Technical Supplement

1. Proof of Lemmas and Theorems

Lemma 1. Consider an agent with awareness A' C
AT, and expert following (8-13). As k — oo, either
PE(miy1) — ¢ < B orthe expert utters (13) where A" # ().

Proof. For finite p, (t + k) — t' > p as k — oo, satisfying
(8).

Given A’ remains fixed, the agent’s policy will eventually
converge to some policy 7. If PE(w) < /3, we are done. If
PE(w) > 3, then (9) will be satisfied.

Since the agent is e-greedy, at every time step it has a non-
zero probability of performing all actions a € v(.A;), mean-
ing that eventually A° = A*. Further, since 7 # 7, there
must exist some b € v(BT) and @’ € v(A") such that
Va € At, EU(da’|b) > EU (alb), thereby satisfying (11).

Since the agent is e-greedy, it is guaranteed to eventually
perform a* = argmax,¢,4¢) £U (alb) in in state b, thus
making (12) true for a non-empty value of A’.

(8-12) are not mutually exclusive, so all four will eventually
be true at once, causing the expert to utter (13) for non-
empty A’ O

Lemma 2. Consider an agent with awareness Xt C X7,
At =AY IF3W 3 £ V0B = V[BY and w(b) #
w1 (V'), then as k — oo, either PE(my11) — ¢ < f3, or the
expert utters (21) such that B' ¢ B!

Proof. 1f the agent converges to some policy 7 such that
PE(r) < 3, we are done.

Assume ¢ = 74 (b) and @' = 7 (b'). Consider that for
all k, P(be1r, = b) > 0, and (since the agent is e-greedy)
P(meqr(b) = a’) > 0, where @’ = ().

If PE(7) >, then at some time ¢+k; where (t+k1)—t' > p
and b;k, = b the agent will perform a’, thus satisfying
(8-12) and causing the expert to utter EU(a|w},, ) >
EU(a'\wf+kl).

By similar reasoning, at some time b;1x, = b’ the expert
will utter EU (o', w}, ;) > EU(a,w}, ).

Under BY, [wi, ., ] = [wf,,] so the agent will ask (20)
with answer B ¢ B. O

Lemma 3. Consider an e-greedy agent with awareness
At = AT, scope;(R) C scopes(R). As k — oo, there
exists a K such thatVs,Vk > K, Ri1x(s) = R+ (s).

Proof. Since the A = AT, and is e-greedy, then over in-
finite time the agent will eventually enter s at some time
1, receiving reward R, (s), and update its current reward
function so that R;(s) = R4 (s). If the agent has pre-
viously encountered another s’ such that s[scope;(R)] =
s'[scoper(R)] and R (s) # R (s'), the partial descrip-
tions (22) for s and s’ will conflict. The agent resolves this
by asking (23), receiving an answer differentiating s from
s'inRy. O

Theorem 1. Consider an agent with initial awareness
XV C Xt AY C AT, scopey(R) C scope(R) following
algorithm 1 (with k = 0). Ast — oo, PE(m;) — ¢ < .

Proof. By repeatedly applying theorems 1-3, either
PE(m) — ¢ < (in which case we are done), or there exists
a K where AKX = AT, Ri = R, and XK = B* U OF.
Here, B contains all variables B € B such that there ex-
ist b, and &’ where b[B1 \ B] = v/[B* \ B] but b[B] # b'[B]
and 7 (b) # 7, (b'). In other words, (XX, AKX RK) de-
fine a related decision problem with an identical optimal
policy and marginal probability distribution to the original
problem, but for which the agent is fully aware.

The BD-score is a consistent score, which means that as
|D| — oo, Pa™ contains all dependencies present in the true
distribution, regardless of initial prior (assuming we have not
pruned the search space, which is true in this case because
k = 0). Asaresult, as t — oo, then Va € v(A*), Vb € B,
Yy € v(scopes(R)), we have that P(yla,b, Pa;,0f) —
P(yla,b, Pa™t,6").

Since our agents probabilistic model converges to the true

probabilistic distribution, and because RE = Rt and
AK = A*, we have that 7} — 7, and therefore that
PE(nf) — 0 O

2. Derivation of Equation (7)

Note, the derivation below corrects an error from the origi-
nal Buntine (1991) paper.

The proof that:



BD, (X, P BDy_, (X, Pay) i o =1
t( , GX)— t—l( ) GX)W @)

Follows from the definition of the multivariate-£ function

in terms of the I'-function, and the recursive structure of I':

B(nl,...nm)zm (D
MNz)=(z-1)T'(z-1) (2)

From equation (3), we have:

BDt(X,PaX) =
P(PGX)Hﬁ(Nélj+C¥0U,...,Nﬁn‘j+Ozm|j) 3)
jev(Pax) B(O‘(ﬂj)aam\])

Lets assume that d;[X] = ¢ and d;[Pax] = j. The only
difference between BD;(X, Pax) and BD;_1(X, Pax)
is between counts Nf‘j and Nitl;l (specifically, that N
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— 1), so we can rewrite (3) as:

BD;(X, Pax)
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= BD,_1(X, Pa)

Then, via (2), we have:

T((Xrso Nijy) — DL(NG)

D(S 7, N )OOV, — 1)

. F((ZZL:O Nli|j) - 1)(Nf|j - 1)F(Nit\j B 1)
(o Nij;) — DTk Vi) — DRV, — 1)

Nz.tlj —1
(Lo V) 1
And therefore that:

BD,(X, P BDy_, (X, Pay) i T =1

t( 5 GX)— t—l( y GX)W (7

As required.

3. Specifications of IDs from Experiments +
Additional Results

Tables 1-3 below provide a full specification of the three
randomly generated IDs used in the Experiments Section of
the main paper. All variables are binary. The numbers in the
P(X|Pa) give the probability of X = 1 for each possible
assignment v( Pa), where the first probability refers to the
assignment of all parents to 0, and the last probability refers
to the assignment of all parents to 1.

Figures 1 and 2 give the results give the results of our exper-
iments on the small (12 variable) and medium (24 variable)
IDs, using the same experimental setup as presented in Sec-
tion 4 of the main paper. As with the main paper, the default
agent is able to successfully converge on the true optimal
policy, despite starting out unaware of factors critical to
success. However, the differences in varying the expert tol-
erances and between the conservative and non-conservative
agents are less pronounced, simply because the underlying
decision problem is simpler in the smaller cases.
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Figure 1. Rewards and size of |.A| over time on id-small.
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Figure 2. Rewards and size of |.4| over time on id-medium.
X PG,X P<X|Pax>
Bl 0 0.50
01 A4 0.23,0.18
B2 0 0.84
B3 0 0.18
03 Al,A3,B3 0.31,0.89,0.87, 0.15, 0.48, 0.21, 0.90, 0.06
B4 B2 0.45, 0.26
04 A2, Bl 0.78, 0.87, 0.12, 0.07
02 B2,B4,01 0.04,0.75, 0.64, 0.07, 0.36, 0.62, 0.69, 0.17
scope(R)  R(s)
04,02,03 0.98,0.14, 0.70, 0.35, 0.38, 0.98, 0.11, 0.97




X PCLX P(X|Pax)
B8 0 0.05
B6 0 0.97
B7 0 0.01
Bl 0 0.72
B4 0 0.08
B5 0 0.66
B2 0 0.78
B3 0 0.54
03 A6,B4,B6 0.66, 0.14, 0.99, 0.83, 0.75, 0.71, 0.30, 0.12
02 A5, A8,BS5 0.26, 0.94, 0.67, 0.18, 0.04, 0.63, 0.87, 0.14
06 A6,B3 0.87,0.31,0.48,0.13
04 Al1,B8 0.27,0.51,0.12,0.73
08 A4,B2,04 0.81, 0.51, 0.44, 0.44, 0.34, 0.82, 0.04, 0.56
Ol A2,A7,03 0.03,0.47,0.74, 0.43, 0.59, 0.08, 0.60, 0.57
07 B7,06 0.83, 0.68, 0.27,0.23
05 A3,B1,07 0.75, 0.30, 0.25, 0.35, 0.64, 0.30, 0.31, 0.31
scope(R) R
01, 08, 05,02 0.47,0.95, 1.00, 0.18, 0.26, 0.75, 0.38, 0.76,

0.60, 0.78, 0.02, 0.75, 0.40, 0.32, 0.30, 0.14

Table 2. id-medium (24 variables)



X PaX P(X|Pax)

B10 0 0.43

09 Al2 0.53,0.82

B11 0 0.59

08 A2 0.87,0.19

B12 0 0.42

B13 0 0.52

B14 0 0.76

BI5 0 0.12

02 Al A6, A8 0.43, 0.89, 0.00, 0.18, 0.19, 0.76, 0.76, 0.67

B8 0 0.28

B9 0 0.26

B6 U 0.96

B7 0 0.27

Bl 0 0.99

B4 ) 0.99

BS5 U 0.13

B2 0 0.77

B3 U 0.01

03 B2,B9,02 0.31,0.21,0.71, 0.65, 0.78, 0.17, 0.67, 0.92

06  A3,B6,Bl1 0.28,0.41,0.55, 0.42, 0.93, 0.58, 0.44, 0.74

05 Al13,B3,B4 0.17,0.66,0.93, 0.62, 0.47, 0.08, 0.82, 0.86

O15 A2, Al1l1,08 0.92, 0.34,0.25, 0.48, 0.43, 0.25, 0.52, 0.32

014 A10,B5, B8 0.37,0.91, 0.75, 0.86, 0.29, 0.33, 0.96, 0.84

013 A4, A7,BI 0.37,0.40,0.74, 0.94, 0.67, 0.70, 0.66, 0.46

07 B7,Bl15,06 0.31,0.69, 0.17, 0.56, 0.88, 0.40, 0.65, 0.91

04  Al14,03,09 0.31, 1.00, 0.59, 0.81, 0.08, 0.20, 0.02, 0.63

012 BI13,B14,013 0.55,0.71, 0.61, 0.22, 0.51, 0.90, 0.37, 0.52

O11 AS5,B10, 05 0.73,0.65,0.42, 0.47,0.42,0.34,0.97, 0.33

010 A15,B12,015 0.06, 0.80, 0.42, 0.36, 0.62, 0.97, 0.15, 0.29

Ol A9, 07,011 0.48,0.03,0.14, 0.41, 0.16, 0.64, 0.22, 0.19
scope(R) R

01, 04, 014, 010, O12

0.28,0.19, 0.91, 0.71, 0.68, 0.57, 0.98, 0.86,
0.96, 0.54, 0.19, 0.20, 0.72, 0.61, 0.32, 0.65,
0.64,0.12, 0.64, 0.67,0.72, 0.27, 0.05, 0.07,
0.63, 0.09, 0.55, 0.45, 0.19, 0.02, 0.51, 0.13

Table 3. id-large (36 variables)



