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Algorithm 1 Training Procedure for Attention-Actor-Critic

Algorithm 2 Update Calls for Critic and Policies

1: Initialize E parallel environments with [V agents
2: Initialize replay buffer, D
3: Tupdate «— 0

4: for ic, = 1...num episodes do

5: Reset environments, and get initial of for
each agent, ¢
6: fort =1...steps per episode do
7: Select actions a ~ m;(-|of) for each
agent, ¢, in each environment, e
8: Send actions to all parallel environments
and get 0’7, r¢ for all agents
9: Store transitions for all environments in D
10: Tupdate = Tupdale +FK
11: if T\pdate = min steps per update then
12: for j = 1...num critic updates do
13: Sample minibatch, B
14: UPDATECRITIC(B)
15: end for
16: for j = 1...num policy updates do
17: Sample m x (01 .n) ~ D
18: UPDATEPOLICIES(0? )
19: end for
20: Update target parameters:
=1+ (1-7)Y
0=70+(1—71)0
21: Tupdate +~—0
22: end if
23: end for
24: end for
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1: function UPDATECRITIC(B)
2: Unpack minibatch
(of n-af, Nv7"1B N701 ~) < B
3: Calculate Q (01 N alB ) for all ¢ in parallel
Calculate a;” ~ 7r9( B ) using target policies
Calculate Q¥ (o1 v @, ) for all 4 in parallel,
using target critic
6: Update critic using VL (%) and Adam (Kingma &
Ba, 2014)

7: end function

8:

9: function UPDATEPOLICIES(O1 )
10: Calculate a? \ ~70(0;2),ie1...N
11: Calculate Qf’ (P s af__N) for all i in parallel
12: Update  policies  using  Vy,J(mg)  and

Adam (Kingma & Ba, 2014)
13: end function

1. Training Procedure

We train using Soft Actor-Critic (Haarnoja et al., 2018),
an off-policy, actor-critic method for maximum entropy
reinforcement learning. Our training procedure consists
of performing 12 parallel rollouts, and adding a tuple of
(0t,a¢,7¢,0141)1... v to a replay buffer (with maximum
length 1e6) for each timepoint. We reset each environ-
ment after every 100 steps (an episode). After 100 steps
(across all rollouts), we perform 4 updates for the attention
critic and for all policies. For each update we sample mini-
batches of 1024 timepoints from the replay buffer and then
perform gradient descent on the Q-function loss objective,
as well as the policy objective, using Adam (Kingma &
Ba, 2014) as the optimizer for both with a learning rate of
0.001. These updates can be computed efficiently in parallel
(across agents) using a GPU. After the updates are complete,
we update the parameters v of our target critic Q) to move
toward our learned critic’s parameters, ¢, as in Lillicrap
et al. (2016); Haarnoja et al. (2018): ¢ = (1- 7’)77/; + T,
where 7 is the update rate (set to 0.005). Using a target critic
has been shown to stabilize the use of experience replay for
off-policy reinforcement learning with neural network func-
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tion approximators (Mnih et al., 2015; Lillicrap et al., 2016).
We update the parameters of the target policies, 6 in the
same manner. We use a discount factor, v, of 0.99. All
networks (separate policies and those contained within the
centralized critics) use a hidden dimension of 128 and Leaky
Rectified Linear Units as the nonlinearity. We use 0.01 as
our temperature setting for Soft Actor-Critic. Additionally,
we use 4 attention heads in our attention critics.

2. Reparametrization of DDPG/MADDPG for
Discrete Action Spaces

In order to compare to DDPG and MADDPG in our envi-
ronments with discrete action spaces, we must make a slight
modification to the basic algorithms. This modification is
first suggested by Lowe et al. (2017) in order to enable poli-
cies that output discrete communication messages. Consider
the original DDPG policy gradient which takes advantage of
the fact that we can easily calculate the gradient of the output
of a deterministic policy with respect to its parameters:

Vo = By [VaQ(5, 0)lap(s) Voiu(s10)]

Rather than using policies that deterministically output an
action from within a continuous action space, we use poli-
cies that produce differentiable samples through a Gumbel-
Softmax distribution (Jang et al., 2017). Using differentiable
samples allows us to use the gradient of expected returns to
train policies without using the log derivative trick, just as
in DDPG:

VOJ = ]ESNp,aNﬂ(S) [VGQ(s,a)Vga]

3. Visualizing Attention

In order to understand how the use of attention evolves
over the course of training, we examine the “entropy” of the
attention weights for each agent for each of the four attention
heads that we use in both tasks (Figures 1 and 2). The black
bars indicate the maximum possible entropy (i.e. uniform
attention across all agents). Lower entropy indicates that
the head is focusing on specific agents, with an entropy of 0
indicating attention focusing on one agent. In Rover-Tower,
we plot the attention entropy for each rover. Interestingly,
each agent appears to use a different combination of the four
heads, but their use is not mutually exclusive, indicating that
the inclusion of separate attention heads for each agent
is not necessary. This differential use of attention heads is
sensible due to the nature of rewards in this environment (i.e.
individualized rewards). In the case of Collective Treasure
Collection, we find that all agents use the attention heads
similarly, which is unsurprising considering that rewards are
shared in that environment.

In order to inspect how the attention mechanism is work-
ing on a more fine-grained level, we visualize the attention

weights for one of the rovers in Rover-Tower (Figure 3),
from the head that the agent appears to use the most (deter-
mined by looking at Figure 1), while changing the tower that
said rover is paired to. In these plots, we ignore the weights
over other rovers for simplicity since these are always near
zero. We find that the rover learns to strongly attend to the
tower that it is paired with, without any explicit supervision
signal to do so. The model implicitly learns which agent
is most relevant to estimating the rover’s expected future
returns, and said agent can change dynamically without
affecting the performance of the algorithm.
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Figure 1. Attention “entropy” for each head over the course of training for the four rovers in the Rover-Tower environment
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Figure 2. Attention “entropy” for each head over the course of training for two collectors in the Treasure Collection Environment
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Attention Weights of Rover 1 When Paired with Tower 1

Attention Weights of Rover 1 When Paired with Tower 2
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Figure 3. Attention weights when subjected to different Tower pairings for Rover 1 in Rover-Tower environment




