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1. Proofs
1.1. Global optimality of p(x|mi = 1) = p(x|mi = 0) for HexaGAN

Proof of Theorem 1: Let DMI(·) be D(·), and GMI(E(·)) be G(·) for convenience.

The min-max loss of HexaGAN for missing data imputation is given by:

VMI(D,G) = Ex,z,m

[
mTD(G(x̃|m))− (1−m)TD(G(x̃|m))

]
(1)

= Ex̂,m

[
mTD(x̂)− (1−m)TD(x̂)

]
(2)

=

∫
X̂

∑
m∈{0,1}d

(
mTD(x)− (1−m)TD(x)

)
p(x|m)dx (3)

=

∫
X̂

∑
m∈{0,1}d

( ∑
i:mi=1

D(x)i −
∑

i:mi=0

D(x)i

)
p(x|m)dx (4)

=

∫
X̂

d∑
i=1

(
D(x)i

∑
m:mi=1

p(x|m)−D(x)i
∑

m:mi=0

p(x|m)

)
dx (5)

=

∫
X̂

d∑
i=1

D(x)ip(x|mi = 1)−D(x)ip(x|mi = 0)dx (6)

=

∫
X̂

d∑
i=1

(p(x|mi = 1)− p(x|mi = 0))D(x)idx (7)

For a fixed G, the optimal discriminator D(x)i which maximizes VMI(D,G) is such that:

D∗
G(x)i =

{
1, if p(x|mi = 1) ≥ p(x|mi = 0)

0, otherwise
(8)

Plugging D∗
G back into Equation 7, we get:

VMI(D
∗
G, G) =

∫
X̂

d∑
i=1

(p(x|mi = 1)− p(x|mi = 0))D∗
G(x)idx (9)

=

d∑
i=1

∫
{x|p(x|mi=1)≥p(x|mi=0)}

(p(x|mi = 1)− p(x|mi = 0)) dx (10)
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Let X = {x|p(x|mi = 1) ≥ p(x|mi = 0)}. To minimize Equation 10, we need to set p(x|mi = 1) = p(x|mi = 0) for
x ∈ X .

Then, when we consider X c, the complement of X , p(x|mi = 1) < p(x|mi = 0) for x ∈ X c. Since both probability
density functions should integrate to 1,∫

X c

p(x|mi = 1)dx =

∫
X c

p(x|mi = 0)dx (11)

However, this is a contradiction, unless λ(Xc) = 0 where λ is the Lebesgue measure. This finishes the proof. □

1.2. Optimization of components for imputation

From Equation 6,

VMI(D,G)i =

∫
X̂
p(x|mi = 1)D(x)i − p(x|mi = 0)D(x)idx (12)

= Ex̃,z,m [mi ·D(G(x̃|m))i]− Ex̃,z,m [(1−mi) ·D(G(x̃|m))i] (13)

G is then trained according to minG
∑d

i=1 VMI(D,G)i, and D is trained according to maxD
∑d

i=1 VMI(D,G)i.

1.3. Relation between pseudo-labeling and the ODM cost

Proof of Theorem 2: Optimizing the adversarial loss functions LC and Ld+1
DMI

are equivalent to minimizing the Earth
Mover distance between Distr[C(x̂u)] and Distr[y], where Distr[·] denotes the distribution of a random variable.

Since converging the Earth Mover distance W (p, q) to zero implies that the two distributions p and q are equal, the following
proposition holds

W (Distr[C(x̂u)],Distr[y]) → 0 ⇒ Distr[C(x̂u)] = Distr[y] (14)

This means that minimizing the Earth Mover distance W (Distr[C(x̂u)],Distr[y]) matches the distributions of the outputs.
Therefore, the adversarial losses of DMI and C satisfy the definition of the output distribution matching (ODM) cost
function, concluding the proof. □

2. Training of HexaGAN in details
2.1. Dataset description

Table 1 presents the dataset descriptions used in the experiments. The imbalance ratio of the wine dataset is calculated from
the binarized classes by combining classes 2 and 3 into one class, and the numbers of data in the three classes are 59, 71,
and 48, respectively.

Table 1. Dataset description. The imbalance ratio indicates the ratio of the number of instances in the majority class to the number of
instances in the minority class.

Dataset # of features # of instances Imbalance ratio (1:x)

Breast 30 569 1.68
Credit 23 30,000 3.52

Wine (with binarized class) 13 178 2.02
Madelon 500 4,400 1.00

2.2. Training procedure

Each component of the whole system is updated in order. We should note that the distribution of hl is altered by the updating
of E; thus, we updated GCD and DCG several times when the other components are updated once, as shown in Algorithm 1.
We set the number of iterations for the conditional generation per an iteration for the other components to 10 and the number
of iterations for discriminators per an iteration for generators to 5 in our experiments.
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Algorithm 1 Training procedure of HexaGAN
Require :nCG - the number of iterations for the conditional generation per an iteration for the other components;

ncritic - the number of iterations for discriminators per an iteration for generators
while training loss is not converged do

(1) Missing data imputation
for k = 1, ..., ncritic do

Update DMI using stochastic gradient descent (SGD)
∇DMI

LDMI
+ Ld+1

DMI
+ λ1LGPMI

end for
Update E using SGD
∇ELGMI

+ α1Lrecon

Update GMI using SGD
∇GMI

LGMI
+ α1Lrecon

(2) Conditional generation
for i = 1, ..., nCG do

for j = 1, ..., ncritic do
Update DCG using SGD
∇DCG

LDCG
+ λ2LGPCG

end for
Update GCG using SGD
∇GCG

LGCG
+ α2LGMI

+ α3LCE(x̂c,yc)
end for

(3) Semi-supervised classification
Update C using SGD
∇CLCE(x̂l,c,yl,c) + α4LC

end while

2.3. Architecture of HexaGAN

Excluding the experiments in Sections 4.1.2 and 4.2, all six components used an architecture with three fully-connected
layers. The number of hidden units in each layer is d, d/2, and d. As an activation function, we use the rectified linear unit
(ReLU) function for all hidden layers and the output layer of E and GCG, the sigmoid function for the output layer of GMI

and DCG, no activation function for the output layer of DMI , and the softmax function for the output layer of C.

Table 2 describes the network architectures used in Sections 4.1.2 and 4.2. In the table, FC(n) denotes a fully-connected
layer with n output units. Conv(n, k × k, s) denotes a convolutional network with n feature maps, filter size k × k, and
stride s. Deconv(n, k × k, s) denotes a deconvolutional network with n feature maps, filter size k × k, and stride s.

Table 2. Convolutional neural network architectures used for the MNIST dataset
GCG DCG E GMI DMI C

FC(512) FC(1024) Conv(32, 5×5, 2) Deconv(64, 5×5, 2) Conv(32, 5×5, 2) Conv(32, 5×5, 2)
ReLU ReLU ReLU ReLU ReLU ReLU

FC(1024) FC(512) Conv(64, 5×5, 2) Deconv(32, 5×5, 2) Conv(64, 5×5, 2) Conv(64, 5×5, 2)
ReLU ReLU ReLU ReLU ReLU ReLU

FC(2048) FC(1) Conv(128, 5×5, 2) Deconv(1, 5×5, 2) Conv(128, 5×5, 2) Conv(128, 5×5, 2)
ReLU Sigmoid ReLU ReLU ReLU ReLU

FC(784) FC(785) FC(10)
Sigmoid Sigmoid Softmax
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3. Additional experiments
3.1. Learning curve analysis on missing data imputation

Using the breast dataset, we measured the RMSE to evaluate the imputation performance of the proposed adversarial losses
(LDMI

, LGMI
). We excluded Lrecon from the losses of E and GMI and compared the learning curves of weight clipping

(WC) proposed by Arjovsky et al. (2017), the modified gradient penalty (GP) of Gulrajani et al. (2017), and the modified
zero-centered gradient penalty (ZC, ours) to determine the most appropriate gradient penalty for our framework. As shown
in Figure 1(a), ZC shows stable and good performance (small RMSE). In Figure 1(b), we plot learning curves to accurately
compare the adversarial losses of GAIN and HexaGAN. We also compare the two optimizers ADAM (Kingma & Ba, 2014)
and RMSProp (Tieleman & Hinton, 2012). Our experiment shows that RMSProp is a more stable optimizer than ADAM,
and HexaGAN produces a more stable and better imputation performance than GAIN.
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(a) Comparison of the gradient penalty
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(b) Comparison of the adversarial loss and optimizer

Figure 1. Learning curve comparison for the optimal GAN imputation method

3.2. Imputation performance with respect to the missing rate

We measured the imputation performance of HexaGAN for various missing rates in the credit dataset. To compare the
performance with those of competitive benchmarks, we used MICE, which is a state-of-the-art machine learning algorithm,
and GAIN, which is a state-of-the-art deep generative model. As seen in Figure 2, HexaGAN shows the best performance for
all missing rates except 50%. The comparison of MICE and HexaGAN shows that the gap between the performances of the
two methods increases at higher missing rates; therefore, HexaGAN is more robust when there is less information available.

27/21

Figure 2. Imputation performance (RMSE) comparison with respect to the missing rate with the credit dataset
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3.3. tSNE analysis on conditional generation

Figure 3 is the complete version of the tSNE analysis in Section 4.2.1. The tSNE plot below shows an analysis of the
manifold of the hidden space. We confirm that the synthetic data around the original data looks similar to the original data.
Therefore, it can be seen that E learns the data manifold well in the hidden space.

 tSNE analysis (hidden variable of MNIST)

Task 2. Class Conditioned Generation

17/21
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Figure 3. tSNE analysis with the MNIST dataset

3.4. Sensitivity analysis of loss functions

We performed diverse experiments by tuning the hyperparameter of each loss term for the missing data imputation and
conditional generation experiments. We utilized the credit dataset and measured the RMSE and F1-score. The first two rows
of Table 3 show the imputation performances (RMSE) acheived by tuning hyperparameters α1 and λ1, which are multiplied
by the auxiliary loss terms for missing data imputation (Lrecon and LGPMI

, respectively). The results show that HexaGAN
achieves the best missing data imputation performance when both α1 and λ1 are set to 10. The last two rows of Table 3
present the classification performances (F-score) acheived by tuning hyperparameters α2 and α3, which are multiplied by
the auxiliary losses for conditional generation (LGMI

and LCE(x̂c,yc), respectively). As a result, the best classification
performance is obtained when α2 and α3 are the default values in our paper, at 1 and 0.01, respectively.

Table 3. Sensitivity analysis of the loss functions with the credit dataset

Hyperparameter (Loss) Setting 1 2 3 4

α1 (Lrecon) Value 0 1 10 100
RMSE 0.1974 0.1108 0.1022 0.1079

λ1 (LGPMI
) Value 0 1 10 100

RMSE 0.1110 0.1097 0.1022 0.1081

α2 (LGMI
) Value 0 1 10 100

F1-score 0.4535 0.4627 0.4585 0.4523

α3 (LCE(x̂c,yc)) Value 0 0.01 0.1 1
F1-score 0.4535 0.4627 0.4585 0.4523
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3.5. Statistical significance

We conducted statistical tests for Tables 1, 2, and 3 in the original paper. Because the results of the experiment could not
meet the conditions of normality and homogeneity of variance tests, we used a non-parametric test, the Wilcoxon rank
sum test. We additionally measured the effect size using Cohen’s d. We validated that all the experiments are statistically
significant or showed large or medium effect size, except for GAIN vs. HexaGAN for the wine dataset in Table 1, HexaGAN
without DMI vs. HexaGAN for the breast and credit datasets in Table 2, and MICE + SMOTE + TripleGAN vs. HexaGAN
for the madelon dataset in Table 3.

3.6. Classification performance with the CelebA dataset

We used a more challenging dataset, CelebA. It is a high-resolution face dataset for which it is more difficult to impute
missing data. CelebA consists of 40 binary attributes with various imbalance ratios (1:1 ∼ 1:43). We used 50,000 and 10,000
labeled and unlabeled training images, respectively, and 10,000 test images. The size of each image is 218x178x3, which
means that the data dimension is 116,412. Therefore, we could evaluate our method on the setting where the data dimension
is less than the sample size. Then, half of the elements were removed from each image under the 50% missingness (MCAR)
assumption.

For comparison, we utilized a class rectification loss (CRL) (Dong et al., 2018) which is the most recent method developed
for the class imbalance problem. Since an image has 40 labels simultaneously, we simply balanced the class of data entered
into C by setting the class condition to 1− y. Additionally, the data dimension was too large to calculate LGPMI

, therefore
we replaced the regularization for discriminator learning with weight clipping. We measured the F1-scores for 40 attributes
for three cases: GAIN + TripleGAN, GAIN + CRL + TripleGAN, and HexaGAN. The same structure and hyperparameters
were used for the classifier for a fair comparison. Table 4 shows the imbalance ratio of each attribute and the classification
performance (F1-score) of each combination. Comparing the average F1-score of 40 attributes, GAIN + TripleGAN shows a
performance of 0.5152, GAIN + CRL + TripleGAN has a performance of 0.5519, and HexaGAN has a performance of
0.5826. HexaGAN outperforms all the compared methods.
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Table 4. Classification performance comparison with the CelebA dataset (F1-score)

Attribute Imb. ratio (1:x) GAIN + TripleGAN GAIN + CRL + TripleGAN HexaGAN

Arched eyebrows 3 0.53 0.50 0.55
Attractive 1 0.78 0.74 0.74

Bags under eyes 4 0.30 0.44 0.49
Bald 43 0.37 0.42 0.35

Bangs 6 0.70 0.77 0.71
Big lips 3 0.17 0.20 0.39
Big nose 3 0.41 0.47 0.49

Black hair 3 0.67 0.72 0.69
Blond hair 6 0.77 0.74 0.71

Blurry 18 0.02 0.16 0.15
Brown hair 4 0.49 0.49 0.57

Bushy eyebrows 6 0.48 0.55 0.49
Chubby 16 0.49 0.33 0.45

Double chin 20 0.34 0.36 0.46
Eyeglasses 14 0.64 0.81 0.79

Goatee 15 0.41 0.48 0.50
Gray hair 23 0.46 0.55 0.59

Heavy makeup 2 0.80 0.84 0.84
High cheekbones 1 0.78 0.79 0.80

Male 1 0.91 0.93 0.93
Mouth slightly open 1 0.81 0.83 0.82

Mustache 24 0.36 0.58 0.49
Narrow eyes 8 0.17 0.25 0.28

No beard 5 0.95 0.95 0.92
Oval face 3 0.16 0.24 0.47
Pale skin 22 0.34 0.45 0.39

Pointy nose 3 0.49 0.31 0.52
Receding hairline 11 0.22 0.46 0.44

Rosy cheeks 14 0.45 0.53 0.55
Shadow 8 0.45 0.49 0.46

Sideburns 17 0.50 0.58 0.60
Smiling 1 0.85 0.87 0.87

Straight hair 4 0.30 0.07 0.38
Wavy hair 2 0.52 0.50 0.57

Wearing earrings 4 0.44 0.48 0.53
Wearing hat 19 0.65 0.67 0.70

Wearing lipstick 1 0.88 0.88 0.88
Wearing necklace 7 0.04 0.11 0.35
Wearing necktie 13 0.62 0.65 0.63

Young 4 0.89 0.89 0.76

Mean - 0.5152 0.5519 0.5826


