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1. More Experiments

Image classification on CIFAR-100: We train and evalu-
ate ALA for the metric of classification error on the CIFAR-
100 dataset (Krizhevsky, 2009). As in CIFAR-10, we divide
the training set of CIFAR-100 randomly into a new training
set of 40k images and a validation set of 10k images, for
loss controller learning. The 10k testing images are used
for evaluation. We compare with the recent methods that
use the full 50k training images and their optimal hyper-
parameters. For ALA, multi-network training is adopted by
default for robust online policy learning. Each network is
trained via Momentum-SGD.

Table S1 reports classification errors using different
ResNet (He et al., 2016) architectures. For all network
architectures, ALA outperforms both hand-designed loss
functions, e.g., L-Softmax (Liu et al., 2016), and the adap-
tive loss function that acts as a differentiable metric sur-
rogate in L2T-DLF (Wu et al., 2018). This validates the
benefits of directly optimizing the evaluation metric using
ALA.

Face verification on LFW: We evaluate the performance
of our ALA-based metric learning method on a face veri-
fication task using the LFW dataset (Huang et al., 2007).
The LFW verification benchmark contains 6,000 verifica-
tion pairs. For a fair comparison with recent approaches
we train ALA using the same 64-layer ResNet architecture
proposed in (Liu et al., 2017; Wang et al., 2018) as our main
model. We follow the small training data protocol (Huang
et al., 2007) and train and validate on the popular CASIA-
WebFace dataset (Yi et al., 2014) which contains 494,414
images of 10,575 people. The training images with identities
appearing in the test set are removed. Our ALA controller
is trained to optimize the verification accuracy metric on the
validation set.
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Table S1. Classification error (%) on CIFAR-100 dataset. 10-run
average and standard deviation are reported for ALA.

Method ResNet-8 ResNet-20 ResNet-32
cross-entropy 39.79 32.33 30.38
L-Softmax (Liu et al., 2016) 38.93 31.65 29.56
L2T-DLF (Wu et al., 2018) 38.27 30.97 29.25
ALA 37.78£0.09  30.54+0.07 29.06+0.09

Table S2. Face verification accuracy (%) on LFW dataset. All
methods use the same training data and network architectures.

Method Accuracy
Softmax loss 97.88
Softmax+Contrastive (Sun et al., 2014) 98.78
Triplet loss (Schroff et al., 2015) 98.70
L-Softmax loss (Liu et al., 2016) 99.10
Softmax+Center loss (Wen et al., 2016) 99.05
SphereFace (A-Softmax) (Liu et al., 2017) 99.42
CosFace (LMCL) (Wang et al., 2018) 99.33
Triplet + ALA (Focal weighting) 99.49
Triplet + ALA (Distance mixture) 99.57

Table S2 compares ALA to recent face recognition methods
on LFW. These methods often adopt a strong but hand-
designed loss function to improve class discrimination. In
contrast, ALA adaptively controls the triplet loss func-
tion (Schroff et al., 2015), achieving state-of-the-art per-
formance even for different parameterizations, where we
specifically studied focal weighting (Lin et al., 2017) and
distance mixture formulations. These results further verify
the advantages of ALA to directly optimize for the target
metric regardless of the specific formulation of loss function
to be controlled.

2. More Analyses

Baseline comparisons: Table S3 compares some related
baselines in both classification and metric learning tasks
to further highlight the benefits of ALA. In particular, we
compare with the contextual bandit method and population-
based training (PBT) (Jaderberg et al., 2017). The two base-
lines follow the same experimental settings on respective
datasets, as detailed in the main paper.
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The contextual bandit method changes loss parameters
(i.e., actions) according to the current training states, similar
to an online hyperparameter search scheme. Following the
same loss parameterizations for classification and metric
learning, the method increases weights for those confusing
class pairs and evaluation metric-improving distance func-
tions respectively, and otherwise downweights them. This
is similar to our one-step RL setting except that in ALA, ac-
tions affect future states, making it an RL problem. Table S3
illustrates that one-step RL-based ALA consistently outper-
forms the heuristic contextual bandit method. We believe
more advanced bandit algorithms can work better, but RL
has the capacity to learn flexible state-transition dynamics.
Moreover, our RL setting can be extended to use multi-step
episodes (Figure S1). This allows to model longer-term
effects of actions, while contextual bandits always obtain
immediate reward from a single action.

Recall that we train in parallel 10 child models by default,
for robust ALA policy learning. We are thus interested to
see how this compares to PBT techniques (using the same
10 child models). Table S3 shows that PBT does not help
as much as ALA, which suggests the learned ALA policy is
more powerful than model ensembling or parameter tuning.
We will show later (in Figure S1) that ALA can achieve
competitive performance even with 1 child model which
enjoys higher learning efficiency.

Ablation study: Table S4 shows the results of ablation stud-
ies on the design choices of ALA loss controller and state
representation. As in Table S3, we experiment with the
example tasks of classification and metric learning under
the same settings. Looking at the top cell of Table S4, we
find that switching from 2-layer loss controller to 1-layer
leads to a consistent performance drop; on the other hand,
the 3-layer loss controller does not help much. The bottom
cell of Table S4 quantifies the effects of the four components
of our policy state s;. We can see that it is relatively more
important to keep the historical sequence of validation statis-
tics (besides the ones at current timestep) and the current
loss parameters @, in the state representation. The relative
change of validation statistics (from their moving average)
and the normalized iteration number also have marginal
contributions.

Computational cost: Under the classification and metric
learning tasks considered in the paper, our simultaneous
(single) model training and ALA policy learning often incur
an extra 20% — 50% cost as indexed by wall-clock time
over regular model training. However, this overhead is often
canceled out by the convergence speedup of the main model.
Our multi-model training together with policy learning is
able to achieve stronger performance with modest additional
(~ 30%) computational overhead for policy learning, at the
cost of using distributed training to collect replay episodes.

Table S3. Baseline comparisons for CIFAR-10 classification and
metric learning on Stanford Online Products (SOP) dataset. We
report classification error (%) with ResNet-32 and Recall(%) @k=1
for the two tasks respectively. For metric learning, ALA is trained
with the ‘Margin’ framework and with the loss parameterization
of ‘Distance mixture’. We compare ALA to contextual bandit and
population-based training (PBT) baselines.

Classification Metric learning

Method Error]  Method Recallt
Cross-entropy 751 Triplet (Schroff et al., 2015) 66.7
L2T (Fan et al., 2018) 7.10 Margin (Wu et al., 2017) 72.7
L2T-DLF (Wu et al., 2018) 6.95 ABE-8 (Kim et al., 2018) 76.3
ALA 6.79  Margin + ALA 78.9
Contextual bandit 7.34 Contextual bandit 73.1

PBT (Jaderberg et al., 2017) 7.29 PBT (Jaderberg et al., 2017) 73.6

Table S4. Ablation studies of ALA loss controller design (2-layer
MLP by default) and state representation s;. Experiments of
CIFAR-10 classification and metric learning on SOP are conducted
with the same settings as in Table S3. Performance degradation in
comparison to default ALA method is indicated by positive A of
classification error (%) and negative A of Recall(%) @k=1.

Classification Metric learning

Method AError  Method ARecall

ALA (1-layer MLP) +0.06  Margin+ALA (1-layer MLP) -0.5

ALA (3-layer MLP) -0.03 Margin+ALA (3-layer MLP) -0.1

ALA (s w/o history) +0.11 Margin+ALA (s; w/o history) -1.4

ALA (s¢ w/o Astatistics) ~ +0.04  Margin+ALA (s; w/o Astatistics) -0.2

ALA (st wlo @¢) +0.05 Margin+ALA (s; w/o ®;) -0.6

ALA (s¢ w/o iter#) +0.02 Margin+ALA (s; w/o iter#) -0.3
(aA) 6.82 (E) 6.85
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Figure S1. Sample efficiency of our RL approach for ALA (val-
idation metric as reward). Classification error of ResNet-32 is
reported on CIFAR-10. Good performance can be achieved by our
default RL settings (red dots) with one-step episodes and 10 child
model training that are sample efficient.

This is much more efficient than those meta-learning meth-
ods, e.g., (Fan et al., 2018; Zoph & Le, 2017) that learn the
policy by training the main model to convergence multiple
times (e.g., 50 times).

Sample efficiency: Figure S1 illustrates the sample effi-
ciency of ALA’s RL approach in the example task of CIFAR-
10 classification. We train the ResNet-32 model and use the
default reward based on the validation metric. Figure S1(a)
shows that using episodes consisting of a single training
step suffices to learn competent loss policies with good per-
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Figure S2. Evolution of class correlation scores ®¢(z,j) on
CIFAR-10 (with ResNet-32 network). Light/dark color denotes
positive/negative values. Our policy modifies the class correlation
scores in a way that forms a hierarchical classification curriculum
by merging similar classes and gradually separating them.
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Figure §3. (a) Our positive distance function F;'(-) and negative
distance function F; (-) in metric learning. (b) Evolution of dis-
tance function weights ®;(¢) on Stanford Online Products dataset.
Our policy gives gradually larger weights to those high-penalty dis-
tance functions, which implies an adaptive and soft “hard-mining”
curriculum.

formance. Figure S1(b) further shows improvements from
parallel training with multiple child models that provide
more episodes for policy learning. We empirically choose
to use 10 child models, which only incurs an extra ~ 30%
time cost for policy learning, thus striking a good perfor-
mance tradeoff.

Policy visualization for classification: Figure S2 illus-
trates the ALA policy learned for classification, which per-
forms actions to adjust the loss parameters in ®; (i.e., class
correlations) dynamically. We observe that the ALA con-
troller tends to first merge similar classes with positive
®,(i,7), and then gradually discriminates between them
with negative ®, (4, 7). This indicates a learned curriculum
that guides model learning to achieve both better optimiza-
tion and generalization.

Policy visualization for metric learning: We visualize
the learned ALA policy for metric learning under a para-
metric loss formulation that mixes different distance func-

tions. Figure S3(a) first shows the distance functions
Ft(-) and F; (-) we apply to distance d* (between an-
chor and positive instances) and distance d~ (between an-
chor and negative instances), respectively. Specifically,
F(d) € {d?,d*®,d">,0.5¢°64"— 0.5,0.5¢064 —0.5} de-
fines 5 increasing distance functions to penalize large d ™,
and F (d) € {0.5d7*,0.2d71,0.1d72,logd~!,log d—2}
defines 5 decreasing distance functions to penalize small d~.
We empirically found our performance is relatively robust
to the design choices of distance functions (within +0.05%
verfication accuracy on LFW among our early trials), as
long as they differ. The ability to learn adaptive weightings
over these distance functions plays a more important role.

Figure S3(b) demonstrates the evolution of weights ®,(7)
over our distance functions on the Stanford Online Prod-
ucts dataset. Note that while the weights for our default
distance functions d? and 0.5d~! are both initialized as 1,
our ALA controller learns to assign larger weights to those
high-penalty distance functions over time. This implies an
adaptive "hard mining” curriculum learned from data that is
more flexible than hand-designed alternatives.

3. Limitations

In this work we studied multiple evaluation metric formu-
lations (classification accuracy and AUCPR for the classi-
fication settings, and Recall @k and verification accuracy
for metric learning). While this includes non-decomposable
metrics, we did not extend to more complex scenarios that
might reveal further benefits of ALA. In future work we
plan to apply ALA to multiple simultaneous objectives,
where the controller will need to weigh between these ob-
jectives dynamically. We would also like to examine cases
where the output of a given model is an input into a more
complex pipeline, which is common in production systems
(e.g., detection—alignment—recognition pipelines). This
requires further machinery to be developed for making re-
ward evaluation efficient enough to learn the policy jointly
with training the different modules.

Another area where ALA can be further developed is to
make it less dependent on specific task types and loss/metric
formulations. Ideally, a controller can be trained through
continual learning to handle different scenarios flexibly.
This would enable the use of ALA in distributed crowd
learning settings where model training gets better and better
over time.

Finally, an interesting area to study further is how ALA
behaves in dynamically changing environments where avail-
able training data can change over time (e.g., life-long learn-
ing, online learning, meta-learning). Ideally, ALA is suited
to tackle these challenges, and we will continue to explore
this in future work.
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