
Learning Structured Decision Problems with Unawareness

Craig Innes 1 Alex Lascarides 1

Abstract
Structured models of decision making often as-
sume an agent is aware of all possible states and
actions in advance. This assumption is sometimes
untenable. In this paper, we learn influence dia-
grams from both domain exploration and expert
assertions in a way which guarantees convergence
to optimal behaviour, even when the agent starts
unaware of actions or belief variables that are crit-
ical to success. Our experiments show that our
agent learns optimal behaviour on small and large
decision problems, and that allowing an agent to
conserve information upon discovering new pos-
sibilities results in faster convergence.

1. Introduction
Probabilistic graphical models have proven useful in rep-
resenting richly-structured decision tasks (Koller, 2009).
Many techniques exist to learn a model’s structure and pa-
rameters from experience (Tsamardinos et al., 2006; Bartlett
& Cussens, 2017) and expert advice (Masegosa & Moral,
2013). Unfortunately, all such methods assume the way
the domain is conceptualized—the belief and action vari-
ables used to describe the problem—is completely known
in advance. Often, this assumption does not hold.

In medicine, for example, suppose an agent prescribes a
drug, but later a senior pharmacologist objects to the pre-
scription based on a reason unforeseen by the agent—the
patient carries a newly discovered genetic trait, and the drug
produces harmful side effects in its carriers. Further, this
discovery may occur after the agent has already learned a lot
about how other (foreseen) factors impact the drug’s effec-
tiveness. As Coenen et al. (2017) point out, such scenarios
are common in human discussion—the answer to a ques-
tion may not only provide information about which of the
questioner’s existing hypotheses are likely, but also reveal
unforeseen hypotheses not yet considered. This example

1University of Edinburgh, UK. Correspondence to: Craig Innes
<craig.innes@ed.ac.uk>, Alex Lascarides <alex@inf.ed.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

also shows that while it may be infeasible for an agent to
gather all relevant factors of a problem before learning, it
may be easy for an expert to offer contextually relevant
advice during learning. Another example is in robotic skill
learning. Methods like Cakmak & Thomaz (2012) teach a
robot how to perform a new action it was unaware of, but
not how to integrate it into an existing decision model.

Current learning and decision making models don’t address
these issues; they assume the task is to use data to refine
a distribution over a fixed hypothesis space. The above
examples, however, illustrate a sort of reverse bayesianism
(Karni & Viero, 2013), where the hypothesis space expands
over time.

Rather than overcoming unawareness of states and actions,
we could instead represent unawareness as an infinite num-
ber of hidden variables (Wood et al., 2006), or abandon
learning a structured model and use densely connected hid-
den layers to implicitly learn structure from raw sensory
input (Mnih et al., 2015). Both approaches have drawbacks.
First, neither currently addresses how to adapt what one
has learned when a new action is discovered. More impor-
tantly, the hidden layers/variables are not tied to grounded
concepts with explicit meaning, so an agent cannot easily
justify its decisions to a user, or articulate the limits of its
current understanding to solicit help from others.

We instead propose an agent which explicitly overcomes
its unawareness, and constructs an interpretable model of
the problem. This paper makes three contributions: First,
an algorithm which incrementally learns all components
of a decision problem as a Influence Diagram (ID). This
includes the reward function and probabilistic dependencies
between variables, but also the set of belief and action vari-
ables themselves (Sections 2, 3.2). Second, an agent-expert
communication protocol (Section 3.1) which interleaves
contextual advice with learning, and guarantees our agent
converges to optimal behaviour despite starting unaware of
factors critical to success. Third, experiments on decision
tasks of varying sizes showing our agent successfully learns
optimal behaviour in practice (Section 4). Such contribu-
tions should be most relevant in interactive task learning
(Laird et al., 2017), where agents must learn the underlying
concepts which define a task.

Learning Structured Decision Problems with Unawareness

2. Learning with Full Awareness
We focus on learning observable, single-stage decision prob-
lems with discrete states and actions. In this paper, we
learn optimal behaviour by learning an Influence Diagram
(a bayesian network extended with actions and rewards),
which defines the optimal policy. We start with an agent
who is aware of all states and actions, then address the task
where the agent is unaware of relevant states and actions.

2.1. Making Optimal Decisions

Our agent’s goal is to learn the optimal policy π+ which,
given evidence e, chooses the action a which maximizes its
expected utility EU(a|e) =

∑
s′ P (s

′|a, e)R(s′) across all
states s′. If P (s|a, e) or reward function R are unknown,
the agent must learn them via trial and error. Our agent
balances exploiting its current estimate of π+ with exploring
the domain by using an ε-greedy policy (one which acts
randomly with probability ε > 0, and according to the
current estimate of π+ with probability 1−ε). For any policy
π, we can measure the expected loss in reward against the
true optimal policy π+ using (1)—the policy error.

PE(π) =
∑
e

P (e) (EU(π+(e)|e)− EU(π(e)|e)) (1)

If there are many states, evaluating the expected utility di-
rectly is infeasible. The next sections show how to exploit a
problem’s inherent structure to make computations tractable.

2.2. Bayesian Networks

Bayesian networks (BNs) decompose the state space of the
problem into a set of belief variables X = {X1, . . . Xn}.
Each state s is a joint assignment to all variables in X (i.e.,
s ∈ v(X), where v(X) is the cross-product of possible
assignments to each variable in X). An BN is a directed
acyclic graph (DAG) Pa and parameters θ which exploit the
conditional independencies between variables in X . For
each X ∈ X , PaX ∈ Pa is the parent set of X . Given
PaX , the value of X is conditionally independent of all
Y ∈ X \ PaX which are non-descendants of X . The
parameters θX ∈ θ then define the conditional probability
distributions θX = P (X|PaX).

Given X , we can learn the most likely structure Pa∗ and pa-
rameters θ∗ from observed data D0:t = [d0, . . . , dt] (where
di ∈ v(X)) by learning P (Pa|D0:t) and P (θ|D0:t,Pa). A
common way to calculate P (Pa|D0:t) is to use the Bayesian
Dirichlet Score (BD-Score) (Heckerman et al., 1995):

P (Pa|D0:t) ∝
∏
X∈X

BDt(X,PaX) (2)

BDt(X,PaX) =

P (PaX)
∏

j∈v(PaX)

β(N t
0|j + α0|j , . . . , N

t
m|j + αm|j)

β(α0|j , . . . , αm|j)
(3)

Here, β(n1, . . . , nm) is the multivariate beta function, and
N t
X=i|PaX=j is the number of states in D0:t where X has

assignment i and its parents have joint assignment j.1 The
αi|j parameters come from the dirichlet priors over θ and
act as a “pseudo-count” when data is sparse. We typically
choose the prior P (Pa) to penalize complex structures, as
in equation (4) which assigns a cost of ρ < 0.5 for each
extra parent:

P (PaX) = ρ|PaX |(1− ρ)|X\PaX | (4)

Unfortunately, evaluating the full posterior of (2), or even
finding its maximum, is infeasible for even a moderate num-
ber of variables, as the number of possible BNs is hyper-
exponential in the size of X (Tian & He, 2009). To tackle
this, most methods approximate Pa∗ via either local search
(Teyssier & Koller, 2005), sampling methods (Madigan
et al., 1995), or by reducing the search space of structures
considered reasonable (Buntine, 1991). For our task, we
have another issue—most BN learning methods operate once
on a single batch of data, and thus consider the collection
of sufficient statistics (i.e., the BD-scores of each PaX and
their associated Ni|j) to be a negligible pre-computed cost.
In a decision problem, agents gather data incrementally, and
exploit their current beliefs during learning, so we must
update the sufficient statistics each time step.

To address these issues, we follow Buntine (1991) by con-
structing a reasonable parent lattice PX for each X . Figure
1 shows an example lattice for X1. Starting from ∅, we con-
struct larger parent sets by combining sets seen so far,and
track the highest scoring set according to (3). Any parent-set
with a score lower than some proportion κ of the best score,
is considered “unreasonable”, and is not expanded further.2

Once we have our reduced set PX for each X , we can find
the combination of reasonable parent sets which maximize
(2) and form a valid DAG. In our task we will be learning X ,
so cannot assume we know a total-ordering ≺ over X (as
Buntine (1991) does), and thus cannot choose each Pa∗X in-
dependently. Instead, following Bartlett & Cussens (2017),
we treat finding Pa∗ as the linear program given below:

1Where the context is clear, we compress this notation to N t
i|j

2In contrast to Buntine (1991) we also consider all subsets of a
reasonable parent set to be reasonable.

Learning Structured Decision Problems with Unawareness

{X2}

{X2, X3}{X2, X4}

{X3}

{X3, X4}

{X4} {X5}

{X2, X3, X4}

Ø

Figure 1. Parent lattice for X1. Grey nodes are unreasonable

max
∑
X∈X

∑
PaX∈PX

I(PaX → X) ln[BD(X,PaX)]

s.t.
∑

PaX∈PX

I(PaX → X) = 1 ∀X∑
X∈C

PaX∩C=∅

I(PaX → X) ≥ 1 ∀C ⊆ X

I(PaX → X) ∈ {0, 1} ∀X,PaX
(5)

The variables I(PaX → X) denote whether we chose PaX
as X’s parent set, while the constraints ensure each X has
only one parent set and that the parent sets form a DAG.

Once we have learned the most likely structure Pa∗, we can
learn its most likely parameters θ∗ via (6):

Eθ|D0:t,Pa(θi|j) =
Ni|j + αi|j

N.|j + α.|j
(6)

Our method has three main advantages. First, reducing the
number of reasonable parent sets and using the modularBD-
score means we can incrementally update the probability of
each PaX using past calculations of (3) via (7):3

BDt(X,PaX) = BDt−1(X,PaX)
N t
i|j + αi|j − 1

N t
.|j + α.|j − 1

(7)

Second, expressing structure learning as a linear program
makes it easy to add extra structural constraints later (as we
do in section 3.1). Third, each lattice PX implicitly cap-
tures an approximate distribution over each X’s parents.4

In section 3.2, the agent uses this distribution to conserve
information as its awareness of X expands.

2.3. Learning to Act with Influence Diagrams

An ID (Howard & Matheson, 2005) is a BN augmented with
actions and rewards. It is a tuple 〈A,X ,R, Pa, θ〉. Here,

3We include a proof of (7) in the technical supplement.
4Technically, without≺, each PX is a distribution over markov

blankets for X , but we enforce acyclicity, so this is not an issue.

Topical
Cream

Disease

Oral
Drug

Side
Effects

Gene X

R

Figure 2. ID for medical example. Rectangles are action variables,
ovals are belief variables, and diamonds are reward nodes

A = {A1, . . . , Am} are the action variables the agent con-
trols (where a full action a is a member of v(A)). As before,
X are the belief variables, but they are now partitioned into
X = B ∪ O, where B is the set of variables the agent ob-
serves before taking action, and O are the variables which
describe the outcome of that action. The reward function
R : v(scope(R))→ R gives the reward received for each
state, where scope(R) ⊆ X are the variables which deter-
mine the reward. While Pa and θ still describe the proba-
bilistic dependencies, each PaX can now include belief and
action variables (i.e., ∀X,PaX ⊂ X ∪A). A domain trial
at time t is a tuple dt = 〈st, at, rt〉, where st = 〈bt, ot〉,
bt ∈ v(B), ot ∈ v(O), at ∈ v(A) and rt = R(st).

Figure 2 shows an example ID. Here, the agent chooses as-
signments for action variables TOPICAL CREAM and ORAL
DRUG based on observing GENE X, then receives a reward
based on outcomes DISEASE, and SIDE EFFECTS. Note
that IDs often also include information arcs — edges from
belief variables to action variables that show which variables
an agent observes before making each decision. For simplic-
ity of explanation, we omit information arcs, and assume
in this paper that all action variables are set simultaneously,
with access to observations of all variables in B.

We can use the same techniques from section 2.2 to
learn Pa∗ and θ∗ for IDs. Similarly, we can learn re-
ward function Rt from scope(R), and D0:t by setting
Rt(st[scope(R)]) = rt,5 and by defaulting to indifference
for unseen states (e.g., by setting the reward of unseen states
to 0). Given a learned ID, the agent then chooses a pol-
icy which maximizes the expected utility from section 2.1
(where a ∈ v(A) and e ∈ v(B)).

3. Overcoming Unawareness
So far, we’ve assumed our agent was aware of all relevant
variables in X ∪A and all members of scope(R). We now
drop this assumption. From here onward we denote the true
set of belief variables, actions, and reward scope as X+, A+

and scope+(R), and the learner’s awareness of them at time
t as X t, At, and scopet(R).

5Here, s[Y] projects assignment s over the variables in Y .

Learning Structured Decision Problems with Unawareness

Suppose X+ = {X1, X2}, X0 = {X1}, A+ = {A1, A2},
At = {A1}. We assume the agent can’t observe the value
of variables it is unaware of. In the medical example from
section 1, if X2 is a particular gene, we assume the agent
cannot detect the presence of that gene if it is unaware it
exists. We also assume the agent cannot perform actions it is
unaware of (i.e., if the agent is unaware of variable A2 then
it cannot set it to a value other than its default value).6 This
means at time t = 0, the agent does not observe the true trial
d0, but rather 〈s0[X 0], a0[A0], r0〉. But awareness of those
missing factors may be crucial to learning π+. For example,
the best action may depend upon v(X2), or the optimal
policy may sometimes involve setting A2 to true. The next
sections thus answer two main questions. First, how can an
agent discover and overcome its own unawareness by asking
for help? Second, when an agent discovers a new variable,
how can they integrate it into their current model while
conserving what they have learned from past experience?

3.1. Expert Guidance

Our agent can expand its awareness via advice from an
expert. Teacher-apprentice learning is common in the real
world, as it allows learners to receive contextually relevant
advice which may inform them of unforeseen concepts.

This paper assumes the expert is cooperative and infalli-
ble. Further, we abstract away the complexity of grounding
natural language statements in a formal semantics and in-
stead assume that the agent and expert communicate via
a pre-specified formal language (though see e.g., (Zettle-
moyer & Collins, 2007) for work on this problem). We do
not, however, assume the expert knows the agent’s beliefs
about the ID. The variables X e and Ae express the expert’s
knowledge of our agent’s awareness, and include only those
actions the expert has explicitly seen the agent perform, or
variables the agent mentions in conversation.

As argued in the introduction, the goal is to provide a mini-
mal set of communicative acts so that interaction between
the agent and expert mirrors human teacher-apprentice in-
teraction. Concretely, this means we want our system to
have two properties. First, the expert should mostly allow
the agent to learn by themselves, interjecting only when
the agent performs sufficiently poorly, or when they explic-
itly ask a question. Second, our expert should be able to
give non-exhaustive answers to queries. This is because, in
practice, it is unlikely a human expert will be able to give
exhaustive answers to all questions due to either cognitive
bounds or a lack of information. Following the maxims of
Grice (1975), a cooperative speaker should give answers
which provide just enough information to resolve the agent’s
current dilemma. The next sections identify four advice

6This assumption, while reasonable, may not always hold (E.g.,
an agent may lean on a button while unaware it is part of the task).

types, whose combination guarantee the agent eventually
behaves optimally, regardless of initial awareness.

3.1.1. BETTER ACTION ADVICE

If the expert sees the agent perform a sub-optimal action,
it can tell the agent a better action to take instead. For
example: “When it is raining, take your umbrella instead of
your sun hat”. Our goal is to avoid interrupting the agent
every time it makes a mistake, so we specify the following
conditions for when the agent performs poorly enough to
warrant correction: Let t be the current time step, and t′ be
the time the expert last uttered advice. When (8-12) hold:

t− t′ > µ (8)∑
t′≤i≤t

EU(π+(bi)|bi)− EU(ai|bi)
t− t′

> β (9)

EU(at|bt) ≥ rt (10)
∃A′, a′ ∈ v(Ae ∪ A′), EU(a′|bt) > EU(at|bt) (11)

@A
′′
, (a′′ ∈ v(Ae ∪ A′′), EU(a′′|bt) > EU(at|bt)
∧ |A′′| < |A′|)

(12)

Then the expert will utter advice of the form (13):

EU(a′|wbt) > EU(at[At ∪ A′]|wbt) (13)

Equation (8) ensures some minimum time µ has passed
since the expert last gave advice, while (9) ensures the expert
won’t interrupt unless its estimate of the agent’s policy error
is above some threshold β. Together, µ and β define how
tolerant the expert will be to the agent’s poor performance
before deciding to give advice. Equation (10) ensures that
the expert’s suggested action has an expected reward higher
than what the agent received at time t. Finally, (11-12)
ensure not only that a better action a′ exists, but also that a′

introduces the minimum amount of potentially unforeseen
action variablesA′ needed to improve the agent’s behaviour.
This means there isn’t another action a′′ which could be
advised while revealing fewer unaware variables to the agent.
This follows from our desire to give non-exhaustive advice,
by first suggesting improvements which use concepts the
agent is already aware of, rather than introducing many new
action variables all at once.

Equation (13)—the expert’s utterance— uses an ambiguous
term wb, whose intended meaning is the true state b (i.e
JwbK ∈ v(B+)), but whose default interpretation by the
agent is b[Bt]. In words, the expert says “In the last step, a′

would have been better than at”.

By introducing ambiguity, the agent can now interpret (13)
in two ways. The first is as a partial description of the true

Learning Structured Decision Problems with Unawareness

ID, which is true regardless of what it learns in future. On
hearing (13), the agent adds (14-15) to its knowledge:

∀A ∈ A′, A ∈ A+ ∧ ∃X ∈ scope+(R), anc(A,X) (14)

∃s ∈ v(X+), s[Bt] = st[Bt] ∧R+(s) > rt (15)

Where anc(X,Y) means X is the ancestor of Y (i.e., there
is a directed path fromX to Y in the true ID). Equations (14-
15) imply that any variable the expert utters must be relevant
to the problem. In other words, it must exert influence on
at least one variable in scope+(R), and that there exists
some state the agent could have reached which would yield
a better reward than the one it got. In fact, we can enforce
all equations of the form (14) when learning Pa∗ by adding
the constraint (16) to our linear program:

∀Y /∈ scope(R) :
∑
X∈X

PaX :Y ∈PaX

I(PaX → X) ≥ 1 (16)

The second way the agent could use (13) is by adding its
default interpretation of the advice to its current knowledge:

∀b ∈ B+ : b[Bt] = bt[Bt]⇒ EU(a′|b) > EU(a|b) (17)

The agent can then enforce (17) by choosing a′ whenever
b[Bt] = bt[Bt], regardless of what seems likely from D0:t.
We should now see that even with a cooperative, infallible
expert, even abstracting away issues of grounding natural
language, misunderstandings can still happen due to dif-
ferences in agent and expert awareness. As the next sec-
tion shows, such misunderstandings can reveal gaps in the
agent’s awareness and help to articulate queries whose an-
swers guarantee the agent expands its awareness.

Lemma 1 guarantees the expert’s advice strategy contin-
ues to reveal unforeseen actions to the agent so long as its
performance in trials exceeds the expert’s tolerance.7

Lemma 1. Consider an agent with awareness At ⊂
A+, and expert following (8-13). As k → ∞, either
PE(πt+k)→ c ≤ β or the expert utters (13) whereA′ 6= ∅.

3.1.2. RESOLVING A MISUNDERSTANDING

We noted before that the agent’s default interpretation of
(13) could lead it to misunderstand the expert’s intended
meaning. To illustrate, suppose the agent receives advice
(18) and (19) at times t− k and t:

7We include proofs of all lemmas in the technical supplement

EU(a|wbt−k) > EU(a′|wbt−k) (18)

EU(a|wbt) < EU(a′|wbt) (19)

While the intended meaning of each statement is true, the
agent’s default interpretations of wst−k and wst may be iden-
tical. That is, bt−k[Bt] = bt[Bt]. From the agent’s perspec-
tive, (18) and (19) conflict, and thus give the agent a clue
that its current awareness of X+ is deficient. To resolve
this conflict, the agent asks (20) (in words, “which B has
distinct values in bt−k and bt?”) and receives an answer
which provides monotonic information of the form (21):

?λB(B ∈ B+ ∧ st−k[B] 6= st[B]) (20)

B′ ∈ B+ ∧ ∃X ∈ scope+(R), anc(B′, X) (21)

Notice there may be many variables in B+ \ Bt whose
assignments differ in bt−k and bt. Thus, the expert’s answer
can be non-exhaustive. This means the agent must abandon
its previous defeasible interpretations of the form (17), but
can keep (14-15), as these are true regardless of what the
true ID is. Lemma 2 guarantees the expert will reveal new
belief variables provided misunderstandings can still arise.
Lemma 2. Consider an agent with awareness X t ⊂ X+,
At = A+. If ∃b′,∃b 6= b′, b[Bt] = b′[Bt] and π+(b) 6=
π+(b

′), then as k →∞, either PE(πt+k)→ c ≤ β, or the
expert utters (21) such that B′ /∈ Bt

3.1.3. UNFORESEEN REWARDS

In typical IDs (where we assume the agent starts fully aware
of X+, A+, and scope+(R)), we tend only to think of the
trials as providing counts. For an unaware agent, a trial
dt = 〈st, at, rt〉 also encodes monotonic information:

∃s, s[X t] = st[X t] ∧R+(s) = rt (22)

This, along with (15), constrain the form of R the agent
can learn. Recall that scopet(R) may be only a sub-
set of scope+(R), so it might be impossible to construct
an R : v(scopet(R)) → R satisfying all descriptions
(22) gathered so far. Further, those extra variables in
scope+(R) \ scopet(R) may not be in X t. To resolve
this, if the agent fails to construct a validR, it asks (23) (in
words, “which variable X (that I don’t already know) is in
scope(R)?”), receiving an answer of the form (24):

?λX(X ∈ scope+(R)
∧

X′∈scopet(R)

X 6= X ′) (23)

X ′′ ∈ scope+(R) ∧X ′′ ∈ X+ (24)

Learning Structured Decision Problems with Unawareness

Again (24) may be non-exhaustive. Even so, we can guaran-
tee that the agent’s reward function eventually equalsR+.

Lemma 3. Consider an ε-greedy agent with awareness
At = A+, scopet(R) ⊆ scope+(R). As k → ∞, there
exists a K such that ∀s,∀k ≥ K,Rt+k(s) = R+(s).

3.1.4. UNKNOWN EFFECT

Recall that, to keep the problem tractable, our agent searches
for IDs in the space of “reasonable” parent sets P . Unfortu-
nately, there might be no valid ID within P which also satis-
fies the constraints of the form (16). The most obvious case
of this is when a variable X /∈ scopet(R) has no children
in any reasonable DAG (i.e., ∀Y,∀PaY ∈ PY , X /∈ PaY).
Here, the agent can ask why X is relevant by asking (25)
(“what V does X affect directly?”). The answer (e.g.,
X ∈ PaV ′) imparts information (26) to the agent:

?λV (X ∈ PaV) (25)

V ′ ∈ X+ ∧ ∃Y ∈ scope+(R), anc(V ′, Y) (26)

3.2. Adapting to Unforeseen Factors

Section 3.1 showed four ways to expand the agent’s aware-
ness of X , A, and scope(R). To improve on simply restart-
ing learning, we must now say how the agent adapts its
beliefs about Pa and θ when its awareness expands.

3.2.1. ADDING A NEW BELIEF VARIABLE

When the agent discovers a belief variable Z, its old distri-
butions over parent sets no longer cover all possible parents.
That is, for X ∈ X t−1, PX did not cover cases where Z
was a parent of X . Worse, the agent cannot observe Z’s
values in D0:t, so cannot observe N t−k

Z=i|j , or N t−k
X=i|j when

Z ∈ PaX . The α-parameters involving Z are also unde-
fined, yet we need them to calculate Pa∗ and θ∗ via (6-7).

Discovering a new variable makes the size of each (ob-
served) state dynamic, in contrast to standard problems
where they are static (e.g., 〈X1 = 0, X2 = 1〉 becomes
〈X1 = 0, X2 = 1, Z =?〉) . We could phrase this as a
missing data problem: Z was hidden in the past but visible
in future states, so estimate missing values and structure via
e.g., expectation maximization (Friedman, 1998). But such
methods commit us to costly passes over the full batch of
data and makes finding Pa∗ for problems with more than a
handful of variables intractable by eliminating the modular-
ity of the BD-score. Alternatively, we could ignore states
with missing information when we require counts involving
Z. For example, we could use P (PaX |Dt:n) to score PaX
when Z ∈ PaX but use P (PaX |D0:n) when Z /∈ PaX .
But as Friedman & Goldszmidt (1997) point out, most struc-
ture scores, including (2), assume we evaluate models with

the same data. If we compare models using different data
sets (even two sets from the same distribution), the learner
favours models evaluated with the smallest data set.

Instead, our method discards data D0:t−1 gathered during
the learner’s old view of the hypothesis space, but conserves
the posterior probabilities learned from it to create new
priors for Pa and θ in the expanded space. On discovering
the new variable Z, the agent updates each distribution over
the parent sets PaX (X 6= Z) to cover parent sets which
include Z. Equation (27) creates a new prior P ′(PaX) from
the old posterior. Here, C is the normalizing constant and
0 < γ ≤ 1 expresses how much we trust our current P:

P ′(PaX) = γP ′(PaX |PX) + (1− γ)P (PaX) (27)

P ′(PaX |PX) =
0 if PaX /∈ PX
(1−ρ)
C BDt−1(X,PaX) if Z /∈ PaX

ρ
CBDt−1(X,Pa

′
X) if PaX = Pa ′X ∪ {Z}

(28)

This update preserves the relative likelihood among the
parent sets without Z. It also preserves our bias towards
simple structures by giving only a small portion ρ of the
probability mass of parent sets without Z to those with Z.
This still leaves us to define a distribution over PaZ itself.
The agent has no evidence on Z’s parents at the moment of
Z’s discovery, so defaults to using the initial prior (4).

To adapt θ∗, we return to the issue of the counts N t
i|j and α-

parameters. As before, we wish to avoid the complexity of
estimating Z’s past values. Instead, we throw away the past
states D0:t−1 and their counts N t−1

i|j , but keep the relative
likelihoods they gave rise to by packing these into new α-
parameters, as shown in (29) (K is a constant):

N t
i|j = 0 for all i, j,X,PaX

αi|j =


K
|Z|P (j|θ

∗
t−1) if X = Z

K
|Z|P (i, j[PaX \ Z]|θ

∗
t−1) if Z ∈ PaX

KP (i, j|θ∗t−1) otherwise

(29)

Equation (29) summarizes the counts D0:t−1 based on in-
ferences from the old ID, then encodes these inferences in
the α-parameters of the new parameter prior. The new α-
parameters ensure that the likelihoods inferred from past
states bias the estimate of Pa∗ and θ∗ as more trials arrive.
The larger K is, the more what it learned before discovering
Z influences its reasoning after discovering Z.

3.2.2. ADDING A NEW ACTION VARIABLE

When the agent discovers a new action variable A, the same
issue arises—the agent did not consider A as a possible

Learning Structured Decision Problems with Unawareness

Algorithm 1 Learning IDs with Unawareness

1: Input: A0, X 0, Pa0, θ0, P0

2: for t = 1 . . .maxTrials do
3: bt← Generate new state
4: 〈ot, at, rt〉 ← ε-GREEDY(bt[X t])
5: N t

i|j ← Update with bt[X t], ot[X t]
6: BDt(X,PaX)← Update via (7) for PaX ∈ PX
7: if t ≡ 0 (mod τ) then
8: Revise Pt
9: end if

10: {Unknown Effect (Section 3.1.4)}
11: Ask (25), update X t, Pt if any X has no children
12: {Unforeseen Rewards (Section 3.1.3)}
13: Rt ← Update with constraints (22, 15)
14: Ask (23), update scopet(R),X t,Pt if update fails.
15: {Better Action Advice (Section 3.1.1)}
16: if (8-12) are true then
17: actAdvice ← Expert advises (13)
18: Update At, Pt according to actAdvice
19: {Resolving a Misunderstanding (Section 3.1.2)}
20: Ask (20) and update X t,Pt when actAdvice con-

flicts with past utterances
21: end if
22: if X t−1 6= X t then
23: Update N t

i|j , αi|j ,P, P (Pa) via (4, 27, 29)
24: end if
25: 〈Pat, θt〉 ← Solve (5) (with (16)), and (6)
26: end for

parent to any X ∈ X t−1, so must revise P with A as a
possibility. Unlike for belief variables, however, we don’t
need to discard D0:t−1. Since we assume that the agent
cannot influence action variables it is unaware of, we can
simply fill in the default value of A in all past trials D0:t−1.

3.2.3. EXPANDING THE REWARD FUNCTION SCOPE

Learning that a variableX is in the scope ofRmay cause us
to revise Pa∗, even ifX ∈ X t−1. This is because expanding
scopet(R) loosens the constraints of the form (16) which
may allow us to construct a higher scoring ID structure that
was previously invalid.

Algorithm 1 outlines the entire learning process. In most
steps, the agent incrementally revises its model based on the
latest trial and current reasonable parents. If enough time τ
passes, or the agent’s awareness expands, the agent makes
larger changes to its model, including revising P . Given
algorithm 1, theorem 1 guarantees our agent converges to
a near-optimal policy (where “near-optimal” is bounded
by the experts tolerance β), regardless of initial awareness
(provided P includes the true structure).

Theorem 1. Consider an agent with initial awareness

X 0 ⊆ X+, A0 ⊆ A+, scope0(R) ⊆ scope+(R) follow-
ing algorithm 1 without any pruning of the parent lattice
(i.e., κ = 0). As t→∞, PE(πt)→ c ≤ β.

4. Experiments
Our experiments show that agents following algorithm 1
converge to near-optimal behaviour not only in theory but
also in practice. We also show that conserving information
improves results. We do not investigate assigning explicit
costs to agent-expert communication, but do show how vary-
ing the expert’s tolerance affects the agent’s performance.

We tested agents on three randomly generated IDs of increas-
ing size: 12, 24, and 36 variables. Our results were similar
across all sizes, but the differences between agents were
most pronounced on the largest case, so we present those
here (Full ID specifications and results for the small and
medium cases are included in the technical supplement). In
each, our agent begins with minimal awareness of the true
ID (X 0 = {O1},A0 = {A1}, scope0(R) = {O1}). The
agent acts in 5000 trials, using an ε-greedy policy (ε = 0.1).
We repeat experiments 100 times and average the results.

We use the cumulative reward across trials as our evaluation
metric, which acts as a proxy for the quality of the agent’s
policy over time. To make the results more readable, we
apply a discount of 0.99 at each step, resulting in the metric
Rdisct = rt + 0.99 ∗Rdisct−1 for all t.

We test several variants of our agent to show our approach
is effective. The default agent follows algorithm 1 as is,
with parameters κ = 0.001, τ = 100, ρ = 0.1, γ = 0.99,
K = 5.0, µ = 10, β = 0.01 in equations (4), (8), (9), (27),
and (29). The nonConservative agent does not conserve
information aboutP , Pa , nor θ via (27) and (29) when it dis-
covers a new factor. Instead, it discards all trials and reverts
to the original prior of (4). We include this agent to show
the value of conserving information as X and A expand.
The non-relevant agent is like the default, but does not in-
clude any constraints of the form (16) when searching for
Pa∗. This means the agent might learn IDs where variables
are completely disconnected. The truePolicy and random
agents start knowing the true ID, and execute an ε-greedy ver-
sion of π+, or choose a random action respectively. These
agents give an upper/lower bound on performance. The low-
Tolerance and highTolerance agents change the expert’s
tolerance to β = 0.001 and β = 0.1.

4.1. Results

Across all IDs, our default agent converges to the optimal
policy, despite starting unaware of factors critical to success.
Figure 3a shows the cumulative reward of the default agent
compared to the non-conservative, non-relevant, true-policy
and random agents. The default agent converges to the op-

Learning Structured Decision Problems with Unawareness

(a) (b) (c)

Figure 3. Rewards (a and b) and size of |A| (c) over time on the 36 variable task. Results for other tasks included in the supplement.

timal policy, and does so faster than its non-conservative
counterpart. This shows conserving one’s beliefs on dis-
covering new factors has value. The difference in reward
compared to the non-relevant agent is smaller than expected.
We suspect this is because actions which exert a strong
causal influence over scope+(R) will be an ancestor to
scope+(R) in Pa∗ regardless of whether we enforce (16).
Actions the non-relevant agent leaves disconnected are those
which exert little causal influence over scope+(R) (and thus
usually have little effect on the optimal policy). This means
that how much abandoning connectivity affects performance
depends on how noisy the causation in the domain model is,
which we don’t know with certainty in advance.

Figure 3b shows how the agent’s performance differs when
varying the expert’s tolerance level: As the tolerance in-
creases, the agent takes longer to converge towards a good
policy, and also learns a worse final policy. Figure 3c shows
why: Early on, the agent’s policy is “good enough” for the
high tolerance expert, meaning the expert does not reveal
the last few extra action variables which would net only
small increases in the agent’s total reward.

5. Related Literature
Models of unawareness exist in logic (Board et al., 2011;
Heifetz et al., 2013) and game theory (Feinberg, 2012), but
interpret (un)-awareness from an omniscient perspective.
We instead model awareness from the agent’s perspective
and offer methods to overcome one’s unawareness.

Contextual bandits (Langford & Zhang, 2007) also deal
with single-shot decision making as covered in this paper.
Unlike our work, they focus on unstructured, noisy rewards,
and don’t address unawareness of actions or states. Rong
(2016) present Markov Decision Processes with Unaware-
ness, which let an agent learn optimal behaviour even when
unaware of some actions. We build on this work by pro-
viding a concrete mechanism for discovering unforeseen
factors and by allowing the agent to discover explicit be-

lief variables rather than atomic states—this is necessary
to tackle large, richly-structured problems. McCallum &
Ballard (1996) also learn an increasingly complex represen-
tation of the state space by gradually distinguishing between
states which yield different rewards. Rather than dealing
with unawareness, the focus of such approaches is on re-
fining an existing state space. In other words, they do not
support introducing unforeseen states or actions that the
learner was unaware of before learning.

Several works use expert interventions to correct agent be-
haviour (Torrey & Taylor, 2013; Stone, 2009), or via agent-
driven active learning (Masegosa & Moral, 2013; Murphy,
2001). Yet all such methods assume the expert’s intended
meaning can be understood without expanding the agent’s
conception of the state and action space. Our work allows
experts to utter advice where ambiguity arises from their
greater awareness of the problem.

6. Conclusion
We have presented an expert-assisted framework for learn-
ing structured decision problems, even when the learner
starts unaware of factors critical to success. Further, our ex-
periments show that being conservative about one’s beliefs
improves the effectiveness of learning. In future work, we
intent to extend our model to sequential tasks, as well as
single-shot decision problems (Innes & Lascarides, 2019).
Additionally, we aim to lift some assumptions imposed on
the expert, and expand the range of situations in which the
agent can ask for advice. For instance, we could let the ex-
pert be fallible (Masegosa & Moral, 2013), or leverage clues
about the location of hidden variables present in the struc-
ture of the learner’s graphical model (Elidan et al., 2000) to
guide questions asked to the expert.

Acknowledgements
This work is supported by EPSRC (UK). We would like to
thank Kobi Gal, Subramanian Ramamoorthy, Benji Rosman,

Learning Structured Decision Problems with Unawareness

Stefano Albrecht, Vaishak Belle, and anonymous reviewers
for their helpful feedback.

References
Bartlett, M. and Cussens, J. Integer Linear Program-

ming for the Bayesian network structure learning prob-
lem. Artificial Intelligence, 244:258–271, March
2017. ISSN 0004-3702. doi: 10.1016/j.artint.2015.03.
003. URL http://www.sciencedirect.com/
science/article/pii/S0004370215000417.

Board, O. J., Chung, K.-S., and Schipper, B. C. Two models
of unawareness: Comparing the object-based and the
subjective-state-space approaches. Synthese, 179(1):13–
34, 2011.

Buntine, W. L. Theory Refinement on Bayesian Networks.
CoRR, abs/1303.5709, 1991. URL http://arxiv.
org/abs/1303.5709.

Cakmak, M. and Thomaz, A. Designing robot learners
that ask good questions. Proceedings of the 7th Annual
ACM/IEEE International Conference on Human-Robot
Interaction, 2012.

Coenen, A., Nelson, J. D., and Gureckis, T. M. Asking
the right questions about human inquiry. OpenCoenen,
Anna, Jonathan D Nelson, and Todd M Gureckis.Asking
the Right Questions About Human Inquiry. PsyArXiv, 13,
2017.

Elidan, G., Lotner, N., Friedman, N., Koller, D., and
others. Discovering hidden variables: A structure-
based approach. In NIPS, volume 13, pp. 479–485,
2000. URL http://ai.stanford.edu/˜nir/
Papers/ELFK1.pdf.

Feinberg, Y. Games with Unawareness. Technical report,
Stanford University, Graduate School of Business, 2012.

Friedman, N. The Bayesian structural EM algorithm. In
Proceedings of the Fourteenth conference on Uncertainty
in artificial intelligence, pp. 129–138. Morgan Kaufmann
Publishers Inc., 1998.

Friedman, N. and Goldszmidt, M. Sequential update
of Bayesian network structure. In Proceedings of the
Thirteenth conference on Uncertainty in artificial in-
telligence, pp. 165–174. Morgan Kaufmann Publishers
Inc., 1997. URL http://dl.acm.org/citation.
cfm?id=2074246.

Grice, H. P. Logic and conversation. 1975, pp. 41–58, 1975.

Heckerman, D., Geiger, D., and Chickering, D. M. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

Heifetz, A., Meier, M., and Schipper, B. C. Dynamic un-
awareness and rationalizable behavior. Games and Eco-
nomic Behavior, 81:50–68, 2013.

Howard, R. A. and Matheson, J. E. Influence diagrams.
Decision Analysis, 2(3):127–143, 2005.

Innes, C. and Lascarides, A. Learning Factored Markov
Decision Processes with Unawareness. In Proceedings of
the International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Montreal, Canada, 2019.

Karni, E. and Viero, M.-L. ”Reverse Bayesianism”: A
choice-based theory of growing awareness. American
Economic Review, 103(7):2790–2810, 2013.

Koller, D. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins,
O. C., Lebiere, C., Salvucci, D., Scheutz, M., Thomaz, A.,
and Trafton, G. Interactive task learning. IEEE Intelligent
Systems, 32(4):6–21, 2017.

Langford, J. and Zhang, T. The epoch-greedy algorithm
for contextual multi-armed bandits. In Proceedings of
the 20th International Conference on Neural Information
Processing Systems, pp. 817–824. Citeseer, 2007.

Madigan, D., York, J., and Allard, D. Bayesian graphical
models for discrete data. International Statistical Re-
view/Revue Internationale de Statistique, pp. 215–232,
1995.

Masegosa, A. R. and Moral, S. An interactive
approach for Bayesian network learning using do-
main/expert knowledge. International Journal of
Approximate Reasoning, 54(8):1168–1181, October
2013. ISSN 0888-613X. doi: 10.1016/j.ijar.2013.03.
009. URL http://www.sciencedirect.com/
science/article/pii/S0888613X13000698.

McCallum, A. K. and Ballard, D. Reinforcement learning
with selective perception and hidden state. PhD The-
sis, University of Rochester. Dept. of Computer Science,
1996.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., and others. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

Murphy, K. P. Active learning of causal Bayes net structure.
2001. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.20.8206.

Rong, N. Learning in the Presence of Unawareness. PhD
Thesis, Cornell University, 2016.

http://www.sciencedirect.com/science/article/pii/S0004370215000417
http://www.sciencedirect.com/science/article/pii/S0004370215000417
http://arxiv.org/abs/1303.5709
http://arxiv.org/abs/1303.5709
http://ai.stanford.edu/~nir/Papers/ELFK1.pdf
http://ai.stanford.edu/~nir/Papers/ELFK1.pdf
http://dl.acm.org/citation.cfm?id=2074246
http://dl.acm.org/citation.cfm?id=2074246
http://www.sciencedirect.com/science/article/pii/S0888613X13000698
http://www.sciencedirect.com/science/article/pii/S0888613X13000698
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.8206
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.8206

Learning Structured Decision Problems with Unawareness

Stone, W. B. K. a. P. Interactively Shaping Agents
via Human Reinforcement: The TAMER Frame-
work. 2009. URL http://www.cs.utexas.edu/
users/ai-lab/?KCAP09-knox.

Teyssier, M. and Koller, D. Ordering-based search: a simple
and effective algorithm for learning Bayesian networks.
In Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence, pp. 584–590. AUAI Press,
2005.

Tian, J. and He, R. Computing posterior probabilities of
structural features in Bayesian networks. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, pp. 538–547. AUAI Press, 2009.

Torrey, L. and Taylor, M. Teaching on a budget: Agents ad-
vising agents in reinforcement learning. In Proceedings of
the 2013 international conference on Autonomous agents
and multi-agent systems, pp. 1053–1060. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2013.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing Bayesian network structure learning
algorithm. Machine learning, 65(1):31–78, 2006.

Wood, F., Griffiths, T. L., and Ghahramani, Z. A non-
parametric Bayesian method for inferring hidden causes.
In Proceedings of the Twenty-Second Conference on Un-
certainty in Artificial Intelligence, pp. 536–543. AUAI
Press, 2006.

Zettlemoyer, L. and Collins, M. Online learning of relaxed
CCG grammars for parsing to logical form. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), 2007.

http://www.cs.utexas.edu/users/ai-lab/?KCAP09-knox
http://www.cs.utexas.edu/users/ai-lab/?KCAP09-knox

