Supplementary Material : Sum-of-Squares Polynomial Flow

A. Simulated Experiments

Here, we explore the effect of relative ordering for the
conditioner network for SOS flows as well as mixture of
Gaussians. We again generated two sets of 2D densities
given by p(z1,22) = N(xa ;0,4)N (21 ;0.2523,1) and
p(r1,22) = N (2o ;2,2)N (21 ;1/323,1.5). However, we
trained both SOS flows and GMMs with the reverse order
i.e. x1, xo. For SOS flows we again tested using both deep
and wide flows whereas for MoGs we tested with varying
number of components for each conditional. We present
the plots in Figure 4. The best performance here is by a
deep SOS flow. Furthermore, while a flat SOS flow is able
to achieve almost the same geometrical shape as the target
density, its learned density still differs from the true density.
For mixture of Gaussians, a large number of components for
each conditional improved the performance of the resulting
model.

True Deep SOS Shallow SOS MoG (3) MoG (7) MoG (15)

Figure 4. Top: Left plot shows the target density given by
p(x1,22) = N(x2 ;0,4)N (21 ;0.2523,1). The second plot
shows the density learnt by SOS flows with 3 blocks and a sum
of 2 polynomials with degree 3 with ordering (1, x2). Third plot
shows the density learnt by SOS flows with 1 block and a sum of
2 polynomials with degree 4 and ordering (1, z2). The last three
plots estimate this density using a Mixture of Gaussian condition-
als with varying components given in parenthesis and ordering
(21, z2). Bottom: Same as Top but with target density given by
p(z1,x2) = N(x2;2,2)N (21 ;0.332%, 1.5).

We also test the representational power of deep and wide
SOS flows and the results are given in Figure 5. In the
first row, the true transformation was simulated by stacking
multiple blocks of SOS transformation. Subsequently, we
generated the target density using this transformation and
estimated it using a deep flow, wide flow, wide-deep flow
and mixture of Gaussians. In the second row, we simulated
the true transformation using a single block SOS transfor-
mation and performed the same experiment as before. In
both simulations, we tried to break our model by adding
random noise to the coefficients of simulated transforma-

True Transform SOS (layers=2, r=1) SOS (layers=1,r=4) SOS (layers=3, r=4) GMM

Figure 5. Top Row: Transformation defined by a deep SOS flow
with 7 = 1 and blocks =4. The next three plots show SOS flows
learning this transformation with different configurations (deep,
wide and, wide-deep). The last plot shows the transformation
learned when a Gaussian mixture model learns the density (or
transformation). Bottom Row: Same as Top Row but the true
transformation was derived by a wide and shallow SOS flow with
7 = 4 and blocks=1.

tion. As the figure shows, however, both deep and wide
variants performed equally well in terms of representation.
As expected however, the training time for wider flows was
significantly longer than that for deeper flows.

Finally, we tested SOS flows on a suite of 2D simulated
datasets — Funnel, Banana, Square, Mixture of Gaussians
and Mixture of Rings. These datasets cover a broad range
of geometries and have been considered before by Wenliang
et al. (2019). For these experiments, we constructed our
model by stacking 3 blocks with each block being a sum
of two polynomials each of degree four. We plot the log
density function learned by SOS flow and the true model in
Figure 6. The model is able to capture the true log density
of datasets like Funnel and Banana. The true densities of
Funnel and Banana are a simple linear transformation of
Gaussians. Hence, flow based models that learn a contin-
uous and smooth transformation are expected to perform
well on these datasets. However, SOS demonstrates certain
artifacts at the sharp corners of the Square although it is able
to capture the overall density nicely. These three datasets
— Funnel, Banana, and Square — were part of the unimodal
simulated datasets.

The multimodal datasets included Mixture of Gaussians
(MoG) and Mixture of Rings (MoR). As discussed earlier in
Remark 1, when the target distribution has regions of near
zero mass, the learned transformation admits sharp jumps to
capture such regions. Flow based models by virtue of being
invertible and smooth are often unable to learn such sharp
jumps. SOS flows performs reasonably well for mixture of
Gaussians although there are certain artifacts in the model

Sum-of-Squares Polynomial Flow

MADE

MAF

Figure 6. Log-densities for various toy-datasets. The top row
shows the true log-densities. The next three rows are the log-
densities for SOS flows, MADE and, MAF respectively.

that try to connect the two components. Similarly, there are
some artifacts connecting the rings for the Mixture of Rings
datasets. However, this issue of separated components can
be dealt with relative ease in practice using clustering.

B. Transformation for Mixture of Gaussians

The slope T"(z) of T at any point z is given by

=——+£L where t=F(z)

i.e. the slope T"(z) is the ratio of probability density quan-
tiles (pdQs) of the source random variable and the target
random variable.

We now analyze the transformation required to transform a
standard normal distribution to mixture of normal distribu-
tions. Figure 7 shows three columns of plots: In the leftmost
column, the top plot is the source distribution (Z) which
is standard normal. The bottom plot is the target distribu-
tion for the random variable X which is a Gaussian mixture
model with two components. The means are —10 and 10,
the variance is 1 and weights are 0.5 for each component
respectively. The middle plot shows the transformation 7'
required to push forward a standard normal distribution to
the target. In the second column of plots, we now transform
a standard normal distribution to a mixture distribution but
with means as -20 and 20, i.e. the components are more sep-
arated. Finally, in the plots given in the rightmost column,
we transform a standard normal distribution to a mixture of
three Gaussians with means -20, -5, and 15. The variances
are 1 and weights are % respectively.

We make the following observations here: In all three plots

for the transformation, we notice that the transformation
admits jumps (close to being vertical) i.e. the slope at these
points is large and close to infinity. This is expected since the
regions where the target has almost zero mass but the source
has finite mass would lead to a slope with such behavior. In
the plots, this is the region in between the components where
the mass of the target density approaches zero. Furthermore,
the larger this area, the longer is the height of this jump
(see plots on column one and column two). With densities
that have two such areas, the transformation as expected has
two jumps (plots on column three). The slope of 7" on the
extremes is a constant and is equal to the standard deviation
of the component on that extreme. This is because:

R 1))
Jm T = lp (1)

As z — 00, q is approximately equal to the component on
the positive extreme of the x-axis. This easily gives that
lim, 0o T'(2) = o4 where o is the standard deviation
of the component on the positive extreme of the x-axis;
similarly, we get lim,_, ., T'(z) = o_ i.e. T'(z) is a con-
stant in almost all the region of zero mass on the left of the
component on the negative extreme and on the right of the
positive extreme (verified in Figure 7). Finally, the only re-
gions where T”(z) is finite is whenever g(x) > ¢(Z) where
% < p; & 20; where the index ¢ stands for the i*” compo-
nent. Therefore, any 7' that transforms a standard normal
distribution to a mixture of Gaussians will be approximately
piece-wise linear with jumps. The number of linear pieces
in this transformation will be equal to the number of com-
ponents in the mixture. The slopes of these linear pieces
will be a function of the standard deviations of the mixture
components. Additionally, the height of the jump will be
a function of the mixing weights and standard deviation of
the mixture components.

C. Proofs

Lemma 1 (Mulansky & Neamtu 1998). Let S be a dense
subspace of X and let C C X be a convex set such that
int(C) # 0. Then C N S is dense in C.

Proof. Since the interior int(C) is open and nonempty, and
S is dense, we know int(C') N S is dense in int(C'). (Every
open set of int(C') is also an open set of X, hence intersects
the dense set S.) Moreover, since C'is convex and int(C') #
0, we know cl(int(C)) = cl(C'), hence cl(int(C) N S) =
cl(C), i.e., int(C) N S, whence also the “larger” set C' N S,
is dense in C. O

Theorem 3. Let C be the space of real univariate continu-
ous functions, equipped with the topology of compact con-
vergence. Then, the set of increasing polynomials is dense
in the cone of increasing continuous functions.

Sum-of-Squares Polynomial Flow

standard gaussian

density

mixture of gaussian (x)
|
G o
| \

standard gaussian (z)

mixture of gaussian
02

density

00

standard gaussian

density

osz

°
8

-100 -75 50 -25 00 25 50 75 100

mixture of gaussian (x)
|
G o

mixture of gaussian (x)

standard gaussian (z)

mixture of gaussian

density
o °
g 9

density

density

standard gaussian

standard gaussian (2)

mixture of gaussian

Figure 7. Transformation curves from standard Gaussian to mixture of Gaussians.

Proof. Let us define P to be the space of polynomials, and
| the space of increasing functions. We need only prove
on any compact set K, the set of polynomials of the form
(8), i.e. I N P thanks to Theorem 2, is dense in C(K) N
|. By Weierstrass’ theorem we know P is dense in C(K).
Moreover, the convex subset INC(K’) has nonempty interior
(take say a linear function with positive slope). Applying

Lemma 1 above completes the proof.

O

