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Abstract

In contrast to the standard classification paradigm
where the true class is given to each training
pattern, complementary-label learning only uses
training patterns each equipped with a comple-
mentary label, which only specifies one of the
classes that the pattern does not belong to. The
goal of this paper is to derive a novel framework
of complementary-label learning with an unbi-
ased estimator of the classification risk, for ar-
bitrary losses and models—all existing methods
have failed to achieve this goal. Not only is this
beneficial for the learning stage, it also makes
model/hyper-parameter selection (through cross-
validation) possible without the need of any or-
dinarily labeled validation data, while using any
linear/non-linear models or convex/non-convex
loss functions. We further improve the risk es-
timator by a non-negative correction and gradi-
ent ascent trick, and demonstrate its superiority
through experiments.

1. Introduction
Modern classification methods usually require massive data
with high-quality labels, but preparing such datasets is unre-
alistic in many domains. To mitigate the problem, previous
works have investigated ways to learn from weak supervi-
sion: semi-supervised learning (Chapelle et al., 2006; Miy-
ato et al., 2016; Kipf & Welling, 2017; Sakai et al., 2017;
Tarvainen & Valpola, 2017; Oliver et al., 2018), noisy-label
learning (Natarajan et al., 2013; Menon et al., 2015; Patrini
et al., 2017; Ma et al., 2018; Han et al., 2018; Charoen-
phakdee et al., 2019), positive-unlabeled learning (Elkan
& Noto, 2008; du Plessis et al., 2014; Kiryo et al., 2017),
positive-confidence learning (Ishida et al., 2018), similar-
unlabeled learning (Bao et al., 2018), unlabeled-unlabeled
learning (du Plessis et al., 2013; Lu et al., 2019), and others.
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In this paper, we consider learning from another natural type
of weak supervision called complementary-label learning
(Ishida et al., 2017; Yu et al., 2018), where the label only
specifies one of the classes that the pattern does not belong
to. For example, a crowdsourced worker can tell us a pattern
does not belong to a certain class, instead of identifying the
correct class. In contrast to the ordinary case where the
true class is given to each pattern (which often needs to be
chosen out of many candidate classes precisely), collecting
these complementary labels is obviously much easier and
less costly.

Another potential application is collecting survey data that
requires extremely private questions (Ishida et al., 2017).
It would be less mentally demanding, if we explain to the
respondent that we will transform their provided true label
to a complementary label, before the data is saved into the
database. This might become common in the future where
privacy concerns are increasing.

A natural question is, however, is it possible to learn from
such complementary labels (without any true labels)?

The problem has previously been tackled by Ishida et al.
(2017), showing that the classification risk can be recov-
ered only from complementarily labeled data. They also
gave theoretical analysis with a statistical consistency guar-
antee. However, they required strong restrictions on the
loss functions, allowing only one-versus-all and pairwise
comparison multi-class loss functions (Zhang, 2004), with
certain non-convex binary losses. This is a severe limitation
since the softmax cross-entropy loss, which cannot be ex-
pressed by the two losses above, is the most popular loss in
deep learning nowadays.

Later, Yu et al. (2018) proposed a different formulation for
complementary labels by employing the forward loss cor-
rection technique (Patrini et al., 2017) to adjust the learning
objective, but limiting the loss function to softmax cross-
entropy loss. Their proposed risk estimator is not necessarily
unbiased but the minimizer is theoretically guaranteed to be
consistent with the minimizer of the risk for ordinary labels
(under an implicit assumption on the model for convergence
analysis). They also extended the problem setting to where
complementary labels are chosen in an uneven (biased) way.

In this paper, we first derive an unbiased risk estimator
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with a general loss function, making any loss functions
available for use: not only the softmax cross-entropy loss
function but other convex/non-convex loss functions can
also be applied. We also do not have implicit assumptions
on the classifier, allowing both linear and non-linear models.
We also prove that our new framework is a generalization of
previous complementary-label learning (Ishida et al., 2017).

Yu et al. (2018) does not have an unbiased risk estimator,
which means users will need clean data with true labels to
calculate the error rate during the validation process. On
the other hand, our proposed unbiased risk estimator can
handle complementarily labeled validation data not only for
our learning objective, but also for that of Yu et al. (2018).
This is helpful since collecting clean data is usually much
more expensive. Note that in the example of survey with
extremely private questions explained earlier, it may be
impossible to even collect a small number of validation data
with true labels.

Finally, our proposed unbiased risk estimator has an issue
that the classification risk can attain negative values after
learning, leading to overfitting. We further propose a non-
negative correction to the original unbiased risk estimator to
improve our estimator. The modified objective is no longer
guaranteed to be an unbiased risk estimator, but the unbiased
risk estimator can still be used for validation procedures for
this modified learning objective. We experimentally show
that our proposed method is comparable to or better than
previous methods (Ishida et al., 2017; Yu et al., 2018) in
terms of classification accuracy.

A summary of our contributions is as follows:

• We propose a new unbiased risk estimator, allowing
usage of any loss (convex, non-convex) and any model
(parametric, non-parametric) for complementary-label
learning.

• This risk can be used not only as a learning objective,
but as a validation criterion even for other methods,
such as Ishida et al. (2017) and Yu et al. (2018).

• We further investigate correction schemes to make
complementary-label learning practical and demon-
strated the performance in experiments.

2. Review of previous works
In this section, we introduce some notations and review
the formulations of learning from ordinary labels, learn-
ing from complementary labels, learning from ordinary &
complementary labels, and learning from partial labels.

2.1. Learning from ordinary labels

Let X be an instance space and D be the joint distribution
over X × [K] for class label set [K] := {1, 2, . . . ,K}, with
random variables (X,Y ) ∼ D. The data at hand is sampled
independently and identically from the joint distribution:
{(xi, yi)}ni=1

i.i.d.∼ D. The joint distribution D can be either
decomposed into class-conditionals {Pk}Kk=1 and base rate
{πk}Kk=1, where Pk := P(X|Y = k) and πk := P(Y = k),
or the marginal M and class-probability function η : X →
∆k, where M := P(X), ηk(x) := P(Y = k|X = x) and
∆K is the conditional probability simplex for K classes. A
loss is any ` : [K]× RK → R+. The decision function is
any g : X → RK and gk(X) is the k-th element of g(X).
The risk for the decision function g with respect to loss `
and implicit distribution D is:

R(g; `) : = E(X,Y )∼D[`(Y, g(X))], (1)

where E denotes the expectation. Two useful equivalent
expressions of classification risk (1) used in later sections
are

R(g; `) =EX [η(x)>`(g(X))] =

K∑
k=1

πkEPk

[
`(k, g(X))

]
,

(2)

where,

`(g(X)) := [`(1, g(X)), `(2, g(X)), . . . , `(K, g(X))]>.

The goal of classification is to learn the decision function
g that minimizes the risk. In the usual classification case
with ordinarily labeled data at hand, approximating the risk
empirically is straightforward:

R̂(g; `) :=
1

n

n∑
i=1

`(yi, g(xi)).

Some well known multi-class loss functions are one-versus-
all and pairwise comparison losses:

`OVA
(
k, g(x)

)
= s
(
gk(x)

)
+

1

K − 1

∑
k′ 6=k

s
(
− gk′(x)

)
,

(3)

`PC
(
k, g(x)

)
=
∑
k 6=k′

s
(
gk(x)− gk′(x)

)
, (4)

where s(z) : R→ R+ is a binary loss function.

2.2. Learning from complementary labels

Next we consider the problem of learning from comple-
mentary labels (Ishida et al., 2017). We observe patterns
each equipped with a complementary label {(xi′ , yi′)}n

′

i′=1
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Table 1: Comparison of two proposed complementary-label methods with previous works. We first propose a general unbiased risk
estimator for complementary labels that has no restrictions on loss functions and models. We next propose a modified non-negative
formulation which solves overfitting issues and leads to better experimental results. Even though the non-negative formulation is no
longer an unbiased estimator as a learning objective, the unbiased estimator can be used in the validation procedure.

Methods
loss assump.

free
model assump.

free
unbiased
estimator

explicit risk
correction

Ishida et al. (2017) × X X ×
Yu et al. (2018) × × × ×
Proposed (General formulation) X X X ×
Proposed (Non-negative formulation) X X × X

sampled independently and identically from a different
joint distribution D 6= D. We denote random variables
as (X,Y ) ∼ D. As before, we assume this distribution
can be decomposed into either class-conditionals {P k}Kk=1

and base rate {π}Kk=1, or marginal M and class-probability
function η : X → ∆K , where P k := P(X|Y = k), πk :=
P(Y = k), M := P(X), ηk(x) := P(Y = k|X = x), and
Y is the complementary label.

Without any assumptions on D, it is impossible to design a
suitable learning procedure. The assumption for unbiased
complementary learning used in Ishida et al. (2017) was

η(x) = Tη(x), (5)

where T ∈ RK×K is a matrix that takes 0 on diagonals and
1

K−1 on non-diagonals.

This assumption implies all other labels are chosen with
uniform probability. This can be forced by designing the
data collecting system to first pick up a label randomly and
then ask the worker if the data belong to the label with a
yes or no. When the answer is no, we will attach that label
as the complementary label, and the data will follow the
uniform assumption. Under this assumption, Ishida et al.
(2017) proved that they can recover the classification risk
(1) from an alternative formulation using only complemen-
tarily labeled data when the loss function satisfies certain
conditions. More specifically, usable loss functions are one-
versus-all or pairwise comparison multi-class loss functions
(Zhang, 2004):

`OVA
(
k, g(x)

)
=

1

K − 1

∑
k 6=k

s
(
gk(x)

)
+ s
(
− gk(x)

)
(6)

`PC
(
k, g(x)

)
=
∑
k′ 6=k

s
(
gk(x)− gk(x)

)
(7)

each with binary loss function s(z) that satisfies
s(z) + s(−z) = 1, such as ramp loss sR(z) =
1
2 max

(
0,min(2, 1− z)

)
or sigmoid loss sS(z) = 1

1+ez .

Having an unbiased risk estimator is also helpful for the
validation process. Since we do not have ordinary labels
in our validation set in the complementary-label learning
setting, we cannot follow the usual validation procedure that
uses zero-one error or accuracy. If we have an unbiased
estimator of the original classification risk (which can be
interpreted as zero-one error), we can use the empirical risk
for (cross)-validated complementary data to select the best
hyper-parameter or deploy early stopping.

An extension of the above method was considered in Yu et al.
(2018) by using a different assumption than (5): there is
some bias amongst the possible complementary labels that
can be chosen, thus the non-diagonals of T is not restricted
to 1

K−1 . However, one will need to estimate T beforehand,
which is fairly difficult without strong assumptions. Fur-
thermore, in this setup, it is necessary to encourage the
worker to provide more difficult complementary labels, for
example, by giving higher rewards to certain classes. Oth-
erwise, the complementary label given by the worker may
be too obvious and uninformative. Even though the two
assumptions are mathematically similar, the data generation
process may be different. In this paper we focus on the
former assumption.

Unlike Ishida et al. (2017), Yu et al. (2018) did not directly
provide a risk estimator, but they showed that the minimizer
of their learning objective agrees with the minimizer of the
original classification risk (1). Note that, in their formu-
lation, the loss function is restricted to the softmax cross-
entropy loss. Furthermore, the use of a highly non-linear
model is supposed for consistency guarantee in their theoret-
ical analysis. Since the learning objective of Yu et al. (2018)
does not correspond to the classification risk, one will need
clean data with true labels to calculate the error rate during
the validation process. On the other hand, our proposed
risk estimator in this paper can cope with complementarily
labeled validation data not only for our own learning objec-
tive, but can be used to select hyper-parameters for others
such as Yu et al. (2018).
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2.3. Learning from ordinary & complementary labels

In many practical situations, we may also have ordinarily
labeled data in addition to complementarily labeled data.
Ishida et al. (2017) touched on the idea of crowdsourcing for
an application with both types of data. For example, we may
choose one of the classes randomly by following the uniform
distribution, with probability 1

K−1 for each class, and ask
crowdworkers whether a pattern belongs to the chosen class
or not. Then the pattern is treated as ordinarily labeled
if the answer is yes; otherwise, the pattern is regarded as
complementarily labeled. If the true label was y for a pattern,
we can naturally assume that the crowdworker will answer
yes by P(Y = y|X = x) and no by 1 − P(Y = y|X =
x). This way, ordinarily labeled data can be regarded as
patterns from D, and complementarily labeled data from
D, justifying the assumption of unbiased complementary
learning (5).

In Ishida et al. (2017), they considered a convex combination
of the classification risks derived from ordinarily labeled
data and complementarily labeled data:

αR(g; `) + (1− α)R(g; `),

where R(g; `) = E(X,Y )∼D[`(Y , g(X))] and α ∈ [0, 1] is
a hyper-parameter that interpolates between the two risks.
The combined (also unbiased) risk estimator can utilize both
kinds of data in order to obtain better classifiers, which was
demonstrated to perform well in experiments.

2.4. Learning from partial labels

In learning from partial labels (Cour et al., 2011), a candi-
date set of labels (which includes the correct class) is given
to each pattern. A different way to view complementary
label is a candidate set that includes every class except the
complementary label. Even though the proposed method of
Cour et al. (2011) shows statistical consistency, it does not
give an unbiased estimator of the classification risk. Further,
it has different assumptions, e.g., dominance relation, while
Ishida et al. (2017) and this paper focus on assumption (5)
with different data generation process and applications.

3. Proposed method
As discussed in the previous section, the method by Ishida
et al. (2017) works well in practice, but it has restriction on
the loss functions—the popular softmax cross-entropy loss
is not allowed. On the other hand, the method by Yu et al.
(2018) allows us to use the softmax cross-entropy loss, but
it does not directly provide an estimator of the classification
risk and thus model selection is problematic in practice.

We first describe our general unbiased risk formulation in
Section 3.1. Then we discuss how the estimator can be fur-
ther improved in Section 3.2. Thirdly, we propose a way for

our risk estimator to avoid overfitting by a non-negative risk
estimator in Section 3.3. Finally, we show practical imple-
mentation of our risk estimator with stochastic optimization
methods in Section 3.4.

3.1. General risk formulation

First, we describe our general unbiased risk formulation. We
give the following theorem, which allows unbiased estima-
tion of the classification risk from complementarily labeled
patterns:

Theorem 1. For any ordinary distribution D and comple-
mentary distribution D related by (5) with decision function
g, and loss `, we have

R(g; `) = R(g; `) = E(X,Y )∼D[`(Y , g(X))], (8)

for the complementary loss

`
(
g(x)

)
:=
(
− (K − 1)IK + 11>

)
· `
(
g(x)

)
, (9)

or equivalently,

`
(
k, g(x)

)
= −(K − 1) · `

(
k, g(x)

)
+

K∑
j=1

`
(
j, g(x)

)
,

(10)

where IK is a K × K identity matrix and 1 is a K-
dimensional column vector with 1 in each element.

Proof can be found in Appendix A. It is worth noting
that, in the above derivation, there are no constraints on
the loss function and classifier. Thus, we can use any
loss (convex/non-convex) and any model (linear/non-linear,
parametric/non-parametric) for complementary learning.

Next, we show the relationship between our proposed frame-
work and previous complementary-label learning (Ishida
et al., 2017).

Corollary 2. If one-versus-all loss (6) or pairwise compar-
ison loss (7) is used with binary loss function that satisfy
s(z) + s(−z) = 1, the classification risk can be written as,

R(g; `) = (K − 1)ED
[
`
(
Y , g(X)

)]
−M1 +M2, (11)

where M1 and M2 are non-negative constants that sat-
isfy

∑K
y=1 `

(
y, g(x)

)
= M1 for all x and `

(
y, g(x)

)
+

`
(
y, g(x)

)
= M2 for all x and y.

Proof can be found in Appendix B. Since this is equivalent
to the first two Theorems in Ishida et al. (2017), our pro-
posed version is a generalization of the previous unbiased
complementary-label learning framework.

The key idea of the proof in Theorem 1 is to not rely on
the condition that

∑K
k=1 `

(
k, g(x)

)
is a constant for all
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x, used in Ishida et al. (2017), which is inspired by the
property of binary 0-1 loss s0−1, where s0−1(z) is 1 if z < 0
and 0 otherwise. Such a technique was also used when
designing unbiased risk estimators for learning from positive
and unlabeled data in a binary classification setup (du Plessis
et al., 2014), but was later shown to be unnecessary (du
Plessis et al., 2015). Note that Theorem 1 can be regarded
as a special case of a framework proposed for learning from
weak labels (Cid-Sueiro et al., 2014).

By using (10), the classification risk can be written as

R(g; `) =

K∑
k=1

πkEPk

[
− (K − 1) · `

(
k, g(X)

)
+

K∑
j=1

`
(
j, g(X)

)]
. (12)

Here, we rearrange our complementarily labeled dataset as
{Xk}Kk=1, where Xk denotes the samples complementarily
labeled as class k. Then, this expression of the classification
risk can be approximated by,

R̂(g; `) =

K∑
k=1

π̂k
|Xk|

∑
xi∈Xk

[
− (K − 1) · `

(
k, g(xi)

)
+

K∑
j=1

`
(
j, g
(
xi)
)]
, (13)

where nk is the number of patterns complementarily labeled
as the kth class.

3.2. Necessity of risk correction

The original expression of the classification risk (1) includes
an expectation over non-negative loss ` : [K]× RK → R+,
so the risk and its empirical approximator are both lower-
bounded by zero. On the other hand, the expression (12)
derived above contains a negative element. Although (12) is
still non-negative by definition, due to the negative term, its
empirical estimator can go negative, leading to over-fitting.

We elaborate on this issue with an illustrative numerical
example. In the left graph of Figure 1, we show an example
of training a linear model trained on the handwritten digits
dataset MNIST1, with complementary labels generated to
satisfy (5). We used Adam (Kingma & Ba, 2015) for opti-
mization with learning rate 5e− 5, mini-batch size of 100,
and weight decay of 1e− 4 with 300 epochs. The empirical
classification risk (13) is shown in black. We can see that
the empirical classification risk continues decreasing and
can go below zero at around 100 epochs. The test accuracy
on the right graph hits the peak also at around epoch 100
and then the accuracy gradually deteriorates.

1See http://yann.lecun.com/exdb/mnist/.

This issue stands out even more significantly when we use
a flexible model. The middle graph shows the empirical
classification risk for a multilayer perceptron (MLP) with
one hidden layer (500 units), where ReLU (Nair & Hinton,
2010) was used as the activation function. The optimization
setup was the same as the case of the linear model above. We
can see the empirical risk decreasing much more quickly and
going negative. Correspondingly, as the right graph shows,
the test accuracy drops significantly after the empirical risk
goes negative.

In fact, a similar issue is already implicit in the original
paper by Ishida et al. (2017): According to Corollary 2
(or Theorem 1 in Ishida et al. (2017)), the unbiased risk
estimator includes subtraction of a positive constant term
which increases with respect to the number of classes. This
means that the learning objective of Ishida et al. (2017) has
a (negative) lower bound.

3.3. Non-negative risk estimator

As we saw in Section 3.2, our risk estimator can suffer from
overfitting due to the non-negative issue. Here, we propose
a correction to the risk estimator to overcome this problem.

Each term in the risk with ordinary labels (right-hand side
of (2)), which corresponds to each class, is non-negative.
We can reformulate (12) in order to show the counterpart
for each non-negative term in the right-hand side of (2) for
complementarily labeled data as

R(g; `) =

K∑
k=1

[
− (K − 1)πk · EPk

[
`
(
k, g(X)

)]
+

K∑
j=1

πj · EP j

[
`
(
k, g(X)

)]]
. (14)

These counterparts (14) were originally non-negative when
ordinary labels were used. In the left and middle graphs of
Figure 1, we plot the decomposed risks with respect to each
ordinary class (14) (shown in different colors). We can see
that the decomposed risks for all classes become negative
eventually. Based on this observation, our basic idea for
correction is to enforce non-negativity for each ordinary
class, with the expression based on complementary labels.
More specifically, we propose a non-negative version by

K∑
k=1

max
{

0,
[
− (K − 1)πk · EPk

[
`
(
k, g(X)

)]
+

K∑
j=1

πj · EP j

[
`
(
k, g(X)

)]]}
. (15)

(15) is equivalent to (14), since max{0, a} = a if a is
non-negative. By using the datasets used for (13), this non-
negative risk can be naı̈vely approximated by the sample

http://yann.lecun.com/exdb/mnist/
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Figure 1: The left and middle graphs shows the total risk (13) (in black color) and the risk decomposed into each ordinary class term (14)
(in other colors) for training data with linear and MLP models, respectively. The right graph shows the corresponding test accuracy for
both models.

average as

K∑
k=1

max
{

0,
[
− (K − 1) · πk

|Xk|
∑
xi∈Xk

`(k, g(xi))

+

K∑
j=1

πj
|Xj |

∑
xi′∈Xj

`(k, g(xi′))
]}
. (16)

The empirical version of (14) may suffer from a negative
objective, but (16) is non-negative (even though their popu-
lation versions are equivalent.)

Enforcing the reformulated risk to become non-negative was
previously explored in Kiryo et al. (2017), in the context of
binary classification from positive and unlabeled data. The
positive class risk is already bounded below by zero in their
case (because they have true positive labels), so there was
a max operator only on the negative class risk. We follow
their footsteps, but since our setting is a multi-class scenario
and also differs by not having any true labels, we put a max
operator on each of the K classes.

3.4. Approximate non-negative risk estimator

Implementation with max operator We now illustrate
how to design a practical implementation under stochastic
optimization for our non-negative risk estimator. An unfor-
tunate issue is that the minimization of (16) is not point-wise
due to the max-operator, thus cannot be used directly for
stochastic optimization methods with mini-batch. However,
an upper bound of the risk can be minimized in parallel by
using mini-batch as the following,

1

B

N∑
b=1

K∑
k=1

max
{

0,−(K − 1)πk · ÊPk

[
`
(
k, g(X)

)
;X bk

]
+

K∑
j=1

πj · ÊP j

[
`
(
k, g(X)

)
;X bj

]}
,

(17)

Algorithm 1 Complementary-label learning with gradient
ascent

Input: complementarily labeled training data {Xk}Kk=1,
where Xk denotes the samples complementarily labeled
as class k;
Output: model parameter θ for g(x; θ)

1: Let A be an external SGD-like stochastic optimization
algorithm such as Kingma & Ba (2015)

2: while no stopping criterion has been met:
3: Shuffle {Xj}Kj into B mini-batches;
4: for b = 1 to B:
5: Denote {X bj } as the b-th mini-batch for comple-

mentary class j
6: Denote rbk(θ) = −(K−1)πk · ÊPk

[`(k, g);X bk ]+∑K
j=1 πj · ÊP j

[`(k, g);X bj ]

7: if mink[rb1(θ), . . . , rbk(θ), . . . , rbK(θ)] > −β:
8: Denote Lb(θ) =

∑K
k=1 r

b
k(θ)

9: Set gradient∇θLb(θ);
10: Update θ by A with its current step size η;
11: else:
12: Denote L̃b(θ) =

∑K
k=1 min{−β, rbk(θ)}

13: Set gradient −∇θL̃b(θ);
14: Update θ by A with a discounted step size γη;

where Ê is the empirical version of the expectation and B is
the number of mini-batches.

Implementation with gradient ascent If the objective is
negative for a certain mini-batch, the previous implemen-
tation based on the max operator will prevent the objective
to further decrease. However, if the objective is already
negative, that mini-batch has already started to overfit. The
max operator cannot contribute to decrease the degree of
overfitting. From this perspective, there is still room to im-
prove the overfitting issue, and it would be preferable to
increase itself to make this mini-batch less overfitted.
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(a) MNIST, linear (b) MNIST, MLP (c) Fashion MNIST, linear (d) Fashion MNIST, MLP

(e) Kuzushi MNIST, linear (f) Kuzushi MNIST, MLP (g) CIFAR-10, DenseNet (h) CIFAR-10, ResNet

Figure 2: Experimental results for various datasets and models. Dark colors show the mean accuracy of 5 trials and light colors show
standard deviation.

Our idea is the following. We denote the risk that corre-
sponds to the kth ordinary class for the ith mini-batch as

rbk(θ) = −(K − 1)πk · ÊPk
[`
(
k, g(X)

)
;X bk ]

+

K∑
j=1

πj · ÊP j

[
`
(
k, g(X)

)
;X bj

]
,

and the total risk as Lb(θ) =
∑K
k=1 r

b
k(θ). When

mink{rbk(θ)}Kk=1 ≥ −β, we conduct gradient descent
as usual with gradient ∇θLb(θ). On the other hand,
if mink{rbk(θ)}Kk=1 < −β, we first squash the class-
decomposed risks over −β to −β with a min operator, and
then sum the results:

L̃b(θ) =

K∑
k=1

min{−β, rbk(θ)}.

Next we set the gradient in the opposite direction with
−∇θL̃b(θ). Conceptually, we are going up the gradient
∇θL̃b(θ) for only the class-decomposed risks below −β,
to avoid the class-decomposed risks that are already large
to further increase. Note that β is a hyper-parameter that
controls the tolerance of negativity. β = 0 would mean
there is zero tolerance, but in practice we can also have
−β 6= 0 for a threshold that allows some negative (−β < 0)
or positive (−β > 0) amount. The procedure is shown in
detail in Algorithm 1.

4. Experiments
In this section, we compare the 3 methods that we have
proposed in Section 3, which are Free (Unbiased risk esti-
mator that is loss assumption free, based on Eq. (13)), Max
Operator (based on Eq. (17)), and Gradient Ascent (based
on Alg.1). For Gradient Ascent, we used β = 0 and γ = 1
for simplicity. Mini-batch size was set to 256. We also
compare with two baseline methods: Pairwise comparison
(PC) with ramp loss from Ishida et al. (2017) and Forward
correction from Yu et al. (2018). For training, we used only
complementarily labeled data, which was generated so that
the assumption of (5) is satisfied. This is straightforward
when the dataset has a uniform (ordinarily-labeled) class
prior, because it reduces to just choosing a class randomly
other than the true class.

In Appendix C, we explain the details of the datasets used
in the experiments: MNIST, Fashion-MNIST, Kuzushi-
MNIST, and CIFAR-10. The implementation is based on
Pytorch2 and our demo code is available online3.

4.1. Comparison of all epochs during training

Setup For MNIST, Fashion-MNIST, and Kuzushi-
MNIST, a linear-in-input model with a bias term and a MLP
model (d−500−1) was trained with softmax cross-entropy

2https://pytorch.org
3https://github.com/takashiishida/comp

https://pytorch.org
https://github.com/takashiishida/comp
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Table 2: Test mean and standard deviation of the classification accuracy for 4 trials. Method name outside (inside) parenthesis shows the
criterion of training (validation) objective. Best is shown in bold or underline for column 2∼4 or column 2∼6, respectively.

Dataset GA (Free) PC (PC) Fwd (Fwd) PC (Free) Fwd (Free)

MNIST 88.1± 2.5% 79.3± 3.3% 88.7± 0.3% 80.2± 2.9% 89.4± 0.4%

Fashion 78.7 ± 1.4% 74.7± 1.6% 77.5± 1.2% 75.7± 1.2% 73.5± 5.5%

Kuzushi 63.8± 1.1% 56.7± 4.9% 62.0± 1.1% 56.1± 4.2% 65.4± 1.7%

CIFAR-10 36.8 ± 0.6% 33.4± 2.0% 30.8± 1.6% 25.9± 7.6% 30.8± 1.7%

loss function (except PC) for 300 epochs. Weight decay of
1e− 4 for weight parameters and learning rate of 5e− 5 for
Adam (Kingma & Ba, 2015) was used.

For CIFAR-10, DenseNet (Huang et al., 2017) and ResNet-
34 (He et al., 2016) were used with weight decay of 5e− 4
and initial learning rate of 1e− 2. For optimization, stochas-
tic gradient descent was used with the momentum set to 0.9.
Learning rate was halved every 30 epochs.

Results We show the accuracy for all 300 epochs on test
data to demonstrate how the issues discussed in Section 3.2
appear and how different implementations in Section 3.4
are effective. In Figure 2, we show the mean and standard
deviation of test accuracy for 4 trials on test data evaluated
with ordinary labels.

First we compare our 3 proposed methods with each other.
For linear models in MNIST, Fashion-MNIST, and Kuzushi-
MNIST, all proposed methods work similarly. However
in the case of using a more flexible MLP model or using
DenseNet/ResNet in CIFAR-10, we can see that Free is
the worst, Max Operator is better and Gradient Ascent is
the best out of the proposed three methods for most of the
epochs (Free < Max Operator < Gradient Ascent). These
results are consistent with the discussions of overfitting in
Section 3.2 and the motivations for different implementa-
tions in Section 3.4.

Next, we compare with baseline methods. For linear mod-
els, all methods have similar performance. However for
deep models (MLP, DenseNet, and ResNet), the superiority
stands out for Gradient Ascent for all datasets.

4.2. Experiments with validation process

Setup Next, we perform experiments with a train, valida-
tion, and test split. The dataset is constructed by splitting
the original training data used in the previous experiments
into train/validation with a 9:1 ratio. Note that the validation
data only has complementary labels since it is splitted from
the set of complementarily labeled training data. We use
the same MLP models for MNIST, Fashion-MNIST, and
Kuzushi-MNIST. We use DenseNet for CIFAR-10.

Since Gradient Ascent (GA) seemed to work better than

Free and Max Operator previously, we omit Free and Max
Operator and compare GA with baseline methods (PC and
Forward(Fwd)). For the validation objective, we used the
corresponding criterion for each method, which is shown
in the first 3 columns with parenthesis, in Table 2. We also
conducted experiments using our proposed general unbiased
estimator Free as the validation criterion for baseline meth-
ods (PC and Fwd), which is shown in the last 2 columns
in Table 2. SGD with momentum of 0.9 was used for 250
epochs. Weight-decay was fixed to 1e − 4 and learning
rate candidates are {1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2,
5e− 2} for CIFAR-10 and {5e− 5, 1e− 4, 5e− 4, 1e− 3,
5e− 3, 1e− 2} for other datasets. For CIFAR-10, we added
learning rate decay with the same settings from Section 4.1.

Results In Table 2, we showed the mean and standard
deviation of test accuracy for 4 trials, with the model that
gave the best validation score out of all epochs for all hyper-
parameter candidates. By comparing the first 3 columns, GA
seems to work well. We can also observe that in most cases,
PC (Free) and Fwd (Free) performs similarly or better than
PC (PC) and Fwd (Fwd), respectively. This confirms the
discussion in earlier sections that our general unbiased risk
estimator is useful not only as a learning objective, but also
useful as a validation objective for baseline methods.

5. Conclusion
We first proposed a general risk estimator for learning from
complementary labels that does not require restrictions on
the form of the loss function or the model. However, since
the proposed method suffers from overfitting, we proposed
a modified version to alleviate this issue in two ways and
have better performance. At last, we conducted experiments
to show our proposed method outperforms or is comparable
to current state-of-the-art methods for various benchmark
datasets and for both linear and deep models.

Recently, complementary-label learning has been applied
to online learning (Kaneko et al., 2019), generative dis-
criminative learning (Xu et al., 2019), and medical image
segmentation (Rezaei et al., 2019). This implies applying
the idea of complementary labels to other domains may be
useful, which can be an interesting future direction.
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