develop a new
analysis by applying the convexity of Ω(f).

Theorem 3.2 can be used to inform the selection of the
regularization parameter λ. On the one hand, the stability
guarantee is tighter as λ increases. On the other hand,
the bound for the increase of the empirical risk contains
a term λB2 and hence λ should not increase to infinity.
Hence, there exists a balance between achieving stability
guarantee and utility guarantee. For instance, to minimize
the increase of the empirical risk, we can set λ = σκ

B
√
N

.

Then the stability guarantee is upper bounded by σκB√
N

and

the increase of the empirical risk is upper bounded by 2σκB√
N

.

Now we are ready to prove Theorem 3.2. For convenience,
we define g = AS and gi = ASi . We first give Lemma 3.5
for preparation. This lemma is the one of the places different
from the argument in (Bousquet & Elisseeff, 2002) since
our framework includes a fairness constraint. To prove
the lemma, we need to use the fact that Ω(f) is a convex
function of f ∈ F .

Lemma 3.5. For any i ∈ [N ], we have

‖g − gi‖2k ≤
σ

2λN

(
|g(xi)− gi(xi)|+ |g(x′i)− gi(x′i)|

)
.

Due to the space limit, we defer the proof of Lemma 3.5
to Appendix A. Roughly speaking, we use the fact that
|g − gi|2k is equivalent to the Bregman divergence between
g and gi. Then by the fact that Ω(f) is convex, we can
upper bound the Bregman divergence by the right side of
the inequality. Combining Lemma 3.5 and Claim 2.6, we
can upper bound |g(x)−gi(x)| for any x ∈ X . This implies
a uniform stability guarantee by the assumption that L(·, ·)
is σ-admissible.
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Proof of Theorem 3.2. By Claim 2.6, we have

|g(xi)− gi(xi)| ≤ ‖g − gi‖k
√
k(xi, xi) ≤ κ‖g − gi‖k,

|g(x′i)− gi(x′i)| ≤ ‖g − gi‖k
√
k(x′i, x

′
i) ≤ κ‖g − g

i‖k.

Combining the above inequalities with Lemma 3.5, we have
‖g− gi‖k ≤ σκ

λN . Hence, for any sample s = (x, z, y) ∈ D,
we have |g(x) − gi(x)| ≤ κ‖g − gi‖k ≤ σκ2

λN . Moreover,
since L(·, ·) is σ-admissible, we have

|L(g, s)− L(gi, s)| ≤ σ|g(x)− gi(x)| ≤ σ2κ2

λN
.

By definitions of g and gi, the above inequality completes
the proof of stability guarantee.

For the the increase of the empirical risk, let F (f) :=
1
N

∑
i∈[N ] L(f, si) + λ‖f‖2k for any f ∈ F . By Theorem

8 of (Shalev-Shwartz et al., 2010), we have the following
claim: for any classifier h ∈ F satisfying that Ω(h) ≤ 0,
ES∼=N [F (g)− F (h)] is consistent with the uniform sta-
bility guarantee of A, i.e.,

ES∼=N [F (g)− F (h)] ≤ σ2κ2

λN
. (2)

Let h = f?, we have

ES∼=N [R(AS)]− Es∼= [L(f?, s)]

=ES∼=N

R(AS)− 1

N

∑
i∈[N ]

L(f?, si)


=ES∼=N

[
F (g)− λ‖g‖2k − F (f?) + λ‖f?‖2k

]
(Defns. of g and F (·))
≤ES∼=N [F (g)− F (f?)] + λ‖f?‖2k (‖g‖2k ≥ 0)

≤σ
2κ2

λN
+ λB2 (Ineq. (2) and ‖f?‖k ≤ B).

This completes the proof.

The generalization bound, i.e., the quality of the estimation
|R(AS)− E(AS)|, depends on the number of samples N
and algorithm A, and has been well studied in the litera-
ture (Adomavicius & Zhang, 2011; Bousquet & Elisseeff,
2002; Wainwright, 2006; London et al., 2016). Existing
literature (Bousquet & Elisseeff, 2002; Feldman & Von-
drak, 2018) mainly claimed that uniform stability implies a
generalization bound. We have the following corollary.

Corollary 3.6 (Generalization bound from Theo-
rem 3.2). LetA denote the σ2κ2

λN -uniformly stable algorithm
as stated in Theorem 3.2. We have

1. ES∼=N [R(AS)− E(AS)] ≤ σ2κ2

λN .

2. Suppose S is a random draw of size N from =. With
probability at least 1− δ,

R(AS) ≤ E(AS) + 8

√(
2σ2κ2

λN
+

1

N

)
· ln(8/δ).

Proof. The first generalization bound is directly implies by
Lemma 7 of (Bousquet & Elisseeff, 2002). The second
generalization bound is a direct corollary of Theorem 1.2
of (Feldman & Vondrak, 2018).

3.2. Better stability guarantee for linear models

In this section, we consider the case that k(x, y) =
〈φ(x), φ(y)〉where φ : X → Rd is a feature map. It implies
that f(x) = α>φ(x) for some α ∈ Rd, i.e., F is the family
of all linear functions. In this case, we provide a stronger
stability guarantee by the following theorem.
Theorem 3.7 (Stability and utility guarantee
for linear models). Let F be the family of al-
l linear classifiers

{
f = α>φ(·) | α ∈ Rd

}
. Let

G = supf=α>φ(·)∈F :Ω(f)≤0 sups∈D ‖∇αL(f, s)‖2.
Suppose algorithm A computes a minimizer AS of
Program (Stable-Fair). Then A is G2

λN -uniformly stable.

Moreover, denote f? to be an optimal fair classifier that
minimizes the expected risk and satisfies ‖f?‖k ≤ B, i.e.,
f? := arg minf∈F :Ω(f)≤0 Es∈= [L(f, s)]. We have

ES∼=N [R(AS)]− Es∼= [L(f?, s)] ≤ G2

λN
+ λB2.

Note that we only have an assumption for the gradient of
the loss function. Given a sample s = (x, z, y) ∈ D such
that G = supf∈F :Ω(f)≤0 ‖∇αL(f, s)‖2, we have

G = ‖∇αL(f, s)‖2 = ‖∇fL(f, s) · φ(x)‖2.

Under the assumption of Theorem 3.2, we have 1)
|∇fL(f, s)| ≤ σ since L(·, ·) is σ-admissible with respect
to F ; 2) ‖φ(x)‖2 =

√
k(x, x) ≤ κ. Hence, G ≤ σκ which

implies that Theorem 3.2 is stronger than Theorem 3.7 for
linear models. The proof idea is similar to that of The-
orem 3.2 and hence we defer the proof to Appendix B.
Moreover, we directly have the following corollary similar
to Corollary 3.6.
Corollary 3.8 (Generalization bound by Theorem 3.7).
Let A denote the G2

λN -uniformly stable algorithm as stated
in Theorem 3.7. We have

1. ES∼=N [R(AS)− E(AS)] ≤ G2

λN .

2. Suppose S is a random draw of size N from =. With
probability at least 1− δ,

R(AS) ≤ E(AS) + 8

√(
2G2

λN
+

1

N

)
· ln(8/δ).
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Table 1: The performance (mean and standard deviation in parenthesis), of KAAS-St and ZVRG-St with respect to accuracy
and the fairness metrics γ on the Adult dataset with race/sex attribute.

λ
0 0.01 0.02 0.03 0.04 0.05

ZVRG-St
Race Acc. 0.844(0.001) 0.842(0.001) 0.841(0.001) 0.840(0.001) 0.838(0.001) 0.838(0.001)

γ 0.577(0.031) 0.667(0.020) 0.686(0.015) 0.711(0.016) 0.743(0.013) 0.761(0.012)

Sex Acc. 0.844(0.001) 0.840(0.001) 0.838(0.001) 0.838(0.001) 0.837(0.001) 0.836(0.001)
γ 0.331(0.041) 0.501(0.011) 0.495(0.009) 0.478(0.009) 0.463(0.009) 0.469(0.009)

KAAS-St
Race Acc. 0.850(0.001) 0.844(0.001) 0.843(0.001) 0.839(0.001) 0.837(0.001) 0.835(0.001)

γ 0.571(0.019) 0.359(0.024) 0.302(0.011) 0.301(0.011) 0.300(0.015) 0.298(0.015)

Sex Acc. 0.850(0.002) 0.848(0.001) 0.844(0.001) 0.839(0.001) 0.837(0.001) 0.835(0.001)
γ 0.266(0.011) 0.226(0.011) 0.165(0.008) 0.136(0.007) 0.128(0.006) 0.128(0.005)

GYF-St
Race Acc. 0.849(0.001) 0.845(0.001) 0.844(0.001) 0.842(0.001) 0.840(0.001) 0.835(0.001)

γ 0.558(0.020) 0.679(0.013) 0.690(0.017) 0.710(0.018) 0.740(0.014) 0.753(0.013)

Sex Acc. 0.850(0.002) 0.845(0.001) 0.844(0.001) 0.842(0.001) 0.840(0.001) 0.839(0.001)
γ 0.275(0.010) 0.245(0.004) 0.242(0.004) 0.241(0.005) 0.245(0.005) 0.234(0.008)

4. Empirical results
4.1. Empirical setting

Algorithms and baselines. We select three fair classifi-
cation algorithms designed to ensure statistical parity that
can be formulated in the convex optimization framework of
Program (ConFair). We choose ZVRG (Zafar et al., 2017a)
since it is reported to achieve the better fairness than, and
comparable accuracy to, other algorithms (Friedler et al.,
2019). We also select KAAS (Kamishima et al., 2012) and
GYF (Goel et al., 2018) as representatives of algorithm-
s that are formulated as Program (RegFair). Specifically,
(Goel et al., 2018) showed that the performance of GYF is
comparable to ZVRG over the Adult dataset. We extend
them by introducing a stability-focused regularization term.

• ZVRG (Zafar et al., 2017b). Zafar et al. re-express
fairness constraints (which can be nonconvex) via a
convex relaxation. This allows them to maximize ac-
curacy subject to fairness constraints.4 We denote the
extended, stability included, algorithm by ZVRG-St.

• KAAS (Kamishima et al., 2012). Kamishima et al.
introduce a fairness-focused regularization term and
apply it to a logistic regression classifier. Their ap-
proach requires numerical input and a binary sensitive
attribute. Let the extended algorithm be KAAS-St.

• GYF (Goel et al., 2018). Goel et al. introduce neg-
ative weighted sum of logs as fairness-focused regu-
larization term and apply it to a logistic regression
classifier. Let the extended algorithm be GYF-St.

Dataset. Our simulations are over an income dataset
Adult (Dheeru & Karra Taniskidou, 2017), that records
the demographics of 45222 individuals, along with a bina-
ry label indicating whether the income of an individual is

4There exists a threshold parameter in the constraints. In this
paper, we set the parameter to be default 0.1.

greater than 50k USD or not. We use the pre-processed
dataset as in (Friedler et al., 2019). We take race and sex to
be the sensitive attributes, that are binary in the dataset.

Stability metrics. The following stability metric that
measures the prediction difference between classifiers
learnt from two random training sets. Given an integer N , a
testing set T and algorithm A, we define stabT (A) as
|T |·PrS,S′∼=N ,X∼T,A [I [AS(X) ≥ 0] 6= I [AS′(X) ≥ 0]] .

stabT (A) indicates the expected number of different pre-
dictions ofAS andAS′ over the testing set T . Note that this
metric is considered in (Friedler et al., 2019), but is slightly
different from prediction stability since S and S′ may differ
by more than one training sample. We investigate stabT (A)
instead of prediction stability so that we can distinguish
the performances of prediction difference under different
regularization parameters. Since = is unknown, we generate
n training sets S1, . . . , Sn and use the following metric to
estimate stabT (A):

stabT,n(A) :=
1

n(n− 1)

∑
i,j∈[n]:i6=j

∑
s=(x,z,y)∈T∣∣I [ASi(x) ≥ 0]− I
[
ASj (x) ≥ 0

]∣∣ . (3)

Note that we have ES1,...,Sn [stabT,n(A)] = stabT (A).

Fairness metric. Let D denote the empirical distribution
over the testing set. Given a classifier f , we consider a
fairness metric for statistical rate, which has been applied
in (Menon & Williamson, 2018; Agarwal et al., 2018). Sup-
pose the sensitive attribute is binary, i.e., Z ∈ {0, 1}.

γ(f) :=

min

{
PrD [f = 1 | Z = 0]

PrD [f = 1 | Z = 1]
,

PrD [f = 1 | Z = 1]

PrD [f = 1 | Z = 0]

}
.

(4)

Our framework can be easily extended to other fairness
metrics; see a summary in Table 1 of (Celis et al., 2019b).
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Figure 1: stab vs. λ for race attribute. Figure 2: stab vs. λ for sex attribute.

Implementation details. We first generate a common
testing set (20%). Then we perform 50 repetitions, in which
we uniformly sample a training set (75%) from the remain-
ing data. For all three algorithms, we set the regularization
parameter λ to be 0, 0.01, 0.02, 0.03, 0.04, 0.05 and com-
pute the resulting stability metric stab, average accuracy
and average fairness. Note that λ = 0 is equivalent to the
case without stability-focused regularization term.

4.2. Results

Our simulations indicate that introducing a stability-focused
regularization term can make the algorithm more stable by
slightly sacrificing accuracy. Table 1 summarizes the ac-
curacy and fairness metric under different regularization
parameters λ. As λ increases, the average accuracy slightly
decreases, by at most 1.5%, for all algorithms including
ZVRG-St, KAAS-St and GYR-St. As for the fairness met-
ric, as λ increases, the mean of γ decreases for KAAS-St
and increases for ZVRG-St for both race and sex attribute.
For GYF-St, the performance of fairness metric depends on
the sensitive attribute: as λ increases, the mean of γ decreas-
es for the sex attribute and increases for the race attribute.
Note that the fairness metric γ of KAAS-St and GYF-St
is usually smaller than that of ZVRG-St with the same λ.
The results indicate that ZVRG-St achieves the better fair-
ness than, and comparable accuracy to, other algorithms.
Another observation is that the standard deviation of γ de-
creases by introducing the regularization term. Specifically,
considering the sex attribute, the mean of γ is 4.1% when
λ = 0 and decreases to about 1% by introducing a stability-
focused regularization term. This observation implies that
our extended framework improves the stability.

Figures 1 and 2 summarize the stability metrics stab un-
der different regularization parameters λ. By introducing
stability-focused regularization term, stab indeed decreases
for both race and sex attributes. Observe that stab can de-
crease by a half by introducing the regularization term for

all three algorithms. Note that stab of KAAS-St is always
larger than that of ZVRG-St and GYF-St with the same
λ. The stability of ZVRG-St and GYF-St is comparable.
Interestingly, stab does not monotonically decrease as λ
increases due to the fairness requirements. The reason might
be as follows: as λ increases, the model parameters of the
learned classifiers should decrease monotonically. However,
it is possible that a classifier with smaller model parameters
is more sensitive to random training sets. In this case, if the
effect of λ to stab is less when compared to the effect of
model parameters, stab might not decrease monotonically
with λ. Hence, selecting a suitable regularization parameter
λ is valuable in practice, e.g., considering ZVRG-St for sex
attribute, letting λ = 0.03 achieves better performance of
accuracy, fairness and stability than letting λ = 0.05.

5. Conclusion and future directions
We propose an extended framework for fair classification al-
gorithms that are formulated as optimization problems. Our
framework comes with a stability guarantee and we also pro-
vide an analysis of the resulting accuracy. The analysis can
be used to inform the selection of the regularization parame-
ter. The empirical results show that our framework indeed
improves stability by slightly sacrificing the accuracy.

There exist other fair classification algorithms that are not
formulated as optimization problems, e.g., shifting the de-
cision boundary of a baseline classifier (Fish et al., 2016;
Hardt et al., 2016a) or pre-processing the training data (Feld-
man et al., 2015; Krasanakis et al., 2018). It is interesting to
investigate and improve the stability guarantee of those al-
gorithms. Another potential direction is to combine stability
and fairness for other automated decision-making tasks, e.g.,
ranking (Celis et al., 2018c; Yang & Stoyanovich, 2017),
summarization (Celis et al., 2018b), personalization (Celis
& Vishnoi, 2017; Celis et al., 2019c), multiwinner voting
(Celis et al., 2018a), and online advertising (Celis et al.,
2019a).
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