
Composing Entropic Policies using Divergence Correction

A. Proofs
A.1. Max-Ent Generalized Policy Improvement

Theorem 3.1 (Max-Ent Generalized Policy Improvement) Let π1, π2, ..., πn be n policies with α-max-ent action-value
functions Q1, Q2, ..., Qn and value functions V 1, V 2, ..., V n. Define

π(a|s) ∝ exp
(
1
α maxiQ

i(s, a)
)
.

Then,

Qπ(s, a) ≥ max
i
Qi(s, a) for all s ∈ S, a ∈ A, (5)

V π(s) ≥ max
i
V i(s) for all s ∈ S, (6)

where Qπ(s, a) and V π(s) are the α-max-ent action-value and value function respectively of π.

For brevity we denote Qmax ≡ maxiQ
i. Define the soft Bellman operator associated with policy π as

T πQ(s, a) ≡ r(s, a, s′) + γEp(s′|s,a)
[
αH[π(·|s′)] + Ea′∼π(·|s′) [Q(s′, a′)]

]
.

Haarnoja et al. (2018b) have pointed out that the soft Bellman operator T π corresponds to a conventional, “hard”, Bellman
operator defined over the same MDP but with reward rπ(s, a, s′) = r(s, a, s′) + γαEp(s′|s,a) [H[π(·|s′)]]. Thus, as long as
r(s, a, s′) and H[π(·|s′)] are bounded, T π is a contraction with Qπ as its fixed point. Applying T π to Qmax(s, a) we have:

T πQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′) [−α log π(a′|s′) +Qmax(s′, a′)]

= r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′)
[
−α log

exp(α−1Qmax(s′, a′))

Zπ(s′)
+Qmax(s′, a′)

]
= r(s, a, s′) + γEs′∼p(·|s,a) [α logZπ(s′)] .

Similarly, if we apply T πi , the soft Bellman operator induced by policy πi, to Qmax(s, a), we obtain:

T πiQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼πi(·|s′) [−α log πi(a
′|s′) +Qmax(s′, a′)] .

We now note that the Kullback-Leibler divergence between πi and π can be written as

DKL(πi(·|s)‖π(·|s)) = Ea∼πi(·|s) [log πi(a|s)− log π(a|s)]

= Ea∼πi(·|s)

[
log πi(a|s)−

1

α
Qmax(s, a) + logZπ(s)

]
.

The quantity above, which is always nonnegative, will be useful in the subsequent derivations. Next we write

T πQmax(s, a)− T πiQmax(s, a) = γEs′∼p(·|s,a)
[
α logZπ(s′)− Ea′∼πi(·|s′)[−α log πi(a

′|s′) +Qmax(s′, a′)]
]

= γEs′∼p(·|s,a)
[
Ea′∼πi(·|s′)[α logZπ(s′) + α log πi(a

′|s′)−Qmax(s′, a′)]
]

= γEs′∼p(·|s,a) [αDKL(πi(·|s′)‖π(·|s′))]
≥ 0. (14)

From (14) we have that

T πQmax(s, a) ≥ T πiQmax(s, a) ≥ T πiQi(s, a) = Qi(s, a) for all i.

Using the contraction and monotonicity of the soft Bellman operator T π we have

Qπ(s, a) = lim
k→∞

(T π)kQmax(s, a) ≥ Qi(s, a) for all i.

Composing Entropic Policies using Divergence Correction

We have just showed (5). In order to show (6), we note that

V π(s) ≡ αH[π(·|s)] + Ea∼π [Qπ(s, a)]
≥ αH[π(·|s)] + Ea∼π [Qmax(s, a)]

= α logZπ(s). (15)

Similarly, we have, for all i,

V i(s) = Ea∼πi(·|s)
[
Qi(s, a)− α log πi(a|s)

]
≤ Ea∼πi(·|s) [Q

max(s, a)− α log πi(a|s)]
= α logZπ(s)− αDKL(πi(·|s)‖π(·|s))
≤ α logZπ(s). (16)

The bound (6) follows from (15) and (16).

A.2. DC Proof

Theorem 3.2 (DC Optimality) Let πi, πj be α max-ent optimal policies for tasks with rewards ri and rj with max-ent
action-value functions Qi, Qj . Define C∞b (st, at) as the fixed point of

C
(k+1)
b (st, at) = −αγEp(st+1|st,at)

[
log

∫
A
πi(at+1|st+1)

bπj(at+1|st+1)
(1−b) exp

(
− 1

α
C

(k)
b (st+1, at+1)

)
dat+1

]

Given the conditions for Soft Q convergence, the max-ent optimal Q∗b(s, a) for rb = bri + (1− b)rj is

Q∗b(s, a) = bQi(s, a) + (1− b)Qj(s, a)− C∞b (s, a)

∀s ∈ S, a ∈ A, b ∈ [0, 1]

We follow a similar approach to (Haarnoja et al., 2018a) but without making approximations and generalizing to all convex
combinations.

First note that since πi and πj are optimal then πi(a|s) = exp(1
α (Q

i(s, a)− V i(s))).

For brevity we use s and s′ notation rather than writing the time index.

Define

Q
(0)
b (s, a) ≡ bQi(s, a) + (1− b)Qj(s, a) (17)

C(0)(s, a) ≡ 0 (18)

and consider soft Q-iteration on rb starting from Q
(0)
b . We prove, inductively, that at each iteration Q(k+1)

b = bQi(s, a) +
(1− b)Qj(s, a)− C(k+1)(s, a).

Composing Entropic Policies using Divergence Correction

This is true by definition for k = 0.

Q
(k+1)
b (s, a) = rb(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α
Q

(k)
b (s′, a′)da′

]
(19)

= rb(s, a)+ (20)

γαEp(s′|s,a)
[
log

∫
A
exp(

1

α
(bQi(s′, a′) + (1− b)Qj(s′, a′)− C(k)(s′, a′)))da′

]
= rb(s, a)+ (21)

Ep(s′|s,a)
[
bV i(s′) + (1− b)V j(s′) + α log

∫
A
exp(b log πi(a

′|s′) + (1− b) log πj(a′|s′)−
1

α
C(k)(s′, a′))da′

]
= bQi(s, a) + (1− b)Qj(s, a)+ (22)

αγEp(s′|s,a)
[
log

∫
A
exp(b log π1(a

′|s′) + (1− b) log π2(a′|s′)−
1

α
C(k)(s′, a′))da′

]
= bQi(s, a) + (1− b)Qi(s, a)− C(k+1)

b (s, a). (23)

Since soft Q-iteration converges to the α max-ent optimal soft Q then equation 17 holds at the limit.

One can get an intuition for C∞b (s, a) by noting that

C
(1)
b (s, a) = γαEp(s′|s,a) [(1− b)Db (π1(·|s)‖π2(·|s))] (24)

where Db is the Rényi divergence of order b. C∞b (s, a) can be seen as the discount sum of divergences, weighted by the
unnormalized product distribution π1(a|s)bπ2(a|s)1−b.

A.3. N policies

It is possible to extend Theorem 3.2 to the case with N policies in a straightforward way.

Theorem A.1 (Multi-policy DC Optimality) Let π1, π2, ..., πN be α max-ent optimal policies for tasks with rewards
r1, r2, ..., rN with max-ent action-value functions Q1, Q2, ..., QN .

Define C∞w (st, at) as the fixed point of

C
(k+1)
w (st, at) = −αγEp(st+1|st,at)

[
log
∫
A

(∏N
i=1 πi(at+1|st+1)

wi

)
exp(− 1

αC
(k)
w (st+1, at+1))dat+1

]
Given the conditions for Soft Q convergence, the max-ent optimal Q∗w(s, a) for the convex combination of rewards
rw =

∑N
i=1 riwi is

Q∗w(s, a) =
∑N
i=1 wiQ

i(s, a)− C∞w (s, a)

∀s ∈ S, a ∈ A,w ∈ {w|
N∑
i=1

wi = 1 and wi ≥ 0}

Note that wi refers to component i of the vector wi.

The proof is very similar to the two reward case above.

Define

Q(0)
w ≡

N∑
i=1

wiQ
i(s, a) (25)

C(0)
w ≡ 0 (26)

Composing Entropic Policies using Divergence Correction

and again consider soft Q-iteration on rw. We prove by induction that at each iteration

Q(k+1)
w (s, a) =

N∑
i=1

wiQ
i(s, a)− C(k+1)

w (s, a) (27)

Again, this is true by definition for k = 0. Now we consider a step of Soft Q iteration

Q(k+1)
w = rw(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α
Q(k)

w (s′, a′)da′
]

(28)

= rw(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α

(
N∑
i=1

wiQ
i(s′, a′)− C(k)

w (s, a)

)
da′

]
(29)

= rw(s, a) + γEp(s′|s,a)

[
N∑
i=1

wiV
i(s′) + α log

∫
A
exp

(
N∑
i=1

wi log πi(a
′|s′)− 1

α
C(k)

w (s′, a′)

)
da′

]
(30)

=

N∑
i=1

wiQ
i(s, a) + αγEp(s′|s,a)

[
log

∫
A
exp(

N∑
i=1

wi log πi(a
′|s′)− 1

α
C(k)

w (s′, a′))da′

]
(31)

=

N∑
i=1

wiQ
i(s, a)− C(k+1)

w (s, a) (32)

Since soft Q-iteration converges to the α max-ent optimal soft Q then Q∗w(s, a) =
∑N
i=1 wiQ

i(s, a)− C(k+1)
w (s, a) for all

s ∈ S, a ∈ A.

Note that, in practice, estimating C∞w may be more challenging for larger N . For compositions of many policies, GPI may
be more practical.

B. Theoretical properties of the composition methods

Method Optimal Bounded loss Requires φ Requires f(s, a|b)
CO
CondQ X na X X
GPI X X
DC X na X

Table 1. Theoretical properties of different approaches to max-ent transfer. The methods compared are: CO, CondQ, max-ent GPI (over
a fixed, finite set of policies), and DC. The columns indicate whether the transfer policy is optimal, the regret of the transfer policy is
bounded, whether rewards for all tasks φ need to be observed simultaneously during training and whether the method requires learning a
function conditional on the transfer task b, f(s, a|b). DC is the only method that both recovers (in principle) the optimal policy and does
not require observing φ during training.

C. Algorithm details
C.1. Transfer algorithm

Algorithm 2 AISBP transfer algorithm
Load trained parameters θQ, θq , θψ , θC , θQb

.
Accept transfer task parameter b, transfer method ∈ CO, GPI, DC, CondQ.
while testing do

Importance sample transfer policy πb(a|s) ∝ exp 1
αQ

method(s, a) with mixture proposal pb(a|s)θq .
end while

Composing Entropic Policies using Divergence Correction

C.2. All losses and estimators

We use neural networks to parametrize all quantities. For each policy we learn an action-value QθQ(s, a), value VθV (s) and
proposal distribution qθq (a|s). We use target networks for the proposal distribution qθ′q (a|s) and value Vθ′V (s).

Here we enumerate all of the losses and their estimators. We use temporal difference (TD(0)) learning for all the RL losses,
so all losses are valid off-policy. We use a replay buffer R and learn by sampling minibatches of SARS tuples of size B, we
index over the batch dimension with l and use s′l to denote the state following sl, so the tuple consists of (sl, al, rl, s′l). For
importance sampled estimators we sample N actions for each state sl and use alk to denote sample k for state l.

We learn a set of n policies, one for each task in T indexed by i. However, we write the losses for a single policy and drop i
for notational simplicity.

C.2.1. PROPOSAL LOSS

The proposal loss minimizes the KL divergence between the Boltzmann distribution π(a|s) ∝ exp(12Q(s, a)) and the
proposal distribution.

L(θq) = ER
[
Ea∼π(·|s)[log π(a|st)− log qθq (a|st)]

]
(33)

As described in the text, this loss is estimated using importance sampling with a mixture distribution p(a|s) containing
equally weighted components consisting of the target proposal distribution qθ′q (a|s) for all policies and the uniform
distribution.

p(a|s) = 1

n+ 1

(
1

V A
+

n∑
i=1

qiθ′q (a|s)

)
(34)

where V A is the volume of the action space (which is always bounded in our case).

The proposal loss is estimated using self-normalized importance sampling

L(θq) ≈ −
1

B

B∑
k=1

N∑
l=1

wkl log qθq (a|st), (35)

w′kl =
1
α (QθQ(sk, akl))

p(akl|sk)
; wkl =

wkl′∑N
m=1 w

′
km

. (36)

C.2.2. VALUE LOSS

The soft value loss is

L(θV) =ER
[
1

2
(VθV (st)− α log

∫
A
exp(

1

α
QθQ(st, a))da)

2

]
(37)

We estimate this using importance sampling with the proposal distribution qθq (a|s) which is trying to fit the policy π.

L(θV) ≈
1

2B

B∑
l=1

(VθV (sl)− α logZ)
2 (38)

Z =

[
1

N

N∑
k=1

exp(1
αQθQ(sl, alk))

qθq (alk|sl)

]
(39)

Composing Entropic Policies using Divergence Correction

C.2.3. ACTION-VALUE LOSS

The TD(0) loss for QθQ is

L(θQ) =ER
[
1

2
(QθQ(st, at)− (r(st, at, st+1) + γVθ′V (st+1)))

2

]
(40)

This does not require importance sampling to estimate and can be straightforwardly estimated as

L(θQ) ≈
1

2B

B∑
l=1

(QθQ(sl, al)− (rl + γVθ′V (s
′)))2 (41)

The action-value is parametrized as an advantage function QθQ(s, a) = Vθ′V (s) +AθA(s, a).

C.2.4. STATE DEPENDENT SUCCESSOR FEATURES LOSS

To facilitate max-ent GPI we learn successor features for each policy, both state-action dependent features ψθψ (s, a) and
state-dependent ΥθΥ(s). As with value, we use a target network for the state-dependent features Υθ′Υ

(s)

L(θΥ) =ER
[
1

2
(ΥθΥ(st)− Eat∼π(at|st)[ψθψ (st, at) + α1(−QθQ(st, at) + α logZ(st))])

2

]
This loss is estimated using self-normalized importance sampling with proposal qθq

L(θΥ) ≈ 1

2B

B∑
l=1

N∑
k=1

wlk

[
(ψiθψ (sl, alk)−Q

i
θQ(sl, alk) + α logZ(sl))

2
]
, (42)

wlk ∝
exp(1

αQ
i(sl, alk))

qiθq (alk|sl)
. (43)

We use the importance sampled estimate of Z from eq 39, rather than the value network which may be lagging the true
partition function. We use self-normalized importance sampling to avoid the importance weights depending on α logZ(sl)
(this introduces a bias, but in practise appears to work well).

C.2.5. STATE-ACTION DEPENDENT SUCCESSOR FEATURES LOSS

The state-action dependent successor feature loss is

L(θψ) =ER
[
1

2
(ψθQ(st, at)− (φ(st, at, st+1) + γΥθ′Υ

(st+1)))
2

]
. (44)

for which we use the following estimator

L(θψi) ≈ 1

2B

B∑
l=1

(ψiθψ (sl, al)− (φl + γΥθ′Υ
(s′l)))

2. (45)

ψθψ is parametrized as a “psi-vantage” ψθψ (s, a) = Υθ′Υ
(s) +ψAθA(s, a).

C.2.6. DC CORRECTION

We learn the divergence correction for each pair of policies πi(a|s), πj(a|s). As described in the text, in order to learn
CθC (s, a, b) for all b ∈ [0, 1], we sample b. We also use a target network Cθ′C (s, a, b). The loss is then

L(θC) = Es∼R,b∼U(0,1)[
1
2 (CθC (s, a, b) + αγEp(s′|s,a)[log

∫
A exp(b log πi(a

′|s′)+ (46)

(1− b)πj(a′|s′)−
1

α
CθC′ (s

′, a′, b))da′])2].

Composing Entropic Policies using Divergence Correction

This loss is challenging to estimate, due to the dependence on two policies. We importance sample using a mixture of all
proposal distributions uniform p(a|s) (equation 34). We denote the samples of b ∼ U(0, 1) for each batch entry bl. Note the
choice of uniform distribution for b is not required, other distributions that ensure the estimator works well for b ∈ [0, 1]
would also work. The importance sampled estimator is then

L(θC) ≈
1

N

B∑
l=1

(
CθC (sl, al, bl)− αγ log

[
1

N

N∑
k=1

Ctargetθ′C
(s′l, a

′
lk, bl)

p(alk′ |sl)

])2

, (47)

Ctargetθ′C
(s′l, a

′
lk, bl) ≡ exp(

1

α
(blQ

i
θQ(s

′
l, a
′
lk) + (1− bl)QjθQ(s

′
l, a
′
lk)− Cθ′C (s

′
l, a
′
lk, bl)). (48)

We parametrized CθC as an advantage function CθC (s, a, b) = CAθCA
(s, a, b) + CBθCB

(s, b) with an additional loss to
constrain this parametrization

L(θB) = Ea∼q(·|s),s∼R
[
1

2
(CAθCA

(s, a, b))2
]

(49)

which can be straightforwardly estimated by sampling from q

L(θB) ≈
1

2NB

B∑
l=1

N∑
k=1

(CAθCA
(sl, alk, bl))

2 (50)

C.2.7. CONDQ

We also consider, as a control, learning the action-value function conditional on b directly (Schaul et al., 2015), in a similar
way to the DC correction. We learn both a conditional value VθVb

(s, b) and QθQb
(s, a, b), again by sampling b uniformly

each update.

L(θVb
) = ER,b∼U(0,1)

[
1

2
(VθVb

(s, b)− α log

∫
exp(

1

α
QθQb

(s, a, b)))2
]
, (51)

LθQ = ER,b∼U(0,1)

[
1

2
(QθQb

(s, a, b)− (rb + γVθVb
(s′, b)))2

]
, (52)

where computing rb for arbitrary b requires φ to have been observed.

We estimate Cond-Q with the same importance samples as C from p(a|s) and again sample b ∼ U(0, 1) for each entry in
the batch. We use target networks for Vθ′V (s, b) and parametrize QθQ(s, a, b) = Vθ′V (s, b) +AθA(s, a, b).

The conditional value estimator is

L(θV) ≈
1

2B

B∑
l=1

(
VθVb

(sl, bl)− α log
1

N

N∑
k=1

exp(1
αQθQb

(sl, alk, bl)

p(alk|sl)

)2

(53)

and action-value estimator is

L(θQ) ≈
1

2B

B∑
l=1

(
QθQb

(sl, al, bl)− (rb + γVθ′Vb
(s′l, bl))

)2
(54)

C.3. Sampling the product of proposals

The proposal distributions qi(a|s) are mixtures of M (truncated) normals (equation 7). We ignore the truncation when
computing the product of proposals qij(a|s).

The product of two M component mixtures of normals results in another mixture of normals with M2 components (e.g.
Schrempf et al., 2005). Since for all experiments M is a relatively small integer (maximum is 16) we sample from the
product of proposals in a naive way.

Composing Entropic Policies using Divergence Correction

D. Justification for the DC-Cheap heuristic
We wish to estimate C∞b (s, a) (defined in Theorem 3.2) while avoiding learning a conditional function of b. We make two
(substantial) assumptions to arrive at this approximation.

Firstly, we assume policies πi(a|s), πj(a|s) are Gaussian

πi(a|s) = exp

(
− (a− µi(s))2

2σ(s)2

)
(55)

and the variance σ(s) is the same for both policies given a state (it may vary across states).

Secondly, we assume C(k)
b (s, a) = C

(k)
b (s) is independent of action. This is approximately correct when nearby states have

similar Rényi divergences between policies.

We make use of a result by Gil et al. (2013) that states that the Rényi divergence of order b for two Gaussians of the same
variance is

Db (N (µ1, σ)‖N (µ2, σ)) =
1

2

b(µ1 − µ2)
2

σ2
. (56)

We first define

Gb(s) ≡ (1− b)Db (πi(·|s)‖πj(·|s)) = − log

∫
πi(a|s)bπj(a|s)(1−b)da. (57)

From equation 55

Gb(s) = 4b(1− b)G 1
2
(s). (58)

Given these assumptions we show inductively that C(k)
b (s, a) = 4b(1− b)C(k)

1/2(s, a) ∀k, b ∈ [0, 1].

Since C(0)
b (s, a) = 0 ∀b ∈ [0, 1], a ∈ A, s ∈ S this is true for k = 0. We show it holds inductively

C
(k+1)
b (s, a) = −αγEp(s′|s,a)

[
log

∫
A
πi(a

′|s′)bπj(a′|s′)(1−b) exp(−
1

α
C

(k)
b (s′, a′))da′

]
(59)

= γEp(s′|s,a)
[
αGb(s

′) + C
(k)
b (s′)

]
(60)

= 4b(1− b)C(k+1)
1
2

(s, a). (61)

Obviously these assumptions are not justified. However, note that we estimate the true divergence for C∞1/2, i.e. without any
assumptions of Gaussian policies and this heuristic is used to estimate C∞b from C∞1/2. In practise, we find this heuristic
works in many situations where the policies have similar variance, particulary when bounded by GPI.

Composing Entropic Policies using Divergence Correction

E. Additional Figures

(a) U task (b) R task

0.0 0.5 1.0

b

0

10

-7

10

-5

10

-3

10

-1

10

1

L
o
g

l
o
s
s

f
r
o
m

o
p
t
i
m
a
l

CO

GPI

LTD

(d) LR regret

0.0 0.5 1.0

b

0

10

-7

10

-5

10

-3

10

-1

10

1

L
o
g

l
o
s
s

f
r
o
m

o
p
t
i
m
a
l

(e) LU regret (f) T regret

0.0 0.5 1.0

b

0

10

-7

10

-5

10

-3

10

-1

10

1

L
o
g

l
o
s
s

f
r
o
m

o
p
t
i
m
a
l

94

96

98

V
a
l
u
e

(c) LU CO

Figure 5. Additional results for figure 1 (tabular)
(a) The U(p) and (b) R(ight) tasks.
(c) The CO policy for the LU task. Note how even far from the reward (e.g. bottom right corner) the CO policy is near optimal, contrast
with the GPI policy for this task (figure 1f).
The log regret (smaller is better) as function of b (rb = br1 + (1− b)r2) for the transfer task for the (d) incompatible (Left-Right) task,
(e) compatible (Left Up) task and (f) T(ricky) task.

Composing Entropic Policies using Divergence Correction

0.0 0.5 1.0

b

0.0

0.5

1.0

R
e
t
u
r
n

x

1

x

2

0.0

0.8

(a) (b)

Figure 6. Additional results for figure 2 (point mass tricky)
(a) The returns (larger is better) for the transfer task as a function of b (rb = br1+(1− b)r2) including the DC heuristics. DC-Cheap+GPI
performs almost as well as DC.
(b) The Rényi divergence of the two base policies as a function of position: the two policies are compatible except near the bottom left
corner where the rewards are non-overlapping.

0.0 0.5 1.0
b

0.6

0.7

0.8

R
e
tu

rn

Figure 7. Returns for figure 3 (planar manipulator)
The returns for the transfer task as a function of b (rb = br1 + (1− b)r2) including the DC heuristics. DC-Cheap+GPI performs almost
as well as DC. Shaded bars show SEM (5 seeds).

Composing Entropic Policies using Divergence Correction

0.0 0.5 1.0
b

0.50

0.60

0.75

R
e
tu

rn

0.0 0.5 1.0
b

0.5

0.6

0.7

R
e
tu

rn

(a)

(b) (c)

Figure 8. Additional results for figure 4 (mobile bodies)
(a) Jumping ball task. The task has rewards (1, 0), (0, 1) in the green and red boxes respectively and (0.75, 0.75) in the blue square.
The returns for the transfer task as a function of b (rb = br1 + (1− b)r2) including the DC heuristics for the jumping ball (b) and ant (c).
Shaded bars show SEM (5 seeds for ant, 3 seeds for jumping ball). As expected, CO performs poorly on these tasks. CondQ struggles to
consistently get good returns on the ant task. The DC heuristics perform well on these tasks.

Composing Entropic Policies using Divergence Correction

CO GPI DC CondQ
Method

0.10

0.15

0.20

0.25

0.30

0.35

R
e
tu

rn
0.0 0.5 1.0

b

0.2

0.4

0.6

R
e
tu

rn

cb

0.0 0.5 1.0
b

0.2

0.4

0.6

R
e
tu

rn

CO

GPI

DC

x1

x
2

a
x1

x 2

CO

GPI

DC

CondQ

Figure 9. Ant on non-composable subtasks
(a) Trajectories of the ant during transfer on non-composable subtasks. In this experiment the two base tasks consists of rewards at the red
and green square respectively. As expected, in this task, where the two base tasks have no compositional solution, CO (red) performs
poorly with trajectories that end up between the two solutions. GPI (blue) performs well, as does DC (black). CondQ does slightly worse.
(b) Box-plot of returns from 5 seeds (at b = 0.5).
(c) Returns as a function of b, SEM across 5 seeds is plotted, but is smaller than the line thickness.

F. Experiment details
All control tasks were simulated using the MuJoCo physics simulator and constructed using the DM control suite (Tassa
et al., 2018) which uses the MuJoCo physics simulator (Todorov et al., 2012).

The point mass was velocity controlled, all other tasks were torque controlled. The planar manipulator task was based off
the planar manipulator in the DM control suite. The reward in all tasks was sparse as described in the main text.

During training for all tasks we start states from the randomly sampled positions and orientations. For the point mass,
jumping ball and ant we evaluated transfer starting from the center (in the walker environments, the starting orientation was
randomly sampled during transfer, the point mass does not have an orientation). For the planar manipulator transfer was
tested from same random distribution as in training. Infinite time horizon policies were used for all tasks.

Transfer is made challenging by the need for good exploration. That was not the focus on this work. We aided exploration
in several ways: during training we acted according to a higher-temperature policy αe = 2α. We also sampled actions
uniformly in an ε-greedy fashion with ε = 0.1 and added Gaussian exploration noise during training. This was sufficient to
explore the state space for most tasks. For the planar manipulator and the jumping ball, we found it necessary to induce
behavior tasks by learning tasks for reaching the blue target. This behavior policy was, of course, only used for experience
and not during transfer.

Below we list the hyper-parameters and networks use for all experiment. The discount γ and α were the only sensitive
parameters that we needed to vary between tasks to adjust for the differing magnitudes of returns and sensitivity of the
action space between bodies. If α is too small then the policies often only find one solution and all transfer approaches
behave similarly, while for large α the resulting policies are too stochastic and do not perform well.

The state vector was preprocessed by a linear projection of 3× its dimension and then a tanh non-linearity. All action-state
networks (Q, ψ, C) consisted of 3 hidden layers with elu non-linearities (Clevert et al., 2015), with both action and
preprocessed state projected by linear layers to be of the same dimensionality and used for input the first layer. All value
networks and proposal networks consisted of 2 layers with elu non-linearities. The number of neurons in each layer was
varied between environments, but was kept the same in all networks and layers (we did not sweep over this parameter, but
choose a reasonable number based on our prior on the complexity of the task).

Below we list the per task hyper-parameters

Composing Entropic Policies using Divergence Correction

Proposal learning rate 10−3

All other learning rates 10−4

Value target update period 200
Proposal target update period 200
Υ target update period 500
Number of importance samples for all estimators during learning 200
Number of importance samples for acting during training 50
Number of importance samples for acting during transfer 1000

Table 2. Parameters the same across all experiments

Task Number of units α γ
Point mass 22 1 0.99
Planar Manipulator 192 0.05 0.99
Jumping Ball 192 0.2 0.9
Ant 252 0.1 0.95

Table 3. Parameters varied between experiments

